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Abstract
We study a novel class of open-loop control protocols constructed to perform
arbitrary nontrivial single-qubit logic operations robust against time-dependent
non-Markovian noise. Amplitude and phase modulation protocols are crafted
leveraging insights from functional synthesis and the basis set of Walsh functions. We
employ the experimentally validated generalized filter-transfer function formalism in
order to find optimized control protocols for target operations in SU(2) by defining a
cost function for the filter-transfer function to be minimized through the applied
modulation. Our work details the various techniques by which we define and then
optimize the filter-synthesis process in the Walsh basis, including the definition of
specific analytic design rules which serve to efficiently constrain the available
synthesis space. This approach yields modulated-gate constructions consisting of
chains of discrete pulse-segments of arbitrary form, whose modulation envelopes
possess intrinsic compatibility with digital logic and clocking. We derive novel families
of Walsh-modulated noise filters designed to suppress dephasing and coherent
amplitude-damping noise, and describe how well-known sequences derived in NMR
also fall within the Walsh-synthesis framework. Finally, our work considers the effects
of realistic experimental constraints such as limited modulation bandwidth on
achievable filter performance.
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error suppression; quantum control; quantum logic; qubit; Walsh function; functional
analysis

1 Introduction
In realistic laboratory settings, decoherence in quantum systems is dominated by time-
dependent non-Markovian noise processes with long correlations, frequently character-
ized by low-frequency dominated noise power spectra [–]. These may arise either from
environmental fluctuations or - in the important case of driven quantum systems - from
noise in the control device itself []. In either case, the result is a reduction in the fidelity
of a target control operation, including both memory and nontrivial operations. These
phenomena present a major challenge as quantum devices move from proof of principle
demonstrations to realistic applications, where performance demands on the quantum
devices are frequently extreme. Accordingly, finding ways to control quantum systems ef-
ficiently and effectively in the presence of noise is a central task in quantum control theory
[–].
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A range of techniques relying on both open- and closed-loop control have been devised
to address this challenge [–] at various levels in a layered architecture for quantum
computing []. In particular, open-loop dynamical error suppression strategies (without
the need for measurement or feedback) such as dynamic decoupling (DD) [–], dynam-
ically corrected gates (DCGs) [–], and composite pulsing [–], have emerged as
resource-efficient approaches for physical-layer decoherence control. They are joined by a
new class of continuously modulated (‘always-on’) dynamical decoupling and dynamically
protected gate schemes [–] inspired by well established techniques in NMR.

These schemes all address the question of decoherence mitigation, but looking across
their breadth, have both benefitted and suffered from reliance on a wide range of theoret-
ical techniques. Unfortunately the analytic tools for crafting control protocols employed
in any particular setting do not necessarily translate equivalently between approaches,
nor do the methods generally employed for evaluating efficacy easily translate to exper-
imentally measured characteristics of the environment. This is a major challenge for ex-
perimentalists or systems designers attempting to determine which of the many open-
loop control schemes to employ in a particular experiment. As an example, the powerful
group theoretic insights and consideration of time-varying environments that permit the
construction of error-robust, bounded-strength SU() operations for quantum informa-
tion in Viola’s DCG framework are quite different from the geometric considerations and
quasi-static noise assumptions widely employed in NMR composite pulsing. This issue
has been highlighted recently as new work has revealed striking differences between the
time-domain noise sensitivity of control protocols as compared to longstanding notions
of error cancellation in the Magnus expansion [, ].

A unified and experimentally relevant framework for devising and evaluating error-
suppressing gates in realistic noise environments is therefore needed to secure the role
of dynamical error suppression in systematic designs of quantum technologies includ-
ing fault-tolerant quantum computers. Kurizki provided a promising path towards this
end with his seminal work framing the problem of finding decoherence-suppressing con-
trol protocols by considering appropriate frequency-domain modification of the system-
environment coupling [, ]. Residual errors could be calculated through overlap inte-
grals of the power spectrum describing the environmental noise, and functions captur-
ing the frequency-domain response of any applied control. This framework - effectively a
quantum generalization of transfer functions widely used in control engineering [] - pro-
vides a simple heuristic approach to understanding the performance of an arbitrary con-
trol protocol in an arbitrary noise environment. Stated simply, effective error-suppressing
control protocols ‘filter’ the noise over a user-defined band, therefore mitigating decoher-
ence in the quantum system [].

Early demonstrations of this framework applied to the simple case of implementing the
protected identity operator to qubits by dynamical decoupling [, –], where the fil-
ter functions could be calculated for pure dephasing in a straightforward manner using
concepts of linear control []. Expanding significantly beyond this work, the challenge of
crafting generalized analytic forms for the transfer functions describing arbitrary single-
qubit control compatible with universal non-commuting noise (a problem in nonlinear
control) has recently been addressed theoretically [, , , ], and validated in exper-
iment []. Further theoretical extensions of filter-transfer functions to two-qubit gates
highlight the breadth of applicability of this approach to quantum control [–].
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Beyond its simple intuitive nature, the power of the filter transfer function approach
comes from the fact that it can in principle be applied to studying dynamic-error-
suppression control protocols derived through any manner of analytic approach. It per-
mits the application of well tested engineering concepts for control systems design; the
complex physics associated with quantum dynamics in time-dependent environments
with non-commuting noise and control Hamiltonians is relegated to the calculation of the
generalized filter transfer functions themselves, and once derived these may be deployed
in block-diagram systems analyses [].

With these significant advances and the promise of applying the suite of insights from
control theory to the quantum regime, the noise-filtering approach to quantum control
has leapt to the fore, providing a unifying framework applicable over a wide parameter
range of interest to real experimental settings. Nonetheless, outstanding challenges re-
main in how to leverage the generalized filter-transfer-function framework [, ] to
systematically craft effective error-suppressing gate constructions while also heeding real-
istic system constraints imposed by hardware systems. For instance, the presence of finite
timing precision and limited classical communication bandwidth between the physical
(quantum) layer and a classical controller [] impose new constraints not generally cap-
tured when solely considering quantum dynamical evolution of an individual state.

We address this challenge, introducing a quantum control toolkit permitting the real-
ization of physical-layer error-suppressing control protocols that are simultaneously ef-
fective in suppressing error and compatible with a variety of major hardware restrictions.
We leverage the generalized filter-transfer function formalism as a unifying theoretical
construct, and employ techniques from functional analysis in order to realize appropri-
ate modulation protocols applied to a near-resonant carrier frequency for enacting high-
fidelity quantum control operations on single qubits [, ]. Our work identifies the
Walsh functions - square-wave analogues of the sines and cosines - as natural building
blocks for constructing the modulation protocols designed to filter time-varying noise
over a user defined band while enacting a nontrivial qubit rotation. The Walsh functions
are defined in a uniform piecewise-constant fashion, building intrinsic compatibility with
discrete clocking [] and classical digital logic, and have previously been identified as pro-
viding a powerful mathematical framework in the context of quantum control sequencing
[]. Moreover, they may be arbitrarily combined using Fourier-like synthesis using tech-
niques for arbitrary waveform generation well established in digital signal processing.

We treat a Walsh-modulated driven qubit system weakly interacting with both de-
phasing and coherent amplitude-damping noise processes. The task of finding Walsh-
synthesized modulation patterns that produce effective filters is reduced to minimizing a
cost function measuring the extent to which noise over a user-defined spectral band is fil-
tered by the applied control. The performance of resulting control protocols is completely
characterized by their Walsh spectra, facilitating intuitive analytic design rules based on
symmetry and spectral properties of the Walsh basis. Our work details the various tech-
niques and mathematical constructs through which we define and then optimize the filter-
synthesis process in the Walsh basis, and considers the effects of realistic experimental
constraints such as limited modulation bandwidth.

With these insights, we derive novel families of Walsh-modulated noise filters designed
to suppress dephasing and coherent amplitude-damping noise, and describe their proper-
ties. Modulation protocols are tailored to a particular operation on SU(), but are other-
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wise largely model-robust (being tailored to suppress noise over a frequency band rather
than to a specific time-domain noise signal), and portable between different qubit tech-
nologies. Combined with the discovery, presented here, that several prominent composite
pulse protocols derived in NMR actually fall within the Walsh-synthesis basis - mirroring
similar insights in the context of dynamical decoupling [] - this work positions the Walsh
functions as a natural basis for crafting physical-layer error suppression strategies for scal-
able quantum technologies.

The remainder of this paper is organized as follows. In Section  we describe our model
quantum system by defining relevant control and noise Hamiltonians. In Section  we
review the generalized filter-transfer function formalism used to derive a spectral repre-
sentation of the operational infidelity. Notation for defining and parameterizing the con-
trol space is introduced and explicit expressions for computing corresponding filter func-
tions are presented. Section  provides a formal definition of a filter cost function used
for optimizing operational fidelity over the control space and deriving useful filters. Per-
formance characteristics of these filters are discussed and interpreted, with care taken to
differentiate filter order from Magnus order. In Section  physically motivated constraints
on the control space are established by synthesizing control waveforms as superpositions
of functions in the Walsh basis, bounding the dimensionality of the filter-optimization
task. Two useful representations of the Walsh basis - Paley ordering and the Hadamard
representation - are introduced. We then develop a range of analytic filter-design rules for
efficient filter construction based on the symmetry and spectral properties of the Walsh
functions. In Sections - we apply the above framework to derive several novel fami-
lies of noise filters implementing nontrivial logic gates. These include filters for dephasing
and coherent amplitude-damping noise in addition to concatenated filters for universal
noise. In Section  we study how relaxing the assumption of perfect square pulses re-
duces the performance of filters optimized in the Walsh basis, and demonstrate that these
filter properties may be recovered in general by simply re-optimizing under the assump-
tion of non-square pulses. We then close with a brief summary and outlook, followed by
a number of appendices containing detailed derivations of relevant quantities used in the
main text.

2 Physical setting
We begin by establishing the Hamiltonian framework for the control and noise interac-
tions treated in this paper. This is necessary background in order to study noise filtering via
Walsh-synthesized control fields implementing logic gates. We consider a model quantum
system consisting of an ensemble of identically prepared noninteracting qubits immersed
in a weakly interacting noise bath and driven by an external control device. Working in
the interaction picture with respect to the qubit splitting, state transformations are repre-
sented as unitary rotations of the Bloch vector. In this interaction picture the generalized
time-dependent Hamiltonian is written

H(t) = Hc(t) + H(t), ()

where Hc(t) describes perfect control of the qubit state, e.g. via an ideal external driv-
ing field, and the noise Hamiltonian H(t) captures undesirable interactions with a time-
varying non-Markovian noise environment. The full qubit dynamics are governed by the
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Schrodinger equation iU̇(t, ) = H(t)U(t, ) where the time-evolution operator U(t, )
transforms an initial state |ψ()〉 to the final U(τ , )|ψ()〉 after an interaction of dura-
tion τ .

In the absence of noise the total Hamiltonian reduces to H(t) = Hc(t), in which case time-
evolution is determined purely by control operations according to iU̇c(t, ) = Hc(t)Uc(t, ).
An intended evolution path under ideal control is therefore described by the control
propagator Uc(t, ) = T exp(–i

∫ t
 Hc(t′) dt′), with T denoting the time-ordering opera-

tor. For a single qubit the time-dependent control Hamiltonian may in general be written
Hc(t) = �(t)n̂(t) · σ /. Here n̂(t) · σ ≡ nxσ̂x + nyσ̂y + nzσ̂z is the rotation generator, n̂(t) ∈R

is a unit vector defining the instantaneous axis of rotation, and �(t) is the instantaneous
rate of rotation (Rabi rate) for the Bloch vector.

Environmental interactions are modeled semi-classically, with stochastic noise pro-
cesses expressed in terms of time-dependent fluctuating classical noise fields. We con-
sider time-dependent dephasing (detuning) and coherent amplitude-damping processes,
captured respectively through (stochastic) rotations about σ̂z and about the instanta-
neous direction of control n̂(t) · σ . The universal noise Hamiltonian thus takes the form
H(t) = H (z)

 (t) + H (�)
 (t) where H (z)

 (t) and H (�)
 (t) denote noise interactions in the dephas-

ing and amplitude noise quadratures respectively. Dephasing noise thus contributes the
additive term

H (z)
 (t) = βz(t)σ̂z, ()

where βz(t) describes a time-varying noise field. Coherent amplitude-damping noise con-
tributes the multuplicative term

H (�)
 (t) =

β�(t)�(t)


n̂(t) · σ = β�(t)Hc(t). ()

Including this term is equivalent to making the substitution �(t) −→ �(t)( +β�(t)) in the
control Hamiltonian, where β�(t) describes a (multiplicative) noise source in the ampli-
tude of the driving field. Inclusion of this term in the noise Hamiltonian enables us to go
beyond previous studies where attention has been restricted to dephasing processes. This
novel approach is important for most realistic experimental situations where correctable
non-Markovian amplitude-damping errors arise from noise in the control system itself
(for example, fluctuations in the strength of the driving field).

In our model both βz(t) and β�(t) are assumed to be classical random variables with
zero mean and non-Markvovian power spectra. We also assume they are wide sense sta-
tionary and independent.a The former implies the autocorrelation functions 〈βi(t)βi(t)〉,
i ∈ {z,�}, depend only on the time difference t – t. The latter implies the cross-correlation
functions vanish. That is, 〈βi(t)βj(t)〉 =  where i, j ∈ {z,�|i �= j}. The angle brackets de-
note a time average of the random variables. Finally, our model permits access to a wide
range of parameter regimes, from quasistatic (noise slow compared to Hc(t)) to the limit
in which the noise fluctuates on timescales comparable to or faster than Hc(t).

These noise Hamiltonians generate uncontrolled rotations in the qubit dynamics, lead-
ing to errors in the evolution path (and hence the final state) relative to the target trans-
formation intended under Hc(t). An estimate for this error is derived in the next section
using the generalized filter-transfer function formalism.
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3 Building noise filters
Overall, our objective is to craft control protocols such that the deleterious effects of time-
dependent noise on the intended evolution of an arbitrary qubit transformation are sup-
pressed - filtered by the control. Accordingly, we require a measure for the operational
fidelity in the presence of both noise and the relevant control. For this we employ the
method developed by Green et al. []. In this framework the error contributed by the
noise fields over the duration of the control is approximated, to first order, via a truncated
Magnus expansion. Each noise field then contributes a term to the gate infidelity in the
spectral domain expressed as an overlap integral between the noise power spectrum and
an appropriate generalized filter-transfer function. We describe this in detail below.

3.1 Calculating operational fidelity
In the absence of noise interactions, state evolution is determined by iU̇c(t) = Hc(t)Uc(t)
with Uc(t) the ideal evolution operator describing the target operation. Including the
effects of noise, however, time evolution is determined by the operator U(t) satisfying
iU̇(t) = (Hc(t) + H (z)

 (t) + H (�)
 (t))U(t). Our measure for operational fidelity is given by

Fav(τ ) = 
 〈|Tr(U†

c (τ )U(τ ))|〉, effectively measuring the extent to which the intended and
realized operators ‘overlap’, as captured by the Hilbert-Schmidt inner product []. Com-
puting the evolution dynamics, however, is very challenging since the control and noise
Hamiltonians do not commute at different times; sequential application of the resulting
time-dependent, non-commuting operations gives rise to both dephasing and depolariza-
tion errors, mandating approximation methods.

Our error model assumes non-dissipative qubit evolution with both control and noise
interactions resulting in unitary rotations. Hence we approximate the evolution opera-
tor as a unitary using a Magnus expansion [, ]. This involves moving to a frame co-
rotating with the control known as the toggling frame, originally appearing in the devel-
opment of average Hamiltonian theory []. This approach allows us to separate the part
of the system evolution due solely to the control from the part affected by environmental
coupling, and is standard in the study of coherent control in NMR [, ] and quantum
information.

Defining the error propagator Ũ(t) ≡ U†
c (t)U(t), the total evolution operator is writ-

ten U(t) = Uc(t)Ũ(t). In this case the realized evolution operator approaches the tar-
get operation as Ũ(τ ) → I, establishing the condition for suppression of noisy evolu-
tion dynamics. However, moving to the toggling frame defined by toggling frame Hamil-
tonian H̃(t) ≡ U†

c (t)H(t)Uc(t), the error propagator satisfies the Schrodinger equation
i ˙̃U(t) = H̃(t)Ũ(t). Performing a Magnus expansion in this frame - assuming convergence
of the series [] - we may write Ũ(τ ) = exp[–i

∑∞
μ= aμ(τ ) ·σ ] where the error vectors aμ(τ )

determine expansion coefficients of the Magnus series operators �μ(τ ) expressed in the
basis of Pauli matrices (see Appendix A). We may then in principle approximate Ũ(t) to
arbitrary accuracy by truncating the infinite series at an appropriate order.

The operational fidelity Fav(τ ) = 
 〈|Tr(Ũ(τ ))|〉 may now be fully expressed as an infi-

nite power series over the ensemble-averaged magnitudes of the expansion vectors aμ(τ ).
In the limit of sufficiently weak noise,b however, it is appropriate to truncate the expan-
sion to first-order yielding Fav(τ ) ≈  – 〈a

 〉 with 〈a
 〉 ≡ 〈a(τ )aT

 (τ )〉 defining the first
order infidelity. Now, as set out in Appendix A the first-order error vector is related to
the first-order Magnus term according to Eq. (), yielding a(τ ) · σ = �(τ ) =

∫ τ

 dtH̃(t).
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That is, the first-order infidelity 〈a
 〉 is associated with the time-average of the toggling

frame Hamiltonian over the total sequence duration.
Expressing H̃(t) ≡ �R(t) · σ in the Pauli basis, where the expansion vector �R(t) is some

convolution of both control and noise fields, we obtain the computational expression
a(τ ) =

∫ τ

 dt �R(t). Using the noise model assumptions outlined in Section , and perform-
ing a number of Fourier-like transforms (see Appendix A for full details), we obtain a
spectral representation of the form

〈
a


〉

=


π

∫ ∞

–∞
dω

ω Sz(ω)Fz(ω) +


π

∫ ∞

–∞
dω′

ω′ S�

(
ω′)F�

(
ω′). ()

Here Sz(ω) and S�(ω) denote the dephasing and amplitude noise power-spectral densi-
ties (PSDs). The dephasing Fz(ω) and amplitude F�(ω) filter-transfer functions, on the
other hand, capture the spectral response of the control sequence. Moving forward, we
will present the mathematical framework that permits calculation of these quantities for
arbitrary control protocols.

3.2 Defining the control space
In order to realize specific noise filters, characterized by the filter-transfer functions intro-
duced above, we require a simple framework to define the time-domain control operations
that can be applied to the qubit. Representing the qubit state on the Bloch sphere, state
manipulation maps to a rotation in R

 of the Bloch vector associated with a unitary trans-
formation U (θ , σ̂n̂) ≡ exp[–i(σ · n̂)θ/], reflecting the homeomorphism between SU()
and SO(). The rotation generator σ̂n̂ ≡ n̂ · σ ≡ nxσ̂x + nyσ̂y + nzσ̂z produces a rotation
though an angle θ about the axis defined by the unit vector n̂ ∈R

.
We treat control protocols taking the form of an n-segment sequence of such unitaries,

executed over the time period [, τ ]. This implies a natural partition of the total sequence
duration τ into n subintervals Il = [tl–, tl], l ∈ {, . . . , n}, such that the lth control unitary
has duration τl = tl – tl–. Here tl– and tl are the start and end times of the lth rotation
respectively, and we define t ≡  and tn ≡ τ . In particular we consider control unitaries
of the form

Pl ≡ U (�lτl, σ̂φl ) = exp

[

–i
�l


τlσ̂φl

]

, ()

σ̂φl ≡ cos(φl)σ̂x + sin(φl)σ̂y, ()

corresponding to the experimentally relevant case of a resonantly driven qubit. Here �l is
the Rabi rate during the lth time interval [tl–, tl], and is assumed constant over the dura-
tion τl of the associated control interaction. During this interaction the rotation generator
σ̂φl , parameterized by φl ∈ [, π ], thus generates a rotation of the Bloch vector through
an angle θl ≡ �lτl about the axis n̂l ≡ (cos(φl), sin(φl), ) in the xy plane.c The control
Hamiltonian associated with this n-segment sequence takes the form

Hc(t) =
n∑

l=

G(l)(t)
�l


σ̂φl , ()
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where the function G(l)(t) is  if t ∈ Il and zero otherwise. Controlled evolution during the
lth time interval is, under this Hamiltonian, consequently described by the unitary

Uc(t, tl–) = exp

[

–i
�l


σ̂φl (t – tl–)

]

. ()

That is, implementation of the lth completed rotation is equivalently denoted by the op-
erator Pl = Uc(tl, tl–). For compactness we define the cumulative operator

Ql := PlPl– · · ·P, P := I ()

to capture the cumulative action of the first l sequentially competed rotations. Hence the
control propagator at any time t may be written

Uc(t, ) =
n∑

l=

G(l)(t)Uc(t, tl–)Ql–. ()

Hc(t) is thus completely described by the sequence of n triples {(�l, τl,φl)}n
l=, and each

control operation is completely parameterized by the control variables according to Pl =
Pl(θl,�l, τl,φl). Although not strictly an independent parameter it is useful to include
θl = �lτl in the argument to distinguish different realizations of the same net rotation
for different choices of �lτl . We define the (n × ) n-segment matrix

�n =

⎡

⎢
⎢
⎢
⎢
⎣

�l τl θl φl

P � τ θ φ

P � τ θ φ
...

...
...

...
...

Pn �n τn θn φn

⎤

⎥
⎥
⎥
⎥
⎦

()

to compactly describe any arbitrary n-segment unitary control sequence (see Figure ).
The entire space Cn of such control forms, referred to the n-segment control space, and
written formally

Cn :=

{

�n

∣
∣
∣�l, θl, τl > ,φl ∈ [, π ], l ∈ , . . . , n,

n∑

l

τl = τ

}

()

thus corresponds to an infinite set of �n matrices ranging continously over all possible
values taken by the control variables. This general class of control, consisting of bounded-
strength unitary sequences, includes familiar composite-pulse sequences in NMR and
DCGs in quantum information. We use the more general control space, however, to con-
struct novel qubit gates specifically designed to filter non-Markovian noise.

3.3 Generalized filter-transfer functions
We now present the computational forms of the filter-transfer functions Fz(ω) and F�(ω)
introduced in Eq. () for arbitrary n-segment control protocols implemented by Eq. ().
As outlined above, the filter-transfer functions are completely parametrized by the control
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Figure 1 Filter construction. Visualization of the
available control space for an n = 8 segment control
sequence. The filter is synthesized over the
parameters presented in �n , whose transpose
corresponds to the discrete time segments in the
time-domain filter. As an illustration, a time-varying
Rabi rate (arbitrary units) is presented for each of the
l segments. Synthesis of this waveform may be
constructed in the Walsh basis using the Hadamard
transform (notation upper right), as will be discussed
in Section 5.

variables {(�l, τl,φl)}n
l=

∼= �n. Here we only provide a summary of the relevant computa-
tional quantities, leaving the major derivations and full explanation to Appendix A. We
start by writing

Fz(ω) :=
[
R(z)(ω)

]∗[R(z)(ω)
]T (Dephasing Filter-Transfer Function), ()

F�(ω) :=
[
R(�)(ω)

]∗[R(�)(ω)
]T (Amplitude Filter-Transfer Function), ()

where the row vectors R(z)(ω), R(�)(ω) ∈R
 are obtained by Fourier transforming relevant

time-domain functions associated with the control evolution dynamics. In Appendix B we
derive the explicit computational forms

R(z)(ω) =
n∑

l=

eiωtl– RPl
z (ω)�(l–) (Dephasing Control Vector), ()

R(�)(ω) =
n∑

l=

[
eiωtl– – eiωtl

]�T(l)�(l–) (Amplitude Control Vector). ()

The row vector RPl
z (ω) ∈R

 captures the spectral response in the dephasing noise quadra-
ture contributed during the lth unitary control segment. This takes the form (see Ap-
pendix B)

RPl
z (ω) =

ω

ω – �
l

⎛

⎜
⎜
⎝

sin(φl)[i�leiωτl cos(�lτl) + ωeiωτl sin(�lτl) – i�l]
– cos(φl)[i�leiωτl cos(�lτl) + ωeiωτl sin(�lτl) – i�l]

i�leiωτl sin(�lτl) – ωeiωτl cos(�lτl) + ω

⎞

⎟
⎟
⎠

T

. ()

We also define the lth-Segment Projection Vector

�T(l) :=
�l


(
cos(φl), sin(φl), 

)
()

to compactly express the control variables - namely Rabi rate and the rotation-axis vector,
projected onto the xy plane of the Bloch sphere - associated with evolution during the
lth unitary. In fact, inspection of Eqs. () and () reveals that �T(l) is the computational
analogue of RPl

z for the amplitude noise quadrature. The simpler dependence of �T(l) on the
control variables, however, reflects the fact that amplitude noise in our model is always
coaxial, and hence commutes with, the control.
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On the other hand, the  ×  Control History Matrix �(l–), defined by

�
(l–)
ij =




Tr
[
Q†

l–σ̂iQl–σ̂j
]
, ()

is the result of expanding the operator Q†
l–σ̂iQl– ≡ ∑

j �
(l–)
ij σ̂j, with i, j ∈ {x, y, z}, in the

Pauli basis, and identifying the coefficients �
(l–)
ij as the matrix elements. �(l–) thereby

captures the accumulated effect of the previous l –  completed unitaries, implemented
via the cumulative operator Ql–.

4 Characteristics of noise filters
The power of the noise filtering formalism lies in the simple interpretation of the filter-
transfer functions Fi(ω), which may be characterized in a standard engineering approach,
considering passbands, stopbands, and filter order [, , , ]. In particular, error
suppression corresponds to minimizing Fi(ω), i ∈ {z,�} in the spectral region where the
corresponding PSDs are non-negligible. This can, in principle, be achieved by judicious
construction of the control sequence since the filter-transfer functions are completely
parametrized in variables describing the time-domain control applied to the qubit.

We are now in a position to examine the characteristics of the filter-transfer functions
for an arbitrary control sequence �n, formally indicating the functional dependence of
the filter-transfer functions on the control variables by writing Fi(ωτ ) = Fi(ωτ ;�n), i ∈
{z,�}. Inversely, we may commence a study of filter design based on constructing control
sequences satisfying some desired filter property - our main goal. We now advance the
main mathematical framework used in this paper to study filter design, pulling together
the ideas introduced in the previous sections.

4.1 The filter cost function
A definition of the cost function associated with filter performance - captured through
the filter order - leads us naturally to the imposition of constraints on the available space
of controls. This cost function therefore lies at the heart of our attempts to craft control
protocols appropriate for a given noise environment.

From the spectral overlap in Eq. (), minimizing the infidelity contributed by the noise
process Si(ω) corresponds to minimizing the area under Fi(ωτ ;�n) in the spectral region
of interest. We therefore define a cost function over a user-defined frequency band taking
the form

Ai(�n) :=
∫ ωc

ωL

dωFi(ωτ ;�n), i ∈ {z,�} ()

to diagnose the filtering effectiveness achieved by the control sequence �n. The smaller the
integral Ai(�n), the more effective the noise filtering over this band, in this noise quadra-
ture. Since �n is defined continuously over Cn for a given n, we may in principle construct
a variational procedure over this control space to derive minimizing ‘values’ of �n satis-
fying a given cost function. In effect, the problem involves solving for paths in the control
space over which the functional Ai(�n) is minimized (up to some order).

Typically one would define the band [ωL,ωc] over which the cost function is defined to
fall within the stopband of Fi(ωτ ), below which filtering generally takes place. In general
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the band [ωL,ωc] may be tailored to target specific spectral regions in the noise PSD. Doing
so may produce highly effective filtering over this narrow spectral region, though out-of-
band behaviour can be quite poor if not specifically optimized.d

4.2 The filter order
Again, following concepts from filtering in classical control engineering, we may define a
filter order which will play a central role in efficiently realizing effective noise filters. We
will mainly consider high-pass filters for low-frequency noise, setting ωL =  such that
filtering takes place in the stopband up to the cutoff ωc. In this case it is useful to perform
the Taylor expansion of the filter-transfer function about ω = , written

Fi(ωτ ;�n) =
∞∑

k=

C(i)
k(�n)(ωτ )k , ()

where the dependence of the expansion coefficients C(i)
k on �n has been made explicit, and

we include only even powers of ωτ due to the evenness of Fi(ωτ ). Assuming sufficiently
low-frequency noise (ωc < /τ ), the approximation F(ωτ ) ∝ (ωτ )p holds for some p asso-
ciated with the most significant power law expansion term. This defines a high-pass filter
with filter order (determined by p) visualized as the slope in the stopband on a log-log
plot.e

Using this notation, and working in the low-frequency limit, we then say the control
sequence �n ∈ Cn filters βi(t) noise to order (p – ) over the band [,ωc] if �n is a con-
current zero of the first (p – ) Taylor coefficients. That is, if C(i)

 (�n) = C(i)
 (�n) = · · · =

C(i)
(p–)(�n) = . In this case we approximate Fi(ωτ ;�n) ≈ C(i)

p(�n)(ωτ )p and consequently
Ai(�n) ≈ C(i)

p(�n) (ωcτ )p+

p+ . Thus �n is a (p – )-order (high-pass) filter in the ith noise
quadrature if the following equivalent conditions are satisfied

Ai(�n)
C(i)

p(�n)
= O

(
(ωcτ )p+

p + 

)

⇐⇒ C(i)
 (�n) = · · · = C(i)

(p–)(�n) = . ()

This metric will play a central role in the analyses that follow.
It is important to disambiguate the asymptotic filter order (p – ), introduced above for

characterizing the behaviour near zero frequency, from a more general metric capable of
describing filter performance over an arbitrary spectral band. For this we introduce the
local filter order (p∗ – ) by the property that, over the band [ωL,ωc] the filter-transfer
function is well approximated by Fi ∝ (ωτ )p∗ . One may take the limit that ωL → ωc → ω∗

and thereby obtain the instantaneous filter order, effectively measuring the power-law be-
haviour at ω∗. Both local and instantaneous filter order reduce to the asymptotic filter or-
der over the stopband if over this region Fi is well-characterized by its the zero-frequency
behaviour.

4.3 Time-domain filter order vs. Magnus order
Both the asymptotic and instantaneous filter orders defined above for time-domain noise
must be distinguished from the Magnus order of error cancellation. The latter is famil-
iar from work in NMR in which quasi-static errors can be cancelled by suitable compos-
ite pulse sequence design. The regime of quasistatic errors coincides with the DC limit
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for the time-dependent noise fields introduced in Section . That is, the time-dependent
noise fields reduce to scalar constants βz(β�). The Magnus expansion terms in (), now
denoted �(DC)

μ , are then evaluated strictly as time integrals over ideal control operations,
scaled by factors β

μ
z (βμ

�) specifying the power law dependence on the magnitude of these
static offsets errors. A pulse sequence for which �

(DC)
 = · · · = �

(DC)
μ– =  is then said to

compensate offset errors to Magnus order (μ – ). In this case the total error operator sat-
isfies �(DC)(τ ) = O(�(DC)

μ ) and is dominated by the residual error proportional to the μth
power in the magnitude of the error.

This is quite distinct from time-dependent noise where the error expansion used to cal-
culate the fidelity contains terms of various Magnus order but equivalent time-dependent
error norm in the ensemble average (see, e.g. Eq.  in Ref. []). The net result is the ob-
servation that high-order error suppression in the Magnus expansion does not imply high-
order time-domain noise filtering. This has been validated using experiments on trapped
ions [], and formalized rigorously in Ref. [], where it has been shown that p ≤ μ, but
p∗ over a user-defined band is unrelated to μ. Our focus throughout this work will be on
crafting efficient noise filters rather than high-order error suppressing gates.

5 Filter design by Walsh synthesis
Even with the general insights into the appropriate modulation protocols outlined above,
it is desirable to bound the dimensionality of the control space, and hence the complexity
of the filter-design task, by imposing physically motivated constraints on the form of �n. In
practice the achievable filter order is typically limited by the number of unitary operations
in the control sequence; one may increase (p – ) at the cost of increasing n. From an
experimental standpoint, faced with the physical limitation set by a maximum achievable
Rabi rate, this cost manifests as a longer total sequence duration τ = σ̂ n

l τl . This may offset
the proposed benefit of the higher-order filter due to a longer noise interaction time. From
a theoretical standpoint the cost is in the greater complexity of the variational search;
the number of (free) variational parameters in �n grow as n and the number of matrix
products in Eqs. () and () grows as n.

We are able to effectively bound the synthesis space while still achieving highly effec-
tive gates by synthesizing relevant time-domain control fields in the basis set of Walsh
functions - square wave analogues of the sines and cosines [, ] - using the concept of
functional analysis. Walsh functions are defined in a uniform piecewise-constant fashion
(Figure ), building intrinsic compatibility with discrete clocking [] and classical digital
logic. Since their formulation in the first half of the twentieth century [] they have played
an important role in scientific and engineering applications. Their development and uti-
lization has been strongly influenced by parallel developments in digital electronics and
computer science since the s, with Walsh-type transforms replacing Fourier trans-
forms in a range of engineering applications such as communication, signal processing,
pattern recognition, noise filtering and so forth [, ].

More recently the Walsh functions have been identified as an attractive resource in
quantum information, with applications in time-resolved magnetometry using nitrogen-
vacancy centres in diamond [] and in DD for digital-efficient pulse sequencing []. No-
tably, in the latter scheme the decoupling performance was found to be determined by the
distinct symmetry and spectral properties of the Walsh basis. These properties enable us
to establish analytic design rules (see Section .) to further streamline Walsh-synthesized
filter construction.
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Figure 2 Walsh functions. The first 32
Paley-ordered Walsh functions PALk , k ∈ {0, . . . , 31}.
Functions with maximum Hamming weight r(k)
(hence maximum number of Rademacher
functions) for givenm(k), corresponding to Paley
orders 2m(k) – 1, are highlighted in red.

We begin by reviewing the relevant mathematical details of the Walsh basis. Two equiv-
alent representations are introduced, Paley ordering and the Hadamard representation,
which shall be used throughout this paper.

5.1 The Paley and Hadamard representations
The set of Walsh functions wk : [, ] → {±}, k ∈N form an orthonormal-complete family
of binary-valued square waves defined on the unit interval. They are aperiodic and hence
do not admit to a unique ordering, in contrast with the Fourier basis in which sinusoids
are ordered by increasing frequency. A number of different orderings exist [, , ]
due to the different ways in which the basis elements may be defined. We employ the
Paley ordering [] in which basis functions are generated from products of Rademacher
functions [], defined by

Rj(x) := sgn
[
sin

(
jπx

)]
, x ∈ [, ], j ≥ . ()

The jth Rademacher function Rj(x) is thus a periodic square wave switching j– times
between ± over the interval [, ]. The Walsh function of Paley order k, here denoted
PALk(x), is then defined by

PALk(x) =
m∏

j=

Rj(x)bj , ()

where (bm, bm–, . . . , b) is the binary representation of k. That is, k = bmm– + bm–m– +
· · · + b, where m(k) indexes the most significant binary digit, having defined bm ≡ .
Consequently, PALk(x) has factors Rj(x) whenever bj is a nonzero binary digit of k; the
total number of Rademacher functions in the construction of PALk(x) is thus given by the
number of nonzero bj ’s in k - namely, the Hamming weight denoted r(k). For a given value
of m(k), the maximum number Rademacher functions therefore occur for PALm(k)–(x).
For example, setting m(k) = , a maximum of three Rademacher functions are used to
construct PAL(x) = R(x)R(x)R(x), corresponding to the three nonzero digits b,, in
the binary expansion k =  = (, , ). For illustration, the first  Walsh functions in the
Paley ordering are shown in Figure .
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The discrete-timestep properties of these basis functions produce, under linear super-
position, piecewise-constant waveforms with digitized segment lengths. In our framework
these segments are used to specify the a modulation of the control field, ultimately defin-
ing a piecewise-constant sequence of unitaries. We therefore require a straightforward
expression for the envelope of an arbitrary synthesis

∑N
k= Xk PALk(x). Due to the aperi-

odicity of the Walsh functions, however, a general expression in Paley ordering is difficult.
To overcome this it is convenient to use the Hadamard representation.

The unique sign-switching envelope of PALk(x) is determined by the sign-switching of
the constituent Rademacher functions. Since any Rj(x) switches sign uniformly j times
over the interval [, ], the fastest sign-modulation rate in PALk(x) derives from the highest
order Rademacher function Rm(k)(x), which switches sign m(k) times over [, ]. Provided
m(k) ≤ n, we may therefore partition [, ] into n equal time bins such that PALk(x) is
constant valued on each bin. Any basis function PALk(x) then projects completely onto a
digital vector in R

n with the jth element, P(k)
j ∈ {±}, defined by the value of PALk(x) in

the jth bin. That is, PALk(x) is isomorphic to the discrete digital vector written

P(k)
n ≡

[
P(k)

 , P(k)
 , . . . , P(k)

n

]
. ()

This projection is possible for all k ∈ {, , . . . , n – } for which the condition m(k) ≤ n is
true, resulting in a set of n vectors. Since these vectors inherit the orthogonality of the
PALk(x), moreover, they form a discrete Walsh basis spanning R

n .
In the Hadamard representation, these vectors occur as columns (rows) of the Hadamard

matrix of dimension n. Using so-called Sylvester construction [] the n-dimensional
Hadamard matrix Hn is generated recursively by

Hn =

[
Hn– Hn–

Hn– –Hn–

]

= S⊗n, S =

[
 
 –

]

, H = , ()

where S is the Sylvester matrix, and ⊗n denotes n ≥  applications of the Kronecker
product. In this construction P(k)

n defines the i(k) =  +
∑m(k)

j= bjn–j column (row) of Hn .
The orthogonality of the Walsh basis is thereby reflected in the familiar property that
Hn HT

n = nI , implying the orthogonality of the Hadamard matrices.
The Hadamard representation of the Walsh functions has the distinct advantage of nat-

urally specifying the piecewise-constant structure of time domain sequences constructed
via linear combinations of Walsh functions. Any function synthesized in the Paley-ordered
Walsh basis, f (x) =

∑n–
k= qk PALk(x), has a vector representation in the column space of

Hn . In this section we will use this observation to efficiently construct Walsh-synthesized
filters, whose properties map compactly onto the Walsh spectrum.

5.2 Walsh-synthesized filters
The basic physics of commutation relations between Pauli operators immediately suggests
an immediate constraint on the available modulation, broadly involving structuring of the
Rabi rate or control phase in the time domain

�AMF
n

∼= {
(τl,�l)

}n
l=, φl = φ ∀l ∈ {, . . . , n}, ()

�PMF
n

∼= {
(τl,φl)

}n
l=, �l = � ∀l ∈ {, . . . , n} ()
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referred to as single-axis amplitude-modulated filters (AMFs) and constant-amplitude
phase-modulated filters (PMFs). These constrained forms may be used to design filters
for dephasing and amplitude noise separately using minimal control resources. For σ̂z (de-
phasing) noise it is sufficient to employ rotations about a single (orthogonal) axis in the
xy plane and therefore restrict attention to AMFs. On the other hand, unless implement-
ing the trivial identity gate such that the total gate rotation angle 
 ≡ ∑M

l= θl = , strict
amplitude modulation is insufficient for filtering amplitude noise.f For nontrivial gates,
amplitude noise filters generally require control over the rotation axis, and for this pur-
pose we employ PMFs.

In the Walsh synthesis framework, the modulated structures �AMF
n and �PMF

n are fur-
ther constrained by synthesizing the time-domain Rabi rate �(t) or phase φ(t) as linear
superpositions of Walsh functions

�(t) =
N∑

k=

Xk PALk(t/τ ), φ(t) =
N∑

k=

Yk PALk(t/τ ), t ∈ [, τ ]. ()

Here the synthesis spectra are denoted in terms of Xk (Yk) to distinguish Walsh modula-
tion in the amplitude (phase) quadratures. We refer to the resulting sequences as Walsh
amplitude- (WAMF) and phase- (WPMF) modulated filters. To compactly express these
modulated control forms as sequences of unitaries we now employ the Hadamard repre-
sentation.

Consider an arbitrary function f (x) =
∑N

k= qk PALk(x) synthesized in the Walsh basis
up to Paley order N . From Section . all basis functions in this synthesis projected onto a
Hadamard matrix of (minimum) dimension M(N) ≡ m(N). A discrete representation of
the function f (x) therefore exists as a projection onto the column space of HM by writing

f = HMq̃, q̃ = (q̃, q̃, . . . , q̃M)T , q̃i(k) =

⎧
⎨

⎩

qk for  ≤ k ≤ N ,

 for N < k < M,
()

where the column vector q̃ consists of the reordered Paley spectral amplitudes qk ac-
cording to the change of basis map specified by i(k) =  +

∑m(k)
j= bjn–j. Thus, in the

Hadamard representation, the piecewise-constant structure of f (x) is extracted from the
vector f = (f, f, . . . , fM)T , with q̃ representing the synthesis spectrum. In this case Eq. ()
implies the forms

�
(WAMF)
M =

�l τl θl φl
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

P

��

τM τM� φ

P τM τM� φ
...

...
...

...
PM τM τM�M φ

, �� = HMX̃, ()
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�
(WPMF)
M =

�l τl θl φl
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

P � τM τM�

�φP � τM τM�
...

...
...

...
PM � τM τM�

, �φ = HMỸ ()

with M ≡ m(N) and τM ≡ τ /M. The Rabi rate- or phase-modulation is thus defined by
the vectors �� = (�,�, . . . ,�M)T and �φ = (φ,φ, . . . ,φM)T whose components

�l ≡ �l(X, X, . . . , XN ), φl ≡ φl(Y, Y, . . . , YN ), l ∈ {, . . . ,M} ()

specify the control variables during lth timestep. In this case τl takes a fixed discrete value,
though consecutive segments with the same values of �l and φl may be combined sequen-
tially to form effective operations of longer duration. The remaining degrees of freedom
reside in the functional dependencies of �l(X) and φl(Y) on the Walsh spectra,g the ex-
plicit forms of which are determined by the Hadamard matrix equations above.

The reduced control space, now compactly parameterized by the Walsh spectra, thus
consists of bounded-strength unitary sequences inheriting the discrete timing properties
of the Walsh basis. This contrasts with similar composite pulse methods in NMR and
quantum information [, , ] which generally rely on structures defined in continuous
time.h In the next section we identify useful properties of the Walsh basis which capture
filter performance and hence inform effective filter design.

5.3 Analytic filter-design rules
From Eqs. () and () the WAMF (WPMF) constructs are completely parameterized
by the Walsh spectra X(i), i ∈ {z,�}. Here, for compactness, we denote X(z)(X(�)) = X(Y).
Filter properties and gate characteristics consequently map onto the basis functions in the
synthesis.

To target these properties it is convenient to partition the Walsh spectrum X(i) ≡
(X(i)

ν , X(i)
ρ ) into spectral-amplitude classes to be treated as variational (X(i)

ν ) and fixed pa-
rameters (X(i)

ρ ). Making the formal substitution �M → X(i), the cost function in Section 
is consequently re-expressed

Ai
(
X(i)

ν ; X(i)
ρ

)
:=

∫ ωc

ωL

dωFi
(
ωτ ; X(i)

ν ; X(i)
ρ

)
, i ∈ {z,�}, ()

where it is understood that Ai is minimized over the space spanned by X(i)
ν with X(i)

ρ held
constant. Similarly, high-pass (p – )-order filters satisfy the conditions

Ai(X(i))
Cp(X(i))

= O
(

(ωτc)p+

p + 

)

⇐⇒ C(i)

(
X(i)) = · · · = C(i)

(p–)
(
X(i)) = . ()

We are now in a position to establish a range of analytic filter-design rules to refine our
search space and streamline Walsh synthesis leveraging approaches similar to electrical
or digital signal filter construction. In particular, the well defined spectral properties and
symmetries of the Walsh functions may be used to inform effective filter construction with
improved performance. These include:
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() Alternate modulation quadratures for dephasing or amplitude noise.
() Restricting Walsh synthesis by symmetry considerations.
() Constraining Walsh spectra for target gate angle.
() Achievable filtering characteristics determined by m(k) and r(k).

We address each of these in turn.
(i) Alternate modulation quadratures for dephasing or amplitude noise - As the most ba-

sic element of design, we first reiterate the statements made above establishing WAMFs
(WPMFs) as useful for filtering dephasing (amplitude) noise separately. In Section , how-
ever, we derive universal noise filters by concatenating these two filter constructs.

(ii) Restricting Walsh synthesis by symmetry considerations - As with the cosines (sines)
constituting the Fourier basis, the Walsh basis separates into so-called CAL (SAL) func-
tions with even (odd) parity. Restricting the synthesis to the CAL subset ensures the mod-
ulated waveform has time-reversal symmetry about the sequence midpoint τ /. This can
be a convenient and effective method in filter design, in line with the observation in dy-
namic decoupling literature [, ] that sequence performance is often improved using
time-symmetric over -asymmetric building blocks.i

(iii) Constraining Walsh spectra for target gate angle - Imposing desired physical prop-
erties on a candidate control sequence may generally be achieved by holding some subset
X(i)

ρ of the Walsh-spectral amplitudes constant. For example, we may fix the total rotation
angle of the Bloch vector in order to implement a target logic operation. For WAMFs this
involves a very straightforward constraint on the Walsh spectrum: the total rotation angle
depends only on X. This can be seen as follows. First observe for Paley orders k ≥  the
Walsh functions are balanced in the sense that

∫ 
 PALk(x) dx = δk , where δij denotes the

Kronecker delta. For WAMFs the total gate angle 
 ≡ ∫ τ

 dt�(t) therefore takes the form


 =
∫ τ



N∑

k=

Xk PALk(t/τ ) dt = τ

N∑

k=

Xk

∫ 


PALk(x) dx = τ

N∑

k=

Xkδk = Xτ .

The effective gate rotation, θ = 
 mod π , is consequently given by

θ = Xτ mod π ()

implying the necessary constraint on X for a desired θ .
(iv) Achievable filtering characteristics determined by m(k) and r(k) - The achievable

filter order over the entire stopband is essentially limited by the number of constituent
control operations: one may achieve higher p at the cost of higher n. For the Walsh-
synthesized filters in Eqs. () and (), with N the highest-order basis function, n ≡ m(N).
Hence higher-order Walsh functions generally produce higher-order filters.

For high-pass filters further insight is gained by examining the low-frequency spectral
properties of the PALk(t/τ ). This reflects the fact that the filter-transfer functions are
closely related to Fourier transforms of relevant time-domain control functions. In partic-
ular, the Fourier transform of PALk(t/τ ), near zero frequency, has a power-law expansion
[]

Fx
[
PALk(x)

] ∝ (ωτ )r(k), ()
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where r(k) is the Hamming weight. Here x ≡ t/τ is a non-dimensional time-domain vari-
able and Fx[PALk(x)] denotes the forward Fourier transform of PALk(x) from x to the
(non-dimensional) angular frequency variable ωτ in Fourier space. Increasing the low-
frequency roll-off is therefore associated with maximizing r(k) for a given number of con-
trol operations n = m(k). This corresponds to maximizing the number of Rademacher
functions in the constructionj and immediately identifies Paley orders k = α – , α ∈ N,
(see Figure ) as key design resources.

6 Walsh Amplitude Modulated Filters (WAMFs)
Having introduced the basic physical picture and mathematical basis for Walsh filter syn-
thesis, we move on to demonstrate explicit realizations of WAMFs for dephasing noise.
Both first and second-order filters with high-pass filter characteristics are constructed.

6.1 First-order WAMFs
We begin by considering first-order filters for dephasing noise implementing target single-
qubit rotations. Construction begins by considering the design rules (i)-(iv) outlined in
Section .. For filtering noise in this quadrature (i) implies we should employ the WAMF
construction (Eq. ()). In this case, invoking (iii), the requirement of implementing non-
trivial gates dictates we include Paley order k =  in the synthesis. The average Rabi rate
(and hence rotation angle) is then determined by X, the spectral amplitude of PAL(t/τ ).
The remaining synthesis choices include basis functions of Paley order k >  and are in
principle unbounded.

As a first application, we pursue the construction minimizing the number n = m(N) of
unitary operations in the synthesized sequence such that error suppression is still attain-
able. In line with design rules (ii) and (iv), time-reversal symmetry is ensured and the num-
ber of Rademacher functions is maximized by reducing the remaining synthesis choices
to the single basis function PAL(t/τ ) (Figure ). Hence, in this simple example, N = ,
and M(N) = m(N) = , yielding -segment gates with segment lengths τM = τ /. These
represent the lowest-order constructions with error suppression capabilites.

The Rabi rate is consequently written �(t) = X PAL(t/τ ) + X PAL(t/τ ). Physically, X

specifies the modulation depth of the resulting Rabi rate envelope (see inset to Figure (c))
while X determines the average value as described above. Accordingly, for a particular
target rotation, we treat X as a fixed parameter (see Eq. ()) while X is treated as a
variational parameter by which to optimize the (dephasing) cost function (Eq. ()). Thus,
values of X for which Az(X; X) is minimized specify the optimum modulation depths
for an effective filter.

Using Eq. () the Walsh synthesis spectrum is represented X̃ ≡ (X̃, X̃, X̃, X̃)T =
(X, , , X)T , yielding the Hadamard representation of the modulated Rabi rate

�� =

⎡

⎢
⎢
⎢
⎣

   
 –  –
  – –
 – – 

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

X




X

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

X + X

X – X

X – X

X + X

⎤

⎥
⎥
⎥
⎦

. ()
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Figure 3 First-order WAMFs. Construction of WAMF(1)
0,3 for dephasing noise filtering. (a) Log-scale color

plot of the cost function Az (X3;X0) integrated over ω ∈ [10–9, 10–1]τ –1. Total gate angle 
 = X0 (τ ≡ 1). Blue
regions indicate minima in Az (X3;X0), implying optimized filter synthesis. Coloured lines (blue, red, green) at
X0 = (2 1

4 , 2
1
2 , 3)π correspond to rotation angles θ = (π4 ,

π
2 ,π ). These lines terminate at values

X3 = (0.36 . . . , 0.65 . . . , 1)π on a blue contour (boxed) and indicate representative points in the X0X3 plane for
which first-order filtering is achieved. In this plot, for |X3| > |X0| the Rabi rates X± have opposite sign, implying
a π -phase shift in addition to amplitude modulation (e.g. see Eq. ()). We therefore distinguish quadrants
Q1 and Q3 in the X0X3 plane in which |X3| ≤ |X0| (strict amplitude modulation) and Q2 and Q4 in which
|X3| > |X0| (sign-switching amplitude modulation). (b) Solid lines: first order Taylor coefficient C(z)2 (X3;X0) as a
function of X3 with X0 = (2 1

4 , 2
1
2 , 3)π ; zeros appear as dips on log-scale. Dotted lines: one-dimensional slices of

Az (X3;X0) for same fixed values of X0. Boxed dips correspond to boxed points in a) where the colored lines
intersect with the blue contour. (c) Filter-transfer functions for the spectrally optimized WAMF(1)

0,3 gates
identified by the boxed features in (a) and (b).

The resulting WAMF construction, denoted WAMF()
,, is thus represented

WAMF()
, =

⎡

⎢
⎢
⎢
⎣

�l τl θl φl

P
X+
τ

τ


X+
 

P
X–
τ

τ


X–
 

P
X–
τ

τ


X–
 

P
X+
τ

τ


X+
 

⎤

⎥
⎥
⎥
⎦

, ()

where X± := X ±X, and the superscript in this notation denotes first-order filter capabil-
ities. Hence these gates inhabit the two-dimensional control space spanned by the XX

plane (see Figure (a)). The dephasing filter-transfer function Fz(ω; X; X) for an arbitrary
WAMF()

, gate is derived by substituting Eq. () into Eq. (). The cost function Az(X; X)
may then be numerically integrated.

Figure (a) shows a two-dimensional representation of Az(X; X) integrated over the
stopband ω ∈ [–, –]τ–. The value of Log[Az(X; X)] is indicated by the color scale.
Total sequence length is normalized to τ =  in this data, so the total gate rotation an-
gle 
 ≡ X is given directly by the X-axis. As can be seen, for any fixed X there exist
quasi-periodic tunings of X which minimize the cost function. In other words, we have a
prescription for synthesizing spectrally-optimized dephasing filters which implement arbi-
trary rotation angles. Interestingly, the point (X, X) ≡ (π ,π ) reproduces the previously
derived first-order DCG NOT construction [].
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Blue regions, where the cost function has been minimized, represent first-order filters
for low-frequency noise due to the restrictions placed on the synthesis space.k To demon-
strate that these optimized WAMF()

, gates perform as first-order filters we Taylor expand
Fz(ω; X; X) as in Eq. (), and derive an easy analytic expression for the first order coef-
ficient

C(z)
 (X; X) = 

[ (X – X) sin( X
 ) + X sin( X–X

 )
(X

 – X
 )

]

. ()

In principle we may now solve C(z)
 (X; X) =  to find values of X giving first-order fil-

ters for a given X. In Figure (b) we plot C(z)
 (X; X) (solid lines) as a function of X for

the choices X = ( 
 ,  

 , )π as above. Zeros of C(z)
 (X, X), appearing as dips on the log

scale, occur quasi-periodically in X and match with points in Figure (a) where corre-
sponding lines of constant X intersect with the blue contours. To demonstrate this we
plot one-dimensional slices of Az(X; X) for fixed values X = ( 

 ,  
 , )π (dotted lines).

We find the minima in Az(X; X) align with zeros of C(z)
 (X; X), implying the blue con-

tours in the XX plane do indeed produce first-order filters, with (p – ) = . The boxed
zeros near X = (. . . . , . . . . , )π correspond to the termination points of the colored
lines in Figure (a) (also boxed). These indicate representative points in the XX plane
producing first-order filters with nontrivial rotations. In particular, these filters implement
θ = ( π

 , π
 ,π ) rotations.

The corresponding dephasing filter-transfer functions for these three optimized gates
are shown in Figure (c). As expected from Eq. (), with C(z)

 = , these approximately
satisfy Fz ∝ (ωτ ) in the stopband, producing first-order filters with (p – ) = . For
comparison we include the dephasing filter-transfer function for a primitive π rotation
where Fz ∝ (ωτ ), implying (p – ) = . The steeper slopes, or roll-offs, for the optimized
WAMF()

, gates captures this difference. This filter design method, and the performance
of the WAMF()

, filters, has recently been experimentally validated by our group [].

6.2 Second-order WAMFs
We now consider higher-order dephasing filters by increasing the number n of segments
in the sequence. In particular we consider -segment gates. Construction again begins by
considering the design rules (i)-(iv) outlined in Section ..

Using (i) and (iii) we employ the WAMF construction and include Paley order k =  to
ensure nontrivial rotation angles. Extending to -segments, however, increases the acces-
sible range of Walsh functions in the synthesis as identified in design rule (iv). Specifi-
cally we extend the synthesis to Paley orders k ≤  corresponding to the complexity class
m(k) ≤ , implying a  =  segments construction in the Hadamard representation. We
denote these constructions by WAMF()

: where the superscript indicates second-order fil-
tering capabilities, as will be shown. Imposing time-reversal symmetry about τ / further
restricts the synthesis space to k ∈ {, , }, corresponding to CAL functions referenced in
design rule (ii). We therefore study synthesized filters with spectral amplitudes partitioned
into fixed Xρ = X and variational Xν = (X, X, X) classes.

As a representative example we set X = π and restrict attention to filters im-
plementing a net π rotation (τ ≡ ). Our cost function consequently takes the form
Az(X, X, X; π ) =

∫ ωc
ωL

Fz(ωτ ; X, X, X; π ) dω, implying a three-dimensional varia-
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Figure 4 Higher-order WAMFs. Construction of WAMF(2)
0:7 for dephasing noise filtering. (a) Representative

amplitude-modulated profiles for spectrally-optimized 8-segment WAMF(2)
0:7 gates. Vertical axes indicates

Rabi rate values �l in units of 1/τ for the 8-segments. (b) Corresponding (Paley ordered) Walsh spectra.
Vertical axes indicate values of the Walsh spectral amplitudes Xk in units of 1/τ . Optimized spectra obtained
via Nelder-Mead search. (c) Log-scale color plot of the cost function Az (X5,X6) (integrated over
ω ∈ [10–9, 10–1]τ –1) defined on representative two-dimensional cross section of Xν -domain. Blue regions
indicate minima in Az (X5,X6), implying second-order optimized filter synthesis. ‘Cross-region’ (circled) indicates
robustness region with respect to errors in X5,6 . (d) Dephasing filter-transfer functions for the optimized
WAMF(2)

0:7 gates in (a), compared against primitive πx rotation and optimized πx WAMF(1)
0,3 gate. For the blue,

red and green traces the cost function Az (X3,X5,X6) was defined over the band [ωL ,ωc] with ωc = τ –1 and
ωL = (10–4, 10–3, 10–2)τ –1.

tional control space over which to derive spectrally-optimized filters. We accomplish this
using a Nelder-Mead search to minimize Az(Xν ; π ) over the Xν-domain.

Representative examples of spectrally-optimized WAMF()
: constructions are shown

in Figure . The -segment time-domain amplitude-modulated profiles are represented
in Figure (a), with corresponding Walsh spectra shown in Figure (b). The blue, red
and green spectra were obtained using a Nelder-Mead optimization of the cost function
Az(X, X, X) defined over [ωL,ωc] with ωc = τ– and ωL = (–, –, –)τ– respec-
tively. The corresponding dephasing filter-transfer functions Fz(ω) are plotted as solid
blue, red and green traces in Figure (d). Within the respective cost function bands these
satisfy Fz ∝ (ωτ )p∗ , with the instantaneous filter order ranging between  < (p∗ – ) < .
at various points.l For comparison we also plot the dephasing filter-transfer function for a
primitive π rotation (black dashed trace) and an optimized WAMF()

, gate (yellow dashed
trace). These respectively satisfy Fz ∝ (ωτ ), over the whole stopband and are well char-
acterized by the (asymptotic) filter orders (p – ) = , .

Figure (a) shows a two-dimensional representation of Az(X, X) defined on a two-
dimensional cross-section of the Xν-domain, holding X fixed, and integrated over the
stopband ω ∈ [–, –]τ–. The value of Log[Az(X, X)] is indicated by the color scale.
Areas in blue indicate minima in Az(X, X), indicating optimized paths in XX plane the
over which effective filters may be found. Notably, it is possible to find ‘cross-regions’ (cir-
cled) in which the spectral amplitudes X and X may independently be varied substan-
tially without the cost function moving off a local minima. This potentially indicates the
existence of classes of WAMFs which may be robust to errors in the Walsh spectrum itself.

7 Walsh Phase Modulated Filters (WPMFs)
We now turn to filters for amplitude-damping noise constructed via phase modulation
using the WPMF construction set out in Eq. (). Following the same procedure de-
scribed above for WAMFs, one can implement a Nelder-Mead search to derive spectrally-
optimized WPMFs which implement nontrivial rotations. For these constructions, how-
ever, the target rotation angle is dependent on both the Rabi rate and the sequence of
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phase modulations. Consequently it is less straightforward to impose a constraint during
the optimization procedure to ensure a particular target rotation. Although we do not pur-
sue the general problem in detail in this paper, we demonstrate the approach in this and
the following sections, deriving a family of WPMFs in which the synthesis space is limited
to a variety of simple combinations of Walsh function.

In the remainder of this section we study a variation on the strict WPMF structure which
resolves the difficulty of imposing a target rotation and enables us to make some use-
ful connections with existing composite pulse sequences in NMR. This variation involves
partitioning the control modulation into a target rotation P(θ , ) followed by a sequence
of phase-modulated identity operations

∏M
l= P(π ,φl) with the φl chosen such that ampli-

tude noise is filtered to some order. Here the operator P(θ ,φ) denotes the rotation through
angle θ about σ̂φ . By insisting these M ‘correction’ segments are all identity operations,
the phase modulations do not produce complicated rotation paths and the net rotation is
determined simply by the initial target pulse.

We assume a constant Rabi rate � so that each correction segment has equal duration
τπ = π/�. Provided M is a power of , the phase modulation describing the correction
sequence may therefore be constructed as a Walsh-synthesized waveform consisting of
Paley orders k ≤M– . The simplest such ‘synthesis’ derives from a single Walsh function
PALk(x) with spectral weight Yk , yielding the sequence

WPMF(c)
k (θ ) ≡

�l τl θl φl
⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

P � τθ θ 
P � τπ π

�φc
...

...
...

...
PM+ � τπ π

, �φc = YkP(k)
M,M(k) = m(k), ()

where, as in Eq. (), the column vector P(k)
M specifies the sequence of values taken by

PALk( t–τθ
τ–τθ

) over the interval [τθ , τ ] partitioned into the minimum M(k) equal time bins.
We include the superscript (c) and write the vectorized phase �φc to indicate Walsh mod-
ulation during the ‘correction stage’ of the sequence, disambiguating this from the strict
WPMF structure. For a given θ we may now treat Yk as a tuning parameter which may
be optimized by minimizing the cost function A�(Yk ; θ ) ≡ ∫ ωc

 dωF�(ωτ ; Yk ; θ ). The opti-
mized Yk are thereby defined as an implicit function of θ .

In fact we may analytically show this construction yields first-order filters for amplitude
noise by Taylor expanding F�(ω) and solving the first-order filter condition C(�)

 (Yk ; θ ) = .
We compute C(�)

 (Yk ;�) = [θ + πM(k) cos(Yk)]/, implying the optimized Walsh spec-
tral amplitude

Yk(θ ) = cos–
(

–
θ

πM(k)

)

. ()

On the other hand, computing the second-order Taylor coefficient and substituting in the
first-order-optimized spectral value in Eq. (), one finds C(�)

 �= . Hence the WPMF(c)
k

sequence has (p – ) =  filtering properties.
We make the interesting observation that Eqs. () and () produce the first-order

Solovay-Kitaev SK(θ ) sequence [, ] and the second-order Wimperis passband P(θ )
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Table 1 Filter characteristics of WPMF(c)
k constructions corresponding to well-known NMR

sequences, SK1 and P2, originally designed to compensate for static amplitude errors to first
and second Magnus order respectively (Section 4.3)

WPMF(c)
k construction Amplitude errors

k M(k) �φ Yk(θ ) (μ – 1) (p – 1)

SK1(θ ) 1 2 Y1(θ ) PAL1 cos–1(–θ /4π ) 1 1
P2(θ ) 3 4 Y3(θ ) PAL3 cos–1(–θ /8π ) 2 1

sequence [] by setting k = ,  respectively. Hence these well-known NMR sequences,
originally designed to compensate for static amplitude errors to first and second Magnus
order respectively (see Section .), appear in the Walsh filter space as phase-modulated
filters for non-Markovian amplitude noise. Table  summarizes this.

Another remarkable result is found using the synthesis �φc = HMỸ over the two Walsh
functions PAL and PAL, setting Ỹ ≡ (Y, , , Y)T in analogy with the Walsh spectrum
defining amplitude modulation in the WAMF()

, construction. The first-order filtering
condition C(�)

 (Y, Y,�; θ ) =  then implies solutions

Ỹ = (φBB, , , –φBB)T , φBB(θ ) ≡ cos–
(

–
θ

π

)

, � =
π + θ

τ
()

yielding the Wimperis broadband BB sequence []

BB1(θ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�l τl θl φl

P � τθ θ 
P �

τ–τθ
 π Y+

P �
τ–τθ

 π Y–

P �
τ–τθ

 π Y–

P �
τ–τθ

 π Y+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼=

⎡

⎢
⎢
⎢
⎣

�l τl θl φl

P � τθ θ 
P �

τ–τθ
 π φBB

P �
τ–τθ

 π φBB

P �
τ–τθ

 π φBB

⎤

⎥
⎥
⎥
⎦

. ()

Here Y± := Y ± Y and in the last equality we have collapsed the array to show the BB
construction explicitly. Computing the second-order Taylor coefficient and in substituting
the first-order-optimized spectral values, however, we find C(�)

 �= . Thus, although BB
was originally derived to compensate static amplitude errors to second Magnus order, it
only provides first-order noise filtering.

8 Walsh Rotary Spin Echo (WRSE)
In this section we treat a sub-class of Walsh modulated filters which may be described
either in terms of phase- or amplitude-modulation. The phase-modulation consists of ap-
plying a sequence of π-phase shifts, relative to some offset φ, on the driving field with a
constant amplitude �. This construction generalizes the rotary spin echo (RSE) sequence
from NMR, analogous to the Hahn-echo sequence for driven systems, consisting of a sin-
gle π-phase shift applied at the sequence midpoint τ /. In quantum information RSE has
been employed, for example, in relaxation noise spectroscopy [] and in mitigating low-
frequency off-resonant noise [] in driven superconducting flux qubits. In contrast with
previous approaches, our generalization permits higher-order filter performance in both
amplitude and dephasing quadratures and may prove of significant use.

In our construction the temporal profile of the phase is expressed φ(t) = φ + π
 ( –

y(t)), where y(t) ∈ {±} is a binary-valued switching function defined to change sign at the
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Figure 5 WRSEs as amplitude-noise filters. WRSEk amplitude noise filter characteristics, k ∈ {1, 3, 7, 15, 31}.
(a) Modulation profiles of WRSEk sequences. Amplitude modulation involves switching the sign ±�0; this is
equivalent to holding �0 constant and instead shifting the phase φ0 by π , indicated by the hatching.
(b) Corresponding amplitude filter-transfer functions F�(ω), showing filter order increases with Hamming
weights r(k) ∈ {1, 2, 3, 4, 5}.

application of each π-shift. Specifically, we consider sequences based on Walsh functions
by defining the switching function

y(t) := PALk(t/τ ), t ∈ {, τ }. ()

Consequently the phase has Walsh synthesis φ(t) = Y PAL(t/τ ) + Yk PALk(t/τ ) where
Y = φ + π

 and Yk = – π
 . These gates only perform the identity operation with 
 ≡ 

owing to the property that σ̂φ+π = –σ̂φ (see Eq. ()). This implies the direction of unitary
rotation is reversed by the application of each π shift, and since any Walsh function of
Paley order k >  is equally distributed between values ± over the domain these rotations
perfectly cancel, yielding zero total rotation. This is formally equivalent to modulating the
sign of the Rabi rate and holding the phase φ constant (see Appendix C), as schematically
illustrated in Figure (a). These sequences, referred to as Walsh rotary spin echo order k
(WRSEk), thus take the form

WRSEk ≡
M(k)∏

l=

exp

(

i
�


τMσ̂φl

)

, �φ = (φ,φ, . . . ,φM)T = HMỸ, ()

where, referring to Eqs. () and (), M(k) ≡ m(k) and the Walsh spectrum Ỹ has only
two nonzero elements: Ỹ = φ + π

 and Ỹi(k) = – π
 . This naming convention reflects the

fact that the WRSE family generalize the traditional RSE sequence: in particular, WRSE ≡
RSE. We now proceed to derive the filtering properties of the WRSE family, starting with

the amplitude quadrature then moving to the dephasing quadrature.

8.1 WRSE as amplitude filters
The amplitude filter-transfer function, in the stopband, is determined by the Hamming
weight of the chosen Walsh function by

F�(ωτ ) ∝ (ωτ )(r(k)+). ()

Comparing this with the low-frequency approximation F�(ωτ ; k) ∝ (ωτ )p from Eq. (),
we conclude the time-domain filter order is given by (p – ) = r(k). That is, high-pass filter
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performance is completely determined by the Hamming weight. Figure (c) demonstrates
this by plotting F�(ω) for the WRSEk sequences with k ∈ {, , , , }, corresponding to
the Hamming weights r(k) ∈ {, , , , }. The corresponding filter order increase is clear
from the steepening roll-off.

This result follows from deriving F�(ω) for Eq. () which, owing to the fact that the
noise Hamiltonian in this quadrature always commutes with control operations, takes the
relatively simple analytical form (see Appendix C)

F�(ω) =
�




∣
∣
∣
∣
∣

M∑

l=

P(k)
l
[
eiωtl– – eiωtl

]
∣
∣
∣
∣
∣



. ()

Our key insight now is to observe the sum inside the modulus square above satis-
fies

∑M
l= P(k)

l [eiωtl – eiωtl– ] = iωτFx[PALk(x)], where x ≡ t/τ is a non-dimensional time-
domain variable. We now invoking Eq. () in design rule (iii), namely Fx[PALk(x)] ∝
(ωτ )r(k), to map the low-frequency spectral properties onto the Hamming weight r(k) of
the chosen Walsh function. Substituting this into Eq. () then yields Eq. ().

8.2 WRSE as dephasing filters
The dephasing filter performance for WRSEk is more complicated to study as noise terms
in this quadrature do not commute with our control, obfuscating a compact expression
for Fz(ω). It is convenient instead to study the zeros of the Taylor coefficients C(z)

j as in
Eq. (). Since the Rabi rate is the only free variable in the WRSEk , for a given k, it follows
the Taylor coefficients are functions only of �. Filtering to order (p – ) then corresponds
to the condition

C(z)
 (η; k) = C(k)

 (η; k) = · · · = C(z)
(p–)(η; k) = , ()

where η denotes some value of � for which the above coefficients are concurrently zero.
Here we have included the Paley order as a parameter of the coefficients. Analysis shows,
however, concurrent zeros exist only for j ∈ {, }. We effectively obtain the following ‘no-
go theorem’: WRSEk sequences perform as (high-pass) dephasing noise filters up to (but
not beyond) second order. This result may be of use to characterize the relevant quadra-
ture of an unknown noise source, by probing with higher-order WRSEk sequences and
determining the resulting filtering properties.

The general insight supporting this statement is developed in Appendix C, by explicitly
studying the representative case for WRSE. The Taylor coefficients C(z)

,, for this repre-
sentative case are plotted in Figure (a) as functions of �. Zeros of C(z)

 occur at multiples
of π , and concurrent zeros of C(z)

, occur at multiples of π . However, since C(z)
 is never

zero at multiples of π (see inset to Figure (a)), it follows we can never achieve higher
than second-order filtering. We verify this by examining the slope of Fz(ω;�) for the val-
ues � = πq, q ∈ {, . . . , } (see Figure (b)). Similar considerations for other values of k
generalize the result.

9 Universal Walsh Modulated Filters (UWMFs)
In the previous sections we have considered WAMF and WPMF gates which implement
target qubit rotations while filtering, to some order, either dephasing or amplitude noise
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Figure 6 WRSEs as dephasing-noise filters. WRSE3 dephasing noise filter characteristics. (a) Taylor
expansion coefficients C(z)2,4,6(�0; 3) for Fz (ω). The inset shows typical behaviour: �0 = 8π is a concurrent zero

of C(z)2,4(�0; 3), but not of C
(z)
6 (�0; 3). Hence WRSE3 can only filter up to second-order. (b) Dephasing

filter-transfer functions for WRSE3 corresponding to �0 = 2πq, q ∈ {1, . . . , 8}. When �0 is a multiple of 8π
we achieve second-order filters, that is (p – 1) = 2.

respectively. In this section we derive filters for universal noise by concatenating both fil-
ter types into a composite structure that filters both noise quadratures simultaneously,
while still implementing a target qubit rotation. We refer to such constructions as univer-
sal Walsh modulated filters (UWMFs).

The general approach is conveniently illustrated through a particular concatenated
structure obtained by embedding the WPMF(c)

 (θ ) ≡ SK1(θ ) gate (Section ) within the
various segments of the WAMF()

, gate (Section .). The former is explicitly written

WPMF(c)
 (θ ) ≡

⎡

⎢
⎣

�l τl θl φl

P � τθ θ 
P � τπ π φSK

P � τπ π –φSK

⎤

⎥
⎦, ()

� =
θ + π

τSK
, τθ =

θ

�
, φSK(θ ) ≡ Y(θ ) = cos–

(

–
θ

π

)

. ()

The basic concatenation procedure is now to replace each constant-amplitude pulse
in WAMF()

, with the constant-amplitude phase-modulated sequence implementing the
equivalent rotation. Doing so effectively distributes the dephasing filter across the com-
posite sequence, each subsequence of which filters amplitude noise. In our example, this
takes place via the operator substitutions

P(X+/, ) → SK1()(X+/), τ
()
SK = τ /, ()

P(X–/, ) → SK1()(X–/), τ
()
SK = τ /, ()

P(X+/, ) → SK1()(X+/), τ
()
SK = τ /, ()

where, as indicated, each SK is equal in duration to the original WAMF()
, pulse being

replaced. We denote this concatenated structure by UWMF,SK. The temporal profile is
shown in Figure (a). The SK phase flips φ = ±φSK are indicated by the oppositely ori-
ented hatching within each constant-amplitude segment of the WAMF()

, envelope; φ = 
is indicated by white fill. Once again the total gate rotation is determined by Eq. () and, as
in Figure , X may be treated as an independent tuning parameter to achieve first-order
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Figure 7 UWMFs. Concatenation scheme for universal noise suppression. (a) Concatenation of
WPMF(c)

1 ≡ SK within WAMF(1)
0,3 sequence yielding UWMF1,SK1. White fill indicates rotations enacted with

φ = 0; orientation of hatching denotes SK1 phase flips φ =±φSK . (b) Filter-transfer functions for
WPMF(c) ≡ SK1 sequence. (c) Filter-transfer functions for four-segment WAMF(1)

0,3 sequence. (d)
Filter-transfer functions for concatenated sequence.

filtering against dephasing noise. The dephasing and amplitude filter-transfer functions
for the concatenated and tuned sequence (in this case for a net π rotation) are shown in
Figure (d), indicating effective filtering of both amplitude and dephasing noise. Below we
detail two alternative constructions for realizing the UWMF structure.

9.1 Concatenation Method 1: Constrain Sequencing of WAMF Envelope
The amplitude-modulated envelope of the WAMF()

, construction, as defined by Eq. (),
may be viewed as a sequence of  piecewise-constant rotations �θ = ( X+

 , X–
 , X+

 ), imple-
mented over durations ( τ

 , τ
 , τ

 ) with Rabi rates �� = ( X+
τ

, X–
τ

, X+
τ

). In our first concatenation
method each rotation θl , l ∈ {, , }, is replaced by a constant-amplitude phase-modulated
operation SK(θl), implemented over a duration τ

(l)
SK equal to that of the original rotation.

That is, we constrain (τ ()
SK, τ ()

SK, τ ()
SK) = ( τ

 , τ
 , τ

 ). The constant Rabi rate �
(l)
SK = θl/τ (l)

SK driv-
ing each SK sequence is thus given by

�
()
SK = �

()
SK =


τ

(X+ + π ), �
()
SK =


τ

(X– + π ). ()

The composite structure may then be written

UWMFSK, ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�l τl θl φl

P �
()
SK τ

X+
 

P �
()
SK τ π φ

()
SK

P �
()
SK τ π –φ

()
SK

P �
()
SK τ

X–
 

P �
()
SK τ π φ

()
SK

P �
()
SK τ π –φ

()
SK

P �
()
SK τ

X+
 

P �
()
SK τ π φ

()
SK

P �
()
SK τ π –φ

()
SK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()
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τ, =
τ



(
X+

X+ + π

)

, τ,,, = τ

(
π

X+ + π

)

, ()

τ =
τ



(
X–

X– + π

)

, τ, = τ

(
π

X– + π

)

, ()

φ
()
SK = φ

()
SK = cos–

(

–
X+

π

)

, φ
()
SK = cos–

(

–
X–

π

)

. ()

Using this method one finds tunings of X and X such that both dephasing and amplitude
noise are filtered to first-order, as in Figure . These do not, however, correspond directly
to the optimum Walsh coefficients found for simple WAMF()

, construction shown in Fig-
ure (a). Rather, an equivalent tuning plot may be generated over the XX domain, es-
sentially identical to Figure (a) but with minima shifted by a constant factor. The second
method, detailed below, involves a slightly different construction in which we recover the
original WAMF()

, tuning plot.

9.2 Concatenation Method 2: Constrain Sequencing of Target SK1 Rotations
In the second construction we impose the constraint that τ : τ : τ =  :  : . That is,
the target rotations within the three successive SK sequences follow the same timing se-
quence as the three constant-amplitude pulses being replaced, previously constituting the
amplitude-modulated WAMG envelope. Thus we write (τ, τ, τ) = ν(, , ) where ν is
some fraction of the total duration τ of the composite structure to be determined.

Now, we know pulses (, , ) execute the rotations ( X+
 , X–

 , X+
 ), given by the third row

of Eq. (). Hence the Rabi rates for these pulses in the composite structure must take the
form (�,�,�) = (X+, X–, X+)/ν . However each SK sequence has constant Rabi rate
and we therefore conclude

�
()
SK = �

()
SK =


ν

X+, �
()
SK =


ν

X–. ()

Now, the duration of the composite sequence must satisfy

τ =
∑

l=

θl

�
()

= 
(

π

�
()
SK

)

+ 
(

π

�
()
SK

)

+ 
(

π

�
()
SK

)

+ ν ()

= π

(


�
()
SK

+


�
()
SK

+


�
()
SK

)

+ ν. ()

Substituting in the results from Eq. () we therefore find τ = πν(/X+ + /X–) + ν . Or,
solving for ν ,

ν =



τ ( + πκ)–, κ := 
(


X+

+


X–

)

, ()
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concluding the construction. The composite structure may then be written

UWMFSK, ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�l τl θl φl

P
X+
ν

ν X+
 

P
X+
ν

πν
X+

π φ
()
SK

P
X+
ν

πν
X+

π –φ
()
SK

P
X–
ν

ν X–
 

P
X–
ν

πν
X–

π φ
()
SK

P
X–
ν

πν
X–

π –φ
()
SK

P
X+
ν

ν X+
 

P
X+
ν

πν
X+

π φ
()
SK

P
X+
ν

πν
X+

π –φ
()
SK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()

φ
()
SK = φ

()
SK = cos–

(

–
X+

π

)

, φ
()
SK = cos–

(

–
X–

π

)

. ()

Minima of the cost function in the XX domain for this construction are found in identical
regions to those shown in Figure (a) for the simple WAMF()

, construction. Substituting
these minimizing values of X, into Eq. () thus optimizes the concatenated structure,
yielding a desired net rotation (dictated by X) which filters both amplitude and dephasing
noise to first order simultaneously.

10 Effect of bandwidth limits on Walsh filters
In the preceding sections of this paper filter design is based on optimizing the Walsh spec-
trum from which the relevant control structures are synthesized. This necessarily assumes
perfectly square waveforms. Real control hardware, however, may suffer from bandwidth
limitations which ‘smooth out’ the squareness of the pulse on the timescale of the appli-
cation, leading to reduced filter performance. Here we show the assumption of perfect
square pulses may be readily relaxed, with useful filter construction a simple matter of
re-optimization in the Walsh-synthesis framework.

To illustrate the general procedure we consider the M-segment WAMF. Each segment
implements a rotation through angle θl = �lτl over duration τl = τ /M and with constant
Rabi rate �l , l ∈ {, . . . ,M}. The squareness of the resulting amplitude-modulated wave-
form may be relaxed by replacing the constant value �l with an arbitrarily varying function
of time in each segment.

In order to achieve this we consider Walsh synthesis over the rotation angle imple-
mented in a single segment rather than the Rabi rate. That is, we write θl = θl(X, X, . . . , XN )
with the dependence on the Walsh spectra defined by the Hadamard-matrix equation

�θ = (θ, θ, . . . , θM)T = (τ /M)HMX̃. ()

Defined in this way, the M-segment arbitrary-pulse sequence shares with the WAMF
construction the property that the total gate rotation angle 
 =

∑n
l= θl = Xτ is com-

pletely determined by the spectral amplitude of PAL. The symmetry-based design rules
similarly carry over and filter optimization proceeds in the same manner as for ordinary
Walsh-modulated control by minimizing the filter cost function with respect to the Walsh
spectrum.



Ball and Biercuk EPJ Quantum Technology  (2015) 2:11 Page 30 of 45

As a natural example of this approach we assume a Gaussian profile Gl(t;μl,σl) defined
on t ∈ [tl–, tl] with mean μl and standard deviation σl . Specifically, we construct

Gl(t;μl,σl) :=
θl

Clσl
√

π
exp

[

–
(t – μl)

σ 
l

]

, μl =
tl– + tl


,σl = gτ /M ()

with μl the segment midpoint and σl expressed as a multiple g of the segment duration.
The normalizing factor

Cl :=
∫ tl

tl–


σl

√
π

exp

[

–
(t – μl)

σ 
l

]

dt ()

is included to ensure the total rotation implemented by the Gaussian pulse in the lth seg-
ment is given by

∫ tl–
tl

Gl(t;μl,σl) dt = θl . We now impose the same structure on the seg-
ment rotations θl as done for WAMFs in the Walsh-synthesis framework, such that the
smooth-pulse sequence remains strictly parametrized in the Walsh spectrum X.

For concreteness, we examine the Gaussian-pulse variation on the -segment WAMF()
,

filter described by Eq. () for two different Gaussian profiles, illustrated in Figure (a), (c).
The cost function Az(X; X) =

∫ ωc
ωL

dωFz(ωτ ; X; X) may be computed by partitioning the
time domain into a large number Ns of subintervals on which the continuous Gaussian
envelope is treated as approximately constant. Figure (b), (d) show a two-dimensional
representation of Az(X; X) integrated over the interval ω ∈ [–, –]τ–. The value of
Log[Az(X; X)] is indicated by the color scale. Total sequence length is normalized to
τ =  in this data, so the total gate rotation angle 
 ≡ X is given directly by the X-axis.
Regions in blue represent effective (first-order) filter constructions, where the cost func-
tion is minimized.

Figure 8 Shaped-pulse filter constructions. Construction of the first-order Walsh amplitude modulated
dephasing-suppressing filter using shaped pulse segments. (a), (c), (e) Schematic representation of Walsh
synthesis for a four segment gate of discrete Gaussian or trapezoidal segments. Walsh synthesis determines
the overall amplitude of individual pulses with fixed duration and standard deviation, setting the effective
pulse area in each segment. The metric g takes value 1/6 in panel (a), and 1/12 in panel (c). (e) Trapezoidal
pulses are characterized by a constant slope such that all angles are a fraction of a square waveform defined
as F π

2 . Here F = 0.992. In all pulse constructions the pulse profile is computed over 100 discrete time steps,
permitting calculation of relevant filter-transfer functions. (b), (d), (f) Two-dimensional representation of the
integral metric defining our target cost function, A(�4) integrated over the stopband ω ∈ [10–9, 10–6]τ –1 for
the corresponding pulse forms above. Areas in blue minimize A(�4), representing effective filter
constructions. The X0 determines the net rotation enacted in a gate while X3 determines the modulation
depth, as represented in (a).
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Comparing with Figure  we conclude useful filter construction using Gaussian pulses
is a simple matter of re-optimization in the Walsh-synthesis framework. This is readily
achieved using a Nelder-Mead optimization of Az(X; X) for any particular choice of g ,
ωL, ωc, X or Ns. Minor changes in the filter performance and optimal constructions arise
with changes in Gaussian pulse parameters such as g . Comparison with pulses constructed
using a trapezoidal form (Figure (e)) we find a different optimization outcome that more
closely approximates standard square pulses. Nonetheless, these results show that, irre-
spective the specific pulse form, re-optimization over the Walsh coefficients remains a
direct method to construct useful filters. In cases where unknown waveform distortion
is likely in hardware, it is possible to implement automated feedback mechanisms, as has
previously been demonstrated in dynamical decoupling experiments [].

We may also explore the impact of finite modulation bandwidth on the application of
square pulses if re-optimization of the waveform is, for some reason, not possible. In or-
der to explore these effects we systematically relax the infinite-modulation-bandwidth
assumption underlying any square-pulse approximation by processing the ideal time-
domain profile through a bandlimited digital filter with a user-defined cutoff. This results
in an imperfect (bandlimited) profile envelope, effectively due to a reconstruction based
on a truncated Fourier series. These profile distortions, manifesting as implementation
errors, reduce filter performance, quantified by an increase in the area under the corre-
sponding filter-transfer function.

In this example we again consider the amplitude-modulated profile associated with
the WAMF()

, gate (X = π , X = π ), and impose band limitations using a digital first-
order Butterworth filter. Here the time domain is partitioned into /fs subintervals, where
fs = / is the sampling rate of the digital filter. The bandlimited envelope of recon-
structed waveform is then a function of the Butterworth cutoff frequency fc. As the cutoff
approaches the Nyquist frequency fs/ (the maximum possible value), the bandlimited
effects are reduced and the reconstructed waveform approaches the ideal square-pulse
envelope. Figure (a) illustrates this as we increase fc/fs. The corresponding filter char-
acteristics are shown in Figure (c) where we plot Fz(ω) as a function of fc/fs. To com-
pute these filter-transfer functions we treat the reconstructed waveforms as amplitude-
modulated sequences consisting of n = /fs segments whose Rabi-rates are determined by
the bandlimited envelope (see Figure (b)). The solid black traces in Figure (a), (b), (c) re-
spectively show the ideal profile and corresponding filter-transfer function, against which
the filter performance of the bandlimited gates are benchmarked. As we decrease the cut-

Figure 9 Bandlimited filters. Effect of bandwidth limits on Walsh filters. (a) Bandlimited reconstructions of
WAMF(1)

0,3 modulation envelope as a function of first-order Butterworth filter parameter fc/fs . (b) Red: Closeup
of circled region in (a); Black ideal square profile. (c) Filter-transfer functions for profiles in (a).
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off the integrated area under Fz(ω) gradually increases. However as this manifests first in
the low-frequency region, even these bandlimited gates can provide useful filtering, given
sufficient hardware precision. Similarly motivated studies in dynamic decoupling show
analogous low-frequency filter performance decay with pulse-timing errors.

11 Conclusion
As the size and complexity of quantum information processing technologies increase,
resource-efficiency will play a vital role in selecting methods designed to reduce errors
in quantum coherent hardware systems. The pressure to minimize quantum-hardware
overhead is likely to make open-loop control protocols a key element in the design of error-
robust quantum information systems []. For these to be practically useful, however, it is
important to move toward realistic control and noise models.

Decoherence in real driven systems is predominantly due to low-frequency correlated
noise environments. This strongly motivates our study of bounded-strength control as a
noise filtering problem using time-dependent, non-Markovian error models. Moreover,
in contrast with traditional DD schemes, the added complications of treating bounded-
strength control - due to the continual presence of noise interactions during control op-
erations and the resulting nonlinear dynamics - necessitates a streamlined approach to
the design of noise-filtering control. The generalized filter-transfer function framework
we employ takes as input experimentally measurable characteristics of the environment -
namely noise power spectra - and provides a simple framework for both control construc-
tion and the calculation of predicted operational fidelities. It also efficiently captures the
control nonlinearities implicit in situations where control and noise Hamiltonians do not
commute. We have exploited these strengths to pursue a simple variational procedure for
filter design by minimizing a cost function over the relevant control space.

A key strength of the method we have presented is derived from our use of functional
analysis for the crafting of effective noise-filtering control protocols. In particular, em-
ploying the Walsh basis brings an intuitive set of analytic design rules for filter construc-
tion that further constrain the possible filter-construction space []. For instance, a user-
imposed limit on the acceptable number of pulse segments in a filter construction impose
additional constraints due to Walsh-function symmetry, spectral properties, and the level
of recursiveness of the Walsh functions (measured by the Hamming weight of the Walsh
Paley-ordered index).

In addition to efficiency of synthesis is the intrinsic compatibility with hardware con-
trollers that comes with the selection of Walsh functions as our basis set. This is partic-
ularly important in the layered architecture for quantum information systems mentioned
throughout this paper. In such a setting, it rapidly becomes undesirable to mandate a sig-
nificant amount of communication between the physical qubit layer and hardware at the
highest levels of system abstraction. This suggests that controllers implementing dynamic
error suppression protocols (here producing noise filters for arbitrary driven operations)
should be reasonably simple to implement in standard digital hardware and should require
only limited communication bandwidth to higher levels of the system.

These considerations are explicitly met in crafting control solutions from the Walsh ba-
sis. First, the Walsh functions are defined using integer multiples of a fundamental clock
period, meaning that limitations of finite timing precision in the definition of a control
protocol are automatically inbuilt. Further, given a particular Walsh-modulated control
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protocol is entirely defined by its Walsh spectrum, programming of the controller can in
principle be reduced to a simple vector of numbers representing the Walsh spectrum and
minimum timestep. All other information e.g. the total time, total number of timesteps,
etc., is carried implicitly in the spectrum. Moreover, the actual Walsh-function generation
is compatible with simple hardware systems (adding of various harmonics of a fundamen-
tal square-wave clock) and when Walsh synthesis is performed at the level of the controller
hardware, this may provide a path to on-the-fly synthesis of the required modulation wave-
form. Such capabilities also reduce the complexity of running automated hardware-driven
optimization procedures for finding relevant control waveforms [], by allowing efficient
generation of many trial waveforms without the need for large memory stores at the local
controller.

Synthesizing all of these considerations the Walsh-modulated noise filters we have de-
veloped in this work provide one of the first solutions for error suppression at the physical-
qubit level simultaneously meeting the physical and engineering requirements we outline
above for scalable control solutions. Using this framework we have derived a range of
novel filters, chiefly WAMFs for dephasing noise and WPMFs for amplitude noise. Both
are capable of spectral optimization subject to physically motivated constraints such as
implementing target qubit rotations. These design forms are also compatible with con-
catenation for filtering universal noise. Interestingly, our approach unifies a number of
existing composite pulse sequencing schemes; we have revealed how Walsh-modulated
filter construction naturally incorporates familiar sequences (e.g., DCG, SK, P, BB) in
a non-Markovian time-dependent noise context. This potential to incorporate other ap-
proaches may prove useful in building a consistent picture of the scope and applicability
of the many and varied schemes that continue to be developed by the quantum control
community. These considerations make the Walsh basis an attractive design platform and
we believe this simple framework will provide a straightforward path for the development
of improved quantum control techniques.

Appendix A: Detailed filter-transfer function derivation
In this appendix we derive the computational form of the first-order infidelity 〈a

 〉 =
〈aaT

 〉 expressed in Eq. (). Recall, we write the total evolution operator U(t) = Uc(t)Ũ(t)
where the error propagator Ũ(t) satisfies the Schrodinger equation i ˙̃U(t) = H̃(t)Ũ(t) in
a frame co-rotating with the control, defined by the toggling frame Hamiltonian H̃(t) :=
U†

c (t)H(t)Uc(t). We may obtain an arbitrarily accurate, unitary estimate of the error prop-
agator by performing a Magnus expansion, whereby Ũ(τ ) = exp[–i�(τ )] and the effective
error operator �(τ ) =

∑∞
μ= �μ(τ ) at the end of the interaction has Magnus expansion

terms

�(τ ) =
∫ τ


dtH̃(t),

�(τ ) = –
i


∫ τ


dt

∫ t


dt

[
H̃(t), H̃(t)

]
,

�(τ ) =



∫ τ


dt

∫ t


dt

∫ t


dt

{[
H̃(t),

[
H̃(t), H̃(t)

]]

+
[
H̃(t),

[
H̃(t), H̃(t)

]]}
,

. . . .

()
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These generally take the form of time-ordered integrals over nested commutators in H̃(t).
We define the error vector a(τ ) by re-expressing the operator �(τ ) ≡ a(τ ) ·σ in the basis

of Pauli operators.m Assuming unitary processes, one may then employ vector identities
to expand a(τ ) =

∑∞
μ= aμ(τ ) in an infinite power series such that �μ(τ ) = aμ(τ ) ·σ , ∀μ ∈N

[]. The control propagator is therefore written Ũ(τ ) = exp[–i
∑∞

μ= aμ(τ ) ·σ ] and may be
approximated, with arbitrary accuracy, as a unitary operator in simple exponential form.
In this paper we consider the first-order approximation a(τ ) ≈ a(τ ). Hence we restrict
attention to deriving the form of a(τ ) which, using Eq. (), satisfies

a(τ ) · σ = �(τ ) =
∫ τ


dtH̃(t). ()

Our first task is therefore to derive a computationally useful forms for the toggling frame
Hamiltonian H̃(t). This is done in the following section.

Toggling frame Hamiltonian H̃0(t): computational form
The noise Hamiltonian H(t) = H (z)

 (t) + H (�)
 (t), presented in Section  is linear in the

dephasing and amplitude contributions. Since the H̃(t) is linear in H(t) we may write

H̃(t) = H̃ (z)
 (t) + H̃ (�)

 (t), ()

where we have defined the dephasing and amplitude toggling frame Hamiltonians by

H̃ (z)
 (t) := U†

c (t)H (z)
 (t)Uc(t), ()

H̃ (�)
 (t) := U†

c (t)H (�)
 (t)Uc(t). ()

It is convenient to employ the definitions of the scalar functions Rij(t), RPl
ij (t – tl–) and

�
(l–)
ij , i, j ∈ {x, y, z} introduced by Green et. al []. These are defined as the Cartesian

expansion coefficients, in the basis of Pauli matrices, of the following operators

U†
c (t)σ̂iUc(t) =

∑

j=x,y,z

Rij(t)σ̂j, ()

U†
c (t, tl–)σ̂iUc(t, tl–) =

∑

j=x,y,z

RPl
ij (t – tl–)σ̂j, ()

Q†
l–σ̂iQl– =

∑

j=x,y,z

�
(l–)
ij σ̂j. ()

These functions then serve as matrix elements, defining the computational matrices

Total Control Matrix :
[
R(t)

]
ij :=




Tr
[
U†

c (t)σ̂iUc(t)σ̂j
]
, ()

Local Control Matrix :
[
RPl (t – tl–)

]
ij :=




Tr
[
U†

c (t, tl–)σ̂iUc(t, tl–)σ̂j
]
, ()

Control History Matrix :
[
�(l–)]

ij :=



Tr
[
Q†

l–σ̂iQl–σ̂j
]
, ()

where the above expressions follow from post-multiplying Eqs. (), () and () by σ̂j,
taking the trace and using the linearity of the trace operation. The matrix R(t) captures the



Ball and Biercuk EPJ Quantum Technology  (2015) 2:11 Page 35 of 45

qubit dynamics, in the time-domain, due to the control Hamiltonian at any time; RPl(t –
tl–) captures essentially the same information, but restricted to the time interval t ∈ Il .
That is, during the lth pulse. The  ×  Control History Matrix �(l–), on the other hand,
captures the accumulated effect of the previous l –  completed pulses, implemented via
the cumulative operator Ql–.

Dephasing toggling Hamiltonian H̃(z)
0 (t)

Substituting Eq. () into Eq. () the dephasing noise component of H̃(t) takes the form

H̃ (z)
 (t) = βz(t)U†

c (t)σ̂zUc(t). ()

Using Eq. (), we may express U†
c (t)σ̂zUc(t) =

∑
j Rzj(t)σ̂j, j ∈ {x, y, z}, yielding

H̃ (z)
 (t) = βz(t)R(z)(t)σ , ()

where the time-domain Dephasing Control Vector R(z)(t) is defined as the third row of R(t).
Here, and in the following derivations, for notational simplicity σ is understood to be the
column vector

σ ≡ (σ̂x, σ̂y, σ̂z)T . ()

The computational form of R(z)(t), by inspection of the more general computational form
for R(t) derived in Appendix B, is

R(z)(t) =
n∑

l=

G(l)(t)RPl
z (t – tl–)�(l–). ()

Amplitude toggling Hamiltonian H̃(�)
0 (t)

Similarly, substituting Eq. () into Eq. () we find

H̃ (�)
 (t) = β�(t)

n∑

l=

G(l)(t)
�l


{

U†
c (t)σ̂φl Uc(t)

}
()

= β�(t)
n∑

l=

G(l)(t)
�l


Q†

l–U†
c (t, tl–)σ̂φl Uc(t, tl–)Ql–, ()

where in the second line we have substituted Uc(t) =
∑n

l= G(l)(t)Uc(t, tl–)Ql– using Eq.
(). From Eq. () the control operator Uc(t, tl–) = exp[–i �l

 σ̂φl (t – tl–)] commutes with
σ̂φl , ∀l ∈ {, . . . , n}. That is, coaxial amplitude noise always ‘tracks’ the direction of control.
Hence Eq. () reduces to

H̃ (�)
 (t) = β�(t)

n∑

l=

G(l)(t)
�l


Q†

l–σ̂φl Ql–. ()

Now, from Eq. (), we know Q†
l–σ̂iQl– = �

(l–)
i σ , where �

(l–)
i denotes the ith row of

�(l–). We may therefore write

�l


Q†

l–, σ̂φl Ql– =
�l


[
cos(φl)�(l–)

x + sin(φl)�(l–)
y

]
= �T(l)�(l–)σ , ()
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where �T(l) ≡ �l
 (cos(φl), sin(φl), ) is the Projection Vector defined in Eq. (). Conse-

quently, substituting into Eq. (), the amplitude toggling Hamiltonian is re-expressed

H̃ (�)
 (t) = β�(t)R(�)(t)σ , ()

where, for compactness, we have defined the time-domain Amplitude Control Vector

R(�)(t) :=
n∑

l=

G(l)(t)�T(l)�(l–). ()

First-order error vector
To summarize of the previous sections, the error propagator is now written

Ũ(τ ) = exp
[
–i�(τ )

]
()

≈ exp
[
–ia(τ )σ

]
()

= exp

[

–i
∫ τ


dtH̃(t)

]

()

= exp

[

–i
(∫ τ


dtH̃ (z)

 (t) +
∫ τ


dtH̃ (�)

 (t)
)]

()

= exp

[

–i
(∫ τ


dtβz(t)R(z)(t) +

∫ τ


dtβ�(t)R(�)(t)

)

σ

]

. ()

The first-order error vector consequently takes the form

a(τ ) =
∫ τ


dtβz(t)R(z)(t) +

∫ τ


dtβ�(t)R(�)(t) ()

= a(z)
 + a(�)

 , ()

where we define components

a(z)
 (τ ) :=

∫ τ


dtβz(t)R(z)(t) (Dephasing Error Vector), ()

a(�)
 (τ ) :=

∫ τ


dtβ�(t)R(�)(t) (Amplitude Error Vector). ()

First-order infidelity
The time-domain representation of the first-order infidelity 〈a

 〉 = 〈aaT
 〉 now follows

directly from Eq. (). For filtering time-dependent noise, however, it is more useful to
transform to a spectral representation in which case 〈a

 〉 separates into dephasing and
amplitude noise terms, each appearing as an overlap integral between the noise PSD and
a frequency-domain filter-transfer function. In this section we summarize this derivation,
and define the filter-transfer functions. In the following section we present the final forms
for these filter-transfer functions.

The modulus square of the first-order error vector, using Eq. (), is given by

aaT
 =

(
a(z)

 + a(�)


)(
a(z)

 + a(�)


)T ()

= a(z)
 a(z)T

 + a(z)
 a(�)T

 + a(�)
 a(z)T

 + a(�)
 a(�)T

 . ()
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Substituting Eqs. () and () and taking the ensemble average over time, the first-order
infidelity 〈a

 〉 = 〈aaT
 〉 takes the form

〈
a


〉

=
∫ τ


dt

∫ τ


dt

〈
β�(t)β�(t)

〉
R(�)(t)

[
R(�)(t)

]T ()

+
∫ τ


dt

∫ τ


dt

〈
β�(t)βz(t)

〉
R(�)(t)

[
R(z)(t)

]T ()

+
∫ τ


dt

∫ τ


dt

〈
βz(t)β�(t)

〉
R(z)(t)

[
R(�)(t)

]T ()

+
∫ τ


dt

∫ τ


dt

〈
βz(t)βz(t)

〉
R(z)(t)

[
R(z)(t)

]T . ()

Here the time average only operates on the noise fields, not on the control vectors since
these are deterministic. Assuming, as in Section , β�(t) and βz(t) are uncorrelated,
classical random variables with zero mean, the two-point cross-correlation functions
〈β�(ti)βz(tj)〉 = 〈βz(tk)β�(tl)〉 = . Hence the infidelity reduces to

〈
a


〉

=
∫ τ


dt

∫ τ


dt

〈
β�(t)β�(t)

〉
R(�)(t)

[
R(�)(t)

]T ()

+
∫ τ


dt

∫ τ


dt

〈
βz(t)βz(t)

〉
R(z)(t)

[
R(z)(t)

]T . ()

We further assuming wide-sense-stationary, so the remaining two-point correlation func-
tions depend only on the time difference, and therefore reduce to auto-correlation func-
tions. In this case we may invoke the Wiener-Khinchin theorem [],

〈
β(t)β(t)

〉
=


π

∫ ∞

–∞
Sβ (ω)eiω(t–t) dω ()

which relates the autocorrelation function of a signal β(t) to the Fourier transform of its
PSD Sβ (ω). Denoting the dephasing and amplitude noise PSDs by Sz(ω) and S�(ω), we may
therefore re-express 〈a

 〉 in terms of the noise spectral properties, yielding

〈
a


〉

=


π

∫ ∞

–∞
dωS�(ω)

[∫ τ


dte–iωt R(�)(t)

∫ τ


dteiωt

[
R(�)(t)

]T
]

()

+


π

∫ ∞

–∞
dω′Sz

(
ω′)

[∫ τ


dte–iω′t R(z)(t)

∫ τ


dteiω′t

[
R(z)(t)

]T
]

. ()

Defining the frequency-domain control vectors via the integral transforms

R(�)(ω) = –iω
∫ τ


dteiωtR(�)(t), R(z)(ω) = –iω

∫ τ


dteiωtR(z)(t) ()

it is then straightforward to further re-express the infidelity in terms the spectral proper-
ties of the control, yielding

〈
a


〉

=


π

∫ ∞

–∞
dω

ω S�(ω)
[
R(�)(ω)

]∗[R(�)(ω)
]T ()

+


π

∫ ∞

–∞
dω′

ω′ Sz
(
ω′)[R(z)(ω′)]∗[R(z)(ω′)]T . ()
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Defining the frequency-domain filter-transfer functions,

Fz(ω) :=
[
R(z)(ω)

]∗[R(z)(ω)
]T (Dephasing Filter-Transfer Function), ()

F�(ω) :=
[
R(�)(ω)

]∗[R(�)(ω)
]T (Amplitude Filter-Transfer Function). ()

we therefore recover Eq. ()

〈
a


〉

=


π

∫ ∞

–∞
dω

ω Sz(ω)Fz(ω) +


π

∫ ∞

–∞
dω′

ω′ S�

(
ω′)F�

(
ω′). ()

Appendix B: Control vectors: computational forms
The dephasing and amplitude filter-transfer functions Fz(ω) and F�(ω) are obtained by
taking the modulus square respectively of the frequency-domain dephasing and amplitude
control vectors R(z)(ω) and R(�)(ω), defined by Eq. () in terms of a Fourier-type trans-
form. In this section we derive the computationally useful forms of R(z)(ω) and R(�)(ω).

Total Control Matrix R(t) computational form
The time-domain Total Control Matrix R(t) is defined by Eq. () with elements Rij(t) :=

 Tr[U†

c (t)σ̂iUc(t)σ̂j]. Substituting in Eq. () we then obtain

Rij(t) =



n∑

l=

G(l)(t) Tr
[
Q†

l–
{

U†
c (t, tl–)σ̂iUc(t, tl–)

}
Ql–σ̂j

]
()

=



n∑

l=

G(l)(t) Tr

[

Q†
l–

{ ∑

k=x,y,z

RPl
ik (t – tl–)σ̂k

}

Ql–σ̂j

]

, ()

where we have used Eq. () to re-express U†
c (t, tl–)σ̂iUc(t, tl–) in terms of the RPl

ij . Using
the linearity of the trace operation and recalling the definition of the of the Control History
Matrix elements �l–

ij from Eq. (), we then obtain

Rij(t) =



∑

k=x,y,z

n∑

l=

G(l)(t) Tr
[
RPl

ik (t – tl–)Q†
l–σ̂kQl–σ̂j

]
()

=
∑

k=x,y,z

n∑

l=

G(l)(t)RPl
ik (t – tl–)

{



Tr
[
Q†

l–σ̂kQl–σ̂j
]
}

()

≡
n∑

l=

G(l)(t)
∑

k=x,y,z

{
RPl

ik (t – tl–)
}{

�
(l–)
kj

}
. ()

Hence, by definition of matrix multiplication, the time domain total control matrix takes
the form

R(t) =
n∑

l=

G(l)(t)RPl (t – tl–)�(l–). ()
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We move to the frequency domain by performing the integral transform on R(t) defined
by

R(ω) := –iω
∫ τ


dteiωtR(t) ()

= –iω
n∑

l=

{∫ τ


dteiωtG(l)(t)RPl (t – tl–)

}

�(l–) ()

= –iω
n∑

l=

{∫ tl

tl–

dteiωtRPl (t – tl–)
}

�(l–) ()

=
n∑

l=

eiωtl–

{

–iω
∫ τl


dt′eiωt′RPl

(
t′)

}

�(l–). ()

In the last line we have performed a change of variables using t′ = t – tl–, ∀l ∈ {, . . . , n}.
The frequency-domain Total Control Matrix thus takes the computational form

R(ω) =
n∑

l=

eiωtl– RPl (ω)�(l–), ()

where we have defined the frequency-domain Local Control Matrix by

RPl (ω) := –iω
∫ τl


dt′eiωt′RPl

(
t′). ()

The matrix elements of RPl (ω) are derived as functions of the control sequence in the
section bellow.

Local Control Matrix elements
As defined in Eq. (), the matrix elements of the time-domain Local Control Matrix
are given by RPl

ij (t – tl–) = 
 Tr[U†

c (t, tl–)σ̂iUc(t, tl–)σ̂j], where Uc(t, tl–) ≡ exp[–i �l
 σ̂φl (t –

tl–)]. The frequency domain representation RPl (ω) then follows from the integral trans-
form defined by Eq. (), with matrix elements expressed as functions of the control
parameters {�l, τl,φl}. These matrix elements take the form

RPl
xx(ω) = cos(φl)

[
 – eiωτl

]
+

ω sin(φl)
ω – �

l
Vl(ω), ()

RPl
xy(ω) =




sin(φl)
[
 – eiωτl

]
–

ω sin(φl)
(ω – �

l )
Vl(ω), ()

RPl
xz(ω) = –

ω

ω – �
l

sin(φl)Bl(ω), ()

RPl
yx(ω) =




sin(φl)
[
 – eiωτl

]
–

ω sin(φl)
(ω – �

l )
Vl(ω), ()

RPl
yy(ω) = sin(φl)

[
 – eiωτl

]
+

ω cos(φl)
ω – �

l
Vl(ω), ()

RPl
yz(ω) =

ω

ω – �
l

cos(φl)Bl(ω), ()
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RPl
zx(ω) =

ω

ω – �
l

sin(φl)Bl(ω), ()

RPl
zy(ω) = –

ω

ω – �
l

cos(φl)Bl(ω), ()

RPl
zz(ω) =

ω

ω – �
l

Vl(ω), ()

where we have defined

Vl(ω) :=
[
i�leiωτl sin(�lτl) – ωeiωτl cos(�lτl) + ω

]
, ()

Bl(ω) :=
[
i�leiωτl cos(�lτl) + ωeiωτl sin(�lτl) – i�l

]
. ()

Amplitude Control Vector
The computational form for the frequency-domain Amplitude Control Vector R(�)(ω) fol-
lows from substituting Eq. () into Eq. (), yielding

R(�)(ω) := –iω
∫ τ


dteiωtR(�)(t) ()

= –iω

{∫ τ


dteiωt

n∑

l=

G(l)(t)

}

�T(l)�(l–) ()

= –iω
n∑

l=

{∫ tl

tl–

dteiωt
}

�T(l)�(l–) ()

= –iω
n∑

l=


iω

[
eiωtl – eiωtl–

]�T(l)�(l–) ()

=
n∑

l=

[
eiωtl– – eiωtl

]�T(l)�(l–). ()

Appendix C: Walsh Rotary Spin Echo derivations
The WRSEk sequence is defined by the phase modulation φ(t) = φ + π

 ( – y(t)), where
y(t) ∈ {±}. Referring to Eq. (), however, the spin operator σ̂φ(t) satisfies

σ̂φ+π = –σ̂φ ⇐⇒ σ̂φ+ π
 (–y(t)) = y(t)σ̂φ . ()

Consequently the sign-inversion may be absorbed into a modulated Rabi-rate defined by
�y(t) := y(t)�. The sequence is then conveniently recast as amplitude modulation with
constant phase φ. Defining y(t) := PALk(t/τ ) we therefore obtain the Walsh synthesis
�k(t) = � PALk(t/τ ) consisting of a single Walsh function. Referring to Eq. () the asso-
ciated amplitude modulation is thus given by

�� = HMX̃ = �P(k)
M, M = m(k), ()

where X̃i(k) = � is the only nonzero element of X̃ and, as in Section ., P(k)
M :=

(P(k)
 , P(k)

 , . . . , P(k)
M)T defines the i(k)th column of HM. Eq. () is then more conveniently
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re-expressed

WRSEk ≡
M(k)∏

l=

exp

(

i
P(k)

l �


τMσ̂φ

)

. ()

In the next section we use this form to analyze the amplitude noise filtering properties.
The subsequent section treats the filtering properties in the dephasing quadrature.

WRSEk as amplitude noise filters
Referring to Eq. (), the rotation operator σ̂φ for WRSEk is treated as fixed across
all pulses. Thus it commutes with Pl and, consequently, with Ql = PlPl– · · ·P ∀l ∈
{, . . . ,M(k)}. It follows Q†

l–σ̂φ Ql– = σ̂φ which, post-multiplying by σ̂k and taking the
trace of both sides, yields the identity




Tr[σ̂φ σ̂k] =



Tr
[
Q†

l–σ̂φ Ql–σ̂k
]
, k ∈ {x, y, z}. ()

The LHS expands to δxk cos(φ)+δyk sin(φ) (where δlk is the Kronecker delta), and the RHS
expands to cos(φ)�(l–)

xk + sin(φ)�(l–)
yk (using the definition of the Pulse History Matrix in

Eq. ()). We thus obtain the following three identities ∀φ:

k = x : cos(φ)�(l–)
xx + sin(φ)�(l–)

yx = cos(φ), ()

k = y : cos(φ)�(l–)
xy + sin(φ)�(l–)

yy = sin(φ), ()

k = z : cos(φ)�(l–)
xz + sin(φ)�(l–)

yz = . ()

Now, setting �l ≡ P(k)
l � the Projection Vector defined in Eq. () becomes �T(l) = (�P(k)

l /
)[cos(φ), sin(φ), ], in which case

�T(l)�(l–) =
�


P(k)

l
{
cos(φ)�(l–)

x + sin(φ)�(l–)
y

}
()

=
�


P(k)

l

⎡

⎢
⎢
⎣

cos(φ)�(l–)
xx + sin(φ)�(l–)

yx

cos(φ)�(l–)
xy + sin(φ)�(l–)

yy

cos(φ)�(l–)
xz + sin(φ)�(l–)

yz

⎤

⎥
⎥
⎦

T

()

=
�


P(k)

l

[
cos(φ), sin(φ), 

]
, ()

where in the last equality we have used the identities derived above in Eqs. (), () and
(). Using Eq. () we therefore obtain

R(�)(ω) =
�



M∑

l=

P(k)
l
[
eiωtl– – eiωtl

]

⎡

⎢
⎣

cos(φ)
sin(φ)



⎤

⎥
⎦

T

, ()

where tl = lτ /M(k). From Eq. () the amplitude filter-transfer function therefore be-
comes

F�(ω) =
�



∣
∣
∣
∣
∣

M∑

l=

P(k)
l
[
eiωtl– – eiωtl

]
∣
∣
∣
∣
∣



, ()
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where, on taking the modulus square, the φ dependence amounts to cos(φ) + sin(φ) =
 and hence vanishes.

WRSEk as dephasing noise filters
For a general WRSEk sequence, one can show the first-order Taylor coefficient for Fz(ω)
takes the analytic form

C(z)
 (�; k) = sinc

(
�

κ(k)

)

, κ(k) =

⎧
⎨

⎩

m(k) if r(k) �= ,

m(k) +  if r(k) = 
()

yielding the family of zeros Z(k)
 = {κ(k)πq|q ∈ N}. Hence it is always possible to produce

a first-order filter with (p – ) =  by setting � ∈ Z(k)
 . Higher-order filters for dephasing

noise - that is, such that (p – ) >  - then correspond to some η satisfying Eq. () such
that η ∈ Z(k)

 . Although a general analytical form for these higher-order coefficients is not
easy to expressn we may still make progress, however, by simply substituting in the can-
didate values � = κ(k)πq and determining which q ∈N produce concurrent zeros of the
C(z)

j (�). As a representative example we study the particular case for WRSE, deriving
the coefficients

C(z)
 (�; ) =


�



[
(
�

 – 
)

cos
�


– �

 cos
�


– � sin

�


+
(
�

 + 
)
]

, ()

C(z)
 (�; ) =


�



[
(
�

 – �
 + ,

)
cos

�


–
(
�

 – �

)

cos
�



–
(
�

 – �
)

sin
�


+ 

(
�

 – �
 – 

)
]

. ()

From above, the choice k =  implies κ(k) =  and consequently the candidate zeros take
the form � = πq. Substituting into the above expressions yields

C(z)
 (πq; ) =

 – (–)q

qπ , q ∈ N, ()

C(z)
 (πq; ) =

⎧
⎨

⎩


(πq) if q even,
–π(+q)

π(+q) if q odd.
()

Thus q must be even to ensure C(z)
 = . However this choice implies C(z)

 >  (in fact
C(z)

 >  for any choice of q) and it follows WRSE is at maximum a second-order filter.
In Figure (a) we plot C(z)

j (�; ), j ∈ {, , } showing the existence of concurrent zeros
only for j ∈ {, }. The inset shows, as a representative case, the behaviour near � = π .
In Figure (b) we plot Fz(ω) setting � = πq, q ∈ {, . . . , }, showing values for which first
and second-order filtering is achieved. Repeating this general procedure for other values
of k we find similar results and conclude the WRSEk family are capable of up to second-
order filtering against dephasing noise.

Competing interests
The authors declare that they have no competing interests.



Ball and Biercuk EPJ Quantum Technology  (2015) 2:11 Page 43 of 45

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
We thank K Brown, JT Merrill and L Viola for useful discussions. This work partially supported by the US Army Research
Office under Contract Number W911NF-11-1-0068, and the Australian Research Council Centre of Excellence for
Engineered Quantum Systems CE110001013.

Endnotes
a The assumption of independence is reasonable, for instance, in the case of a driving field where random

fluctuations in frequency and amplitude arise from different physical processes. A general model including
correlations between noise processes is possible, however, following the approach outlined by Green et al. [49].

b The first-order approximation has recently been experimentally tested and demonstrated to produce good
agreement in the weak noise limit [37]. For the noise field β(t), this regime is sufficiently characterized by requiring
ξ 2 � 1, where the smallness parameter is defined by ξ 2 ≡ 〈β2(t)〉τ 2 ≡ τ 2

∫ +∞
–∞ dωSβ (ω) [48]. The condition ξ 2 < 1 is

also required for the Magnus series to formally converge.
c For a resonantly driven qubit φl is the phase of the driving field and �l is linearly proportional to the driving

amplitude.
d This effect is captured by the multiple slopes in Figure 4(h) which clearly show the difference between the

asymptotic zero-frequency roll-off and the local slope over targeted regions [ωL ,ωc] in the stopband.
e All stopbands ‘turn on’ with a finite response, the functional form of which determines the filter order and the

effectiveness of noise suppression. In the stopband this is quantified by the slope, or roll off in the language of filter
design.

f This can be shown by Taylor expanding the amplitude noise filter function F�(ωτ ;�AMF
n ) and deriving the result

that C(�)
2 (�AMF

n ) = 1
4 (
∑n

l=1 θl)
2 .

g We use the vectors X ≡ (X0,X1, . . . ,XN) and Y ≡ (Y0,Y1, . . . ,YN) to compactly write the Paley ordered Walsh spectra
implied by Eq. () in synthesizing �(t) and φ(t).

h Pulse periods taking non-integer multiples values of τmin then have intrinsic conflict with implementation in
discretized time via digital control, giving rise to residual errors.

i Our studies have not produced proof that this symmetry is strictly necessary. In fact for WPMFs it is not required.
However WAMF constructions possessing time-reversal symmetry do appear to yield results more readily, and all
WAMFs we have discovered have this property.

j Maximizing the number of Rademacher functions does not correspond to maximizing the switching rate of PALk (x).
In fact, for a givenm(k) the maximum switching rate for PALk (x) corresponds to k = 2m(k)–1 , which consists of the
single Rademacher function Rm(k)–1(x).

k These points may also be derived using Nelder-Mead optimization of Az (X0;X3) over the two-dimensional domain.
This method is useful for more complex constructions (see Section 6.2) where spectral optimization becomes a
more multi-dimensional task.

l Since the WAMF(2)
0:7 gates in Figure 4 were derived by optimizing the cost function over local regions in the

stopband, the asymptotic filter order (p – 1) associated with Taylor expanding Fz (ω) about ω = 0 is not a meaningful
descriptor of these filters. Hence we do not expect C(z)

2,4 = 0 and do not pursue such a calculation. Instead the
instantaneous filter order is used.

m This is valid since �(τ ) belongs to the Lie algebra of SU(2), inheriting this property from the toggling frame
Hamiltonians from which it is derived.

n The higher-order C(k)
2j involve terms oscillating at multiple frequencies and have nontrivial dependencies on �0 .

Their zeros must in general be determined numerically.
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