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Abstract
Using the Trotter-Kato theorem we prove the convergence of the unitary dynamics
generated by an increasingly singular Hamiltonian in the case of a single field
coupling. The limit dynamics is a quantum stochastic evolution of
Hudson-Parthasarathy type, and we establish in the process a graph limit
convergence of the pre-limit Hamiltonian operators to the Chebotarev-Gregoratti-von
Waldenfels Hamiltonian generating the quantum Itō evolution.

1 Introduction
In the situation of regular perturbation theory, we typically have a Hamiltonian inter-
action of the form H = H + Hint with associated strongly continuous one-parameter
unitary groups U(t) = e–itH (the free evolution) and U(t) = e–itH (the perturbed evolu-
tion), then we transform to the Dirac interaction picture by means of the unitary family
V (t) = U(–t)U(t). Although V (·) is strongly continuous, it does not form a one-parameter
group but instead yields what is known as a left U-cocycle:

V (t + s) = U(s)†V (t)U(s)V (s). ()

One obtains the interaction picture dynamical equation

i
d
dt

V (t) = ϒ(t)V (t), ()

where ϒ(t) = U(t)†HintU(t).
More generally, we may have a pair of unitary groups U(·) and U(·) with Stone genera-

tors H and H respectively, but where the intersection of the domains of the generators are
not dense. This is the situation of a singular perturbation. In this case we cannot expect
the Dirac picture dynamical equation () to be anything but formal since the difference
Hint = H – H is not densely defined.

Remarkably, the steps above can be reversed even for the situation of singular perturba-
tions. If we assume at the outset a fixed free dynamics U(·), with Stone generator H, and
a strongly continuous unitary left U-cocycle V (·), then U(t) = U(t)V (t) will then form
a strongly continuous one-parameter unitary group with Stone generator H . In practice
however the problem of reconstructing H from the prescribed H and V (·) will be difficult.
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In the situation of quantum stochastic evolutions introduced by Hudson and
Parthasarathy [], we have a strongly continuous adapted process V (·) satisfying a quan-
tum stochastic differential equation (including Wiener and Poisson noise as special com-
mutative cases) in place of (), and the solution constitutes a cocycle with respect to the
time-shift maps U ≡ � (see below). Nevertheless, V (·) arises as the Dirac picture evolu-
tion for a singular perturbation of a unitary U(·) with some generator H with respect to
the time-shift: it was a long standing problem to find an explicit form for H which was
finally resolved by Gregoratti [], see also [].

The purpose of this paper is to approximate the singular perturbation arising in quantum
stochastic evolution models by a sequence of regular perturbation models. That is, to con-
struct a sequence of Hamiltonians H (k) = H + H (k)

int yielding a regular perturbation V (k)(·)
converging to a singular perturbation V (·) in some controlled way. We exploit the fact that
the limit Hamiltonian is now known through the work of Chebotarev [] and Gregoratti
[]. The strategy is to employ the Trotter-Kato theorem which guarantees strong uniform
convergence of the unitaries once graph convergence of the Hamiltonians is established.

1.1 Quantum stochastic evolutions
The seminal work of Hudson and Parthasarathy [] on quantum stochastic evolutions lead
to explicit constructions of unitary adapted quantum stochastic processes V describing
the open dynamical evolution of a system with a singular Boson field environment. We fix
the system Hilbert space h and model the environment as having n channels so that the un-
derlying Fock space is F = �(Cn ⊗ L(R)). Here �(H) denotes the symmetric (boson) Fock
space over a one-particle space H: we set the inner product as 〈�|�〉 =

∑∞
m=


m! 〈�m|�m〉

and take the exponential vectors to be defined as (⊗s denoting a symmetric tensor prod-
uct)

e(f ) = (, f , f ⊗s f , f ⊗s f ⊗s f , . . .)

with test function f ∈H. Here the one particle space is L(R), the space of complex-valued
square-integrable functions on R. We define the operators

�(t) � t,

�(t) = A†(t) � a†([,t]),

�(t) = A(t) � a([,t]),

�(t) = �(t) � d�(χ[,t]),

where [,t] is the characteristic function of the interval [, t] and χ[,t] is the operator on
L(R) corresponding to multiplication by [,t]. Hudson and Parthasarathy [] have devel-
oped a quantum Itō calculus where the basic objects are integrals of adapted processes
with respect to the fundamental processes �αβ . The quantum Itō table is then

d�αβ (t) d�μν(t) = δ̂βμ d�αν(t),
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where δ̂αβ is the Evans-Hudson delta defined to equal unity if α = β =  and zero otherwise.
This may be written as

× dA d� dA† dt

dA  dA dt 
d�  d� dA 
dA†    
dt    

.

In particular, we have the following theorem [].

Theorem  There exists a unique solution V (·, ·) to the quantum stochastic differential
equation

V (t, s) = I +
∫ t

s
dG(τ )V (τ , s) ()

(t ≥ s ≥ ) where

dG(t) = Gαβ ⊗ d�αβ(t)

with Gαβ ∈ B(h). (We adopt the convention that we sum repeated Greek indices over the
range , .)

In particular, set V (t) = V (t, ) then we have the quantum stochastic differential equa-
tion dV (t) = dG(t)V (t) which replaces the regular Dirac picture dynamical equation ().

We refer to G = [Gαβ ] ∈ B(h ⊕ h), as the coefficient matrix, and V as the left process
generated by G. The conditions for the process V to be unitary are that G takes the form,
with respect to the decomposition h⊕ h,

G =

[
– 

 L†L – iH –L†S
L S – I

]

, ()

where S ∈ B(h) is a unitary, L ∈ B(h) and H ∈ B(h) is self-adjoint. We may write in more
familiar notation []

dG(t) =
(

–



L†L – iH
)

⊗ dt – L†S ⊗ dA(t) + L ⊗ dA†(t) + (S – I) ⊗ d�(t).

We denote the shift map on L(R) by θt , that is (θt)f (·) = f (· + t) and its second quan-
tization as �t = I ⊗ �(θt). It then turns out that �†

τ V (t, s)�τ = V (t + τ , s + τ ) and so
V (t) = V (, t) is a left unitary �-cocycle and that there must exist a self-adjoint opera-
tor H such that

�tV (t) ≡ e–iHt

for t ≥ . (For t <  one has V (–t)†�–t ≡ e–iHt .) Here H will be a singular perturbation of
generator of the shift, and its characterization was given by Gregoratti []. See also [].
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1.2 Physical motivation
As a precursor to and motivation for further approximations, we fix on a simple model of a
quantum mechanical system coupled to a boson field reservoir R. In the Markov approx-
imation we assume that the auto-correlation time of the field processes vanishes in the
limit: this includes weak coupling (van Hove) and low density limits. The Hilbert space
for the field is the Fock space FR = �(H

R) with one-particle space H
R = L(R) taken as

the momentum space. (For convenience we consider a one-dimensional situation because
this is the setting studied in this paper but of course R is particularly relevant physically.)
It is convenient to write annihilation operators formally as AR(g) =

∫
R

g(p)∗ap dp where
[ap, a†

p′ ] = δ(p – p′).
In particular, let us fix a function g ∈ L(R), and set

a(t, k) =
√

k
∫

e–iω(p)tkg(p)∗ap dp,

where ω = ω(p) is a given function (determining the dispersion relation for the free quanta)
and k is a dimensionless parameter rescaling time. We have the commutation relations

[
a(s, k), a(t, k)†

]
= kρ

(
k(t – s)

)
,

where

ρ(τ ) ≡
∫

∣
∣g(p)

∣
∣eiω(p)τ dp.

The limit k → ∞ leads to singular commutation relations, and it is convenient to intro-
duce smeared fields

A(ϕ, k) =
∫

ϕ(t)∗a(t, k) dt

in which case we have the two-point function (and define an operator Ck by)

[
A(ϕ, k), A(ψ , k)†

]
=

∫

dt dt′ϕ(t)∗kρ
(
k
(
t – t′))ψ

(
t′) ≡ 〈ϕ|Ckψ〉.

For ρ integrable, we expect

lim
k→∞

[
A(ϕ, k), A(ψ , k)†

]
= γ

∫

dtϕ(t)∗ψ(t),

where γ =
∫ ∞

–∞ ρ(τ ) dτ = π
∫ |g|(p)δ(ω(p)) dp ≥ . When γ = , the A(ϕ, k) are smeared

versions of the annihilators on �(L(R)).
The limit k ↑ ∞ corresponds to the smeared field becoming singular and this leads to a

quantum Markovian approximation. The formulation of such models was first given and
treated in a systematic way by Accardi, Frigero and Lu who developed a set of powerful
quantum functional central limit theorems including the weak coupling [] and low den-
sity [] regimes. Theorem  is an extension of these which includes both quantum diffusion
and jump terms [, ].
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Theorem  Let (Eαβ ) be bounded operators on a fixed separable Hilbert space h labeled
by α,β ∈ {, } with E†

αβ = Eβα and ‖E‖ < . Let

ϒ(t, k) = E ⊗ a(t, k)†a(t, k) + E ⊗ a(t, k)† + E ⊗ a(t, k) + E ⊗ I

and

e(ϕ, k) = exp
{

A(ϕ, k) – A(ϕ, k)†
}
�R

with �R the Fock vacuum of FR. The solution V (t, k) to the equation

d
dt

V (t, k) = –iϒ(t, k)V (t, k), V (, k) = I,

exists and we have the limit

lim
k→∞

〈
u ⊗ e(ϕ, k)

∣
∣V (t, k)

∣
∣u ⊗ e(ψ , k)

〉
=

〈
u ⊗ e(ϕ)

∣
∣V (t)

∣
∣u ⊗ e(ψ)

〉

for all u, u ∈ h and ϕ,ψ ∈ L(R), where V is a unitary adapted process on h ⊗ �(Cn ⊗
L(R)) with coefficient matrix G given by

G = –iE – i



G

[
 
 

]

E, ()

where we assume
∫ 

–∞ ρ(τ ) dτ = 
 .

The proof of the theorem is given in [] and requires a development and a uniform
estimation of the Dyson series expansion. Summability of the series requires that ‖E‖ < .

The triple (S, L, H) from () obtained through () is

S =
I – i

 E

I + i
 E

, L = –
i

I + i
 E

E,

H = E + E Im

{


I + i
 E

}

E.
()

Our objective is reappraise Theorem , where we will prove a related result by an alter-
native technique. Using the Trotter-Kato theorem, we will establish a stronger mode of
convergence (uniformly on compact intervals of time and strongly in the Hilbert space)
by means of a graph convergence of the Hamiltonians. The new approach has the advan-
tage of been simpler and is likely to be more readily extended to other cases, for instance
a continuum of input channels as originally treated in [], which cannot be treated by the
perturbative techniques used in the proof of Theorem .

2 Trotter-Kato theorems for quantum stochastic limits
Our main results will employ the Trotter-Kato theorem, which we recall next in a partic-
ularly convenient form. See [], Theorem ., or [], Chapter VIII..

Theorem  (Trotter-Kato) Let H be a Hilbert space and let U (k)(·) and U(·) be strongly
continuous one-parameter groups of unitaries on H with Stone generators H (k) and H , re-
spectively. Let D be a core for H . The following are equivalent
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. For all f ∈D there exist f (k) ∈ Dom(H (k)) such that

lim
k→∞

f (k) = f , lim
k→∞

H (k)f (k) = Hf .

. For all  ≤ T < ∞ and all f ∈H we have

lim
k→∞

sup
≤t≤T

∥
∥
(
U (k)(t) – U(t)

)
f
∥
∥ = .

The theorem yields a strong uniform convergence if we can establish graph convergence
of the Hamiltonians. We now present the Trotter-Kato theorems for the class of problems
that interest us, treating the first and second quantized problems in sequence.

2.1 First quantization example
Definition  Let g ∈ C∞

c (R), i.e., an infinitely differentiable function with compact sup-
port, such that

∫ ∞
–∞ g(s) ds = . We define ρ(t) =

∫
R

g(s)∗g(s + t) ds. Moreover, for all k > ,
we define functions g(k) and ρ(k) by

g(k)(t) = kg(kt), ρ(k)(t) = kρ(kt), t ∈R.

Furthermore, we define two complex numbers by κ+ :=
∫ ∞

 ρ(s) ds and κ– :=
∫ 

–∞ ρ(s) ds.

Note that κ+ + κ– =  and that κ+ and κ– are complex conjugate: κ+ = (κ–)∗ (substitute –s
for s), hence κ± = 

 ± iσ with σ real. The choice of ρ is such that 〈g|g ∗ f 〉 = 〈ρ|f 〉, where
(g ∗ f )(t) =

∫ ∞
–∞ g(s)f (t – s) ds is the usual convolution.

Let h be a Hilbert space and let E be a bounded self-adjoint operator on h. We consider
the following family of operators on L(R;h) � h⊗ L(R):

H (k) = i∂ + E
∣
∣g(k)〉〈g(k)∣∣ � I ⊗ i∂ + E ⊗ ∣

∣g(k)〉〈g(k)∣∣,

Dom
(
H (k)) = W ,(R;h),

()

where W ,(X;h), X ⊆ R, denotes the Sobolev space of h-valued functions square inte-
grable on X with square integrable weak derivatives on X. It follows easily that H (k) is self-
adjoint for every k >  (for example by the Kato-Rellich theorem, see [], Theorem X.).
We define a unitary operator on h by

S =
I – iκ–E
I + iκ+E

()

and an operator H on L(R;h) by

Dom(H) =
{

f ∈ W ,(
R\{};h) : f

(
–)

= Sf
(
+)}

,

Hf = i∂f .
()

It follows easily that H is self-adjoint, compare [], VIII., final example.

Remark Any f ∈ W ,(R\{};h) is absolutely continuous both on (–∞, ) and (,∞), see
for example [], . Ex. , but the exclusion of test functions supported at  allows jumps
at . Higher dimensional situations (Rn with n > ) are more complicated in this respect.
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We define strongly continuous one-parameter groups of unitaries on L(R;h) by

U (k)(t) = exp
(
–itH (k)), U(t) = exp(–itH).

We then have the following theorem.

Theorem  Let  ≤ T < ∞. Then

lim
k→∞

sup
≤t≤T

∥
∥
(
U (k)(t) – U(t)

)
f
∥
∥ = , ∀f ∈ L(R;h).

We prove Theorem  at the end of this subsection. From the Trotter-Kato Theorem ,
it suffices to find, for every f ∈ Dom(H), a sequence f (k) ∈ Dom(H (k)) that satisfies condi-
tion (i) of Theorem .

If g is a C-valued function on X and f ∈ L(X;h) � h ⊗ L(X;C) then we use the short
notation gf for (I ⊗ Mg)f where Mg is multiplication by g . With this convention we can
also define g ∗ f ∈ L(X;h) and 〈g|f 〉 ∈ h for suitable functions g , using the same formulas
as for h = C.

Definition  Let f be an element in the domain of H . Define an element f (k) in the domain
of H (k) by

f (k)(t) =
(
g(k) ∗ f

)
(t) =

∫ ∞

–∞
g(k)(t – s)f (s) ds.

Lemma  Let η be an element of C(,∞) with compact support and let h be an element
of W ,((,∞);h) ∩ C((,∞);h) such that h(+) = . Let η(k)(x) = kη(kx) for all x ∈ (,∞)
and k > . Then

∥
∥
〈
η(k)|h〉∥

∥
 ≤ C

k
, ∀k > ,

for some positive constant C.

Proof Note that the C-function h is Lipschitz on the support of η, that is, there exists a
positive constant L such that

∥
∥h(x) – h(y)

∥
∥

 ≤ L|x – y|, ∀x, y ∈ supp(η),

where supp(η) denotes the support of η. Taking the limit for y to + gives

∥
∥h(x)

∥
∥

 ≤ L|x|, x ∈ supp(η).

We can define M := maxx∈(,∞) |η(x)| and let N be a number to the right of the support
of η. Now we have

∥
∥
〈
η(k)|h〉∥

∥
 ≤ k

∫ ∞



∣
∣η(kx)

∣
∣
∥
∥h(x)

∥
∥

 dx

≤ L
k

∫ ∞



∣
∣η(u)

∣
∣u du ≤ L

k

∫ N


Mu du =

LMN

k
. �
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Lemma  If f is in Dom(H) ∩ C∞(R\{};h), and f (k) is given by Definition , then we have

. lim
k→∞

∥
∥f (k) – f

∥
∥

 = , . lim
k→∞

∥
∥H (k)f (k) – Hf

∥
∥

 = .

Proof Note that the first limit follows immediately from a standard result on approxima-
tions by convolutions, see e.g. [], Thm. .. For the second limit, note that

∂
(
g(k) ∗ f

)
= g(k) ∗ ∂f +

(
f
(
+)

– f
(
–))

g(k), ()

because ∂f = Hf and using [], Thm. ., once more, we find that

lim
k→∞

g(k) ∗ Hf = Hf .

That is, all we need to show is that

lim
k→∞

∥
∥
(
if

(
+)

– if
(
–)

+ E
〈
g(k)|g(k) ∗ f

〉)
g(k)∥∥

 = . ()

Note that 〈g(k)|g(k) ∗ f 〉 = 〈ρ(k)|f 〉. We can now apply Lemma  with h = f χ(,∞) – f (+) and
η = ρχ(,∞) (resp. h = f χ(–∞,) – f (–) and η = ρχ(–∞,)) to conclude that

〈
ρ(k)|f 〉 k→∞−→ (κ–)∗f

(
–)

+ (κ+)∗f
(
+)

= κ+f
(
–)

+ κ–f
(
+)

,

with rate 
k . Using the boundary condition for f , we therefore find that

if
(
+)

– if
(
–)

+ E
〈
g(k)|g(k) ∗ f

〉 −→ i
[
(I – iκ–E)f

(
+)

– (I + iκ+E)f
(
–)]

= ,

with rate 
k . Note that the L-norm of g(k) grows with rate

√
k, so that the limit in equation

() follows. This completes the proof of the lemma. �

Proof of Theorem  The theorem follows from a combination of the results in Theorem 
and Lemma  and the fact that Dom(H) ∩ C∞(R\{};h) is a core for H . The latter follows
from [], Thm. .. �

3 A second quantized model
Let Eαβ be bounded operators on h such that E†

αβ = Eβα for α,β ∈ {, }. Consider the fol-
lowing family of operators on h⊗F

H (k) = i d�(∂) + EA†
(
g(k))A

(
g(k)) + EA†

(
g(k)) + EA

(
g(k)) + E, ()

choosing a suitable domain Dom(H (k)) of essential self-adjointness for all k > . (We con-
jecture that h ⊗ E(C∞

c (R)), where E(C∞
c (R)) is the set of exponential vectors e(f ) with

f ∈ C∞
c (R), is a set of analytic vectors for the H (k) but we haven’t been able to prove this

rigorously and leave it as an open problem.)
We denote the strongly continuous group of unitaries on h⊗F generated by the unique

self-adjoint extension of H (k) by U (k)(t). Let the triple (S, L, H) appearing in () be obtained
from E = (Eαβ) through (): see ().
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The space h ⊗ F = h ⊗ �(L(R)) consists of vectors � = (�m)m≥ which are sequences
of symmetric h-valued functions �m(t, . . . , tm) where tj ∈R. Following Gregoratti [], we
define the following spaces (for I a Borel subset of R and H a Hilbert space):

H�
(
Im,H

)
=

{

v ∈ L(Im,H
)

:
m∑

i=

∂iv ∈ L(Im,H
)
}

;

W =

{

� ∈ h⊗F : �m ∈ H�
(
R

m,h
)

:
∞∑

m=


m!

∥
∥
∥
∥
∥

m∑

i=

∂i�m

∥
∥
∥
∥
∥



< ∞
}

;

Vs =

{

� ∈ W :
∞∑

m=


m!

∥
∥�m+(·, tm+ = s)

∥
∥ < ∞

}

;

V± = V+ ∩ V–.

We remark that W is the natural domain for d�(i∂). On Vs we define the operators

(
a(s)�

)
= �n+(·, tn+ = s).

On the subspace V± , the operators d�(i∂) and a(±) are all simultaneously defined.

Definition  (The Gregoratti Hamiltonian) Define the following operator H on h⊗F

H� = d�(i∂ac)� – iL†Sa
(
+)

� +
(

H –
i


L†L
)

�, ()

Dom(H) =
{
� ∈ V± : a

(
–)

� = Sa
(
+)

� + L�
}

. ()

It follows from the work of Chebotarev and Gregoratti [, ] that the operator H is
essentially self-adjoint and its unique self-adjoint extension generates the unitary group
U(t) = �tVt where Vt is the unitary solution to the following quantum stochastic differ-
ential equation ():

dV (t) =
{

(S – ) d�(t) + L dA†(t) – L†S dA(t) –



L†L dt – iH dt
}

V (t),

V () = I.
()

The main result of this section is the following theorem.

Theorem  Let  ≤ T < ∞. We have the following

lim
k→∞

sup
≤t≤T

∥
∥
(
U (k)(t) – U(t)

)
�

∥
∥ = , ∀� ∈ h⊗F .

Before proving the theorem (see the end of this section), we make some preparations. As
in the previous section, we would like to use the Trotter-Kato theorem, therefore, for every
� in a core for Dom(H), we need to construct an approximating sequence �(k) that satisfies
the first condition of Theorem . We again employ a smearing through convolution with
g(k), this time applied as a second quantization.
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Definition  Let g(k) be as in Definition  and assume further that g(t) ≥  for all t (hence
‖g‖ = ). Let G(k) : L(R) → L(R) be the convolution with g(k), i.e.

G(k)h = g(k) ∗ h, ∀h ∈ L(R).

Let � be an element in Dom(H). We define an element �(k) in the domain of H (k) by

�(k) = �
(
G(k))�. ()

Here �(G(k)) denotes the second quantization of G(k).

Note that G(k) is a contraction (‖g(k)‖ = , i.e. ‖ĝ(k)‖∞ ≤  with ĝ(k) the Fourier trans-
form ĝ(k) =

∫ ∞
–∞ g(k)(t)e–iωt dt), so its second quantization is well-defined). The positivity

assumption on g implies that κ+ = κ– = 
 (which agrees with Section .).

Lemma  For all � ∈ h⊗F , we have

lim
k→∞

�
(
G(k))� = �.

Proof Since the linear span of exponential vectors v ⊗ e(h) is dense in h⊗F and �(G(k))
is bounded, it is enough to prove the lemma for all vectors of the form � = v ⊗ e(h). We
have

∥
∥�

(
G(k))v ⊗ e(h) – v ⊗ e(h)

∥
∥

= ‖v‖[exp
(∥
∥G(k)h

∥
∥) + exp

(‖h‖) – exp
(〈

G(k)h|h〉)
– exp

(〈
h|G(k)h

〉)] → ,

where in the last step we used [], Thm. .. �

We now recall the following result, see for instance [].

Lemma  Let C : L(R) → L(R) be a contraction. We have for h ∈ L(R)

�(C)
(
Dom

(
A

(
C†h

))) ⊂ Dom
(
A(h)

)
.

Moreover, on the domain of A(C†h), we have

A(h)�(C) = �(C)A
(
C†h

)
.

Note that we have the following second quantized version of equation ():

d�(i∂)�(k) = �
(
G(k))d�(i∂ac)� + iA†

(
g(k))�

(
G(k))aj�,

where

(aj�)m(t, . . . , tm) = �m+
(
t, . . . , tm, +)

– �m+
(
t, . . . , tm, –)

.
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The action of H (k) on �(k) can now be written as

H (k)�(k) = �
(
G(k))d�(i∂ac)� + A†

(
g(k))�

(
G(k))(iaj� + EA

(
ρ(k))� + E�

)

+ E�
(
G(k))A

(
ρ(k))� + E�

(
G(k))�. ()

Here we have used Lemma  and the fact that A(G(k)†g(k)) = A(ρ(k)).

Lemma  The singular component of equation () converges strongly to zero as k → ∞,
i.e.,

∥
∥A†

(
g(k))�

(
G(k))(iaj� + EA

(
ρ(k))� + E�

)∥
∥



k→∞−→ ,

for all � in a core domain D of H .

We defer the proof of this lemma to the next section.
Using Lemma , we find that the first term in equation () converges to the first term

in the Hamiltonian H given by equation (), i.e.

lim
k→∞

∥
∥�

(
G(k))d�(i∂ac)� – d�(i∂ac)�

∥
∥

 = .

In the proof of the Lemma , it is shown that A(ρ(k))� converges in L-norm to 
 a(–)�+


 a(+)�. Therefore, we find for the last line of equation ()

E�
(
G(k))A

(
ρ(k))� + E�

(
G(k))� −→ E

(



a
(
+)

+



a
(
–)

)

� + E�.

Employing the boundary condition, we have that

E

(



a
(
+)

+



a
(
–)

)

� + E�

= E

(



a
(
+)

� +


[
Sa

(
+)

� + L�
]
)

+ E�

≡ –iL†Sa
(
+)

� +
(

H –
i


L†L
)

�.

Here we have used the algebraic identities

E

(



+



S
)

= E

(



+



I – i 
 E

I + i 
 E

)

= E


I + i 
 E

≡ –iL†S,

–i



I + i 
 E

=



Im

{ 


I + i 
 E

}

–
i


I
I + i 

 E

I
I – i 

 E
.

Applying the Trotter-Kato theorem, this completes the proof of our main result Theo-
rem .
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4 Proof of Lemma 14
Setting V (k) = iaj� + EA(ρ(k))� + E�, we see that

∥
∥A†

(
g(k))�

(
G(k))V (k)∥∥



=
〈
�

(
G(k))V (k)|A(

g(k))A†
(
g(k))�

(
G(k))V (k)〉

=
〈
�

(
G(k))V (k)|(A†

(
g(k))A

(
g(k)) +

∥
∥g(k)∥∥



)
�

(
G(k))V (k)〉

≤ ∥
∥A

(
g(k))�

(
G(k))V (k)∥∥

 +
∥
∥g(k)∥∥



∥
∥V (k)∥∥

,

where in the last step we used that �(G(k)) is a contraction. We need to establish two
further results: the first is that V (k) goes to  sufficiently quickly and we prove this
in Lemma  below; then we will have to show that this implies that the first term
‖A(g(k))�(G(k))V (k)‖

 converges to  and we prove this in Lemma .
If we accept these results for the moment, then from the boundary conditions we have

iaj� + E

(



a
(
+)

+



a
(
–)

)

� + E�

= i
(

I – i



E

)

a
(
+)

� – i
(

I + i



E

)

a
(
–)

� + E�

= i
(

I + i



E

)
[
Sa

(
+)

� + L� – a
(
–)

�
]

= 

so that, in fact,

V (k) = E

[

A
(
ρ(k))� –

(



a
(
+)

+



a
(
–)

)

�

]

.

As ‖gk‖ grows at rate
√

k, it suffices to show that A(ρ(k))� – ( 
 a(+) + 

 a(–))� goes to 
in norm with rate faster than √

k
. We will now establish this result below, but first we need

to recall the definition of a pseudo-exponential vector from [].

Definition  Let F : t �→ Ft be a function from R to B(h) and define the corresponding
pseudo-exponential vector �(F, h) as

[
�(F, h)

]
m(t, . . . , tm) = �TFt · · · Ftm h

for given h ∈ h, where �T denotes chronological ordering. That is

�TFt · · · Ftm = Ftσ () · · · Ftσ (m) ,

where σ is a permutation for which tσ () ≥ · · · ≥ tσ (m).

Lemma  Let v ∈ W ,(R/{}) and u ∈ W ,(R/{}) with u|R+ =  and u(–) = , then
define Ft by

Ft = v(t) + u(t)
[
Sv

(
+)

+ L – v
(
–)]

()
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then the domainD of such pseudo-exponential vectors � = �(F, h) is a core for H . Moreover,
for each such vector we have

∥
∥
∥
∥A

(
ρ(k))� –

(



a
(
+)

+



a
(
–)

)

�

∥
∥
∥
∥


= O

(

k

)

.

Proof The first part of this lemma is proved by Gregoratti where it is shown that D is
dense, and is contained in Dom(H) ∩ V± , see [], Propositions  and . Note that for
� = �(F, h), by () in [] we have

a(t)� = v(t)�, t ∈ {
+} ∪ (,∞),

a
(
–)

� =
(
Sv

(
+)

+ L
)
�.

To prove the second part, we begin by setting

Zm(t, . . . , tm) =
[

A
(
ρ(k))� –

(



a
(
+)

+



a
(
–)

)

�

]

m
(t, . . . , tm)

=
∫ ∞


ρ(k)(s)

[
�m+(t, . . . , tm, s) – �m+

(
t, . . . , tm, +)]

ds

+
∫ 

–∞
ρ(k)(s)

[
�m+(t, . . . , tm, s) – �m+

(
t, . . . , tm, –)]

ds

≡ Z+
m(t, . . . , tm) + Z–

m(t, . . . , tm).

We have ‖Zm‖ ≤ (‖Z+
m‖ + ‖Z–

m‖) but

Z+
m(t, . . . , tm) =

∫ ∞


ρ(k)(s)

[
v(s) – v

(
+)]

ds�m(t, . . . , tm)

and this prefactor is clearly O( 
k ) from the argument used in Lemma .

However, we then have

Z–
m(t, . . . , tm)

=
∫ 

–∞
ρ(k)(s)[Ftσ () · · · Fs · · · Ftσ (m) – F– Ftσ () · · · Ftσ (m) ]h ds,

where σ is the chronological time ordering permutation.
We note however that [Ft , Fs] =  for all t, s, therefore we have

Z–
m(t, . . . , tm) =

∫ 

–∞
ρ(k)(s)[Fs – F– ]Ftσ () · · · Ftσ (m) h ds

=
∫ 

–∞
ρ(k)(s)

[
u(s) – u

(
–)][

Sv
(
+)

+ L – v
(
–)]

× Ftσ () · · · Ftσ (m) h ds,

where we used (). From the argument in Lemma  again, we see that this is O( 
k ). �
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Lemma  For � chosen as a pseudo-exponential vector, as in Lemma , we have that
‖A(g(k))�(G(k))V (k)‖

 converges to  as k → ∞.

Proof We have that

A
(
g(k))�

(
G(k))V (k) = �

(
G(k))A

(
ρ(k))V (k),

with �(G(k)) a contraction. The mth level of the Fock space component of A(ρ(k))V (k) may
be written as

EA
(
ρ(k))Z+

m + EA
(
ρ(k))Z–

m,

where we use the same conventions as in Lemma . The first term has the explicit com-
ponents

E

∫

dtρ(k)(t)
∫ ∞


ρ(k)(s)

[
v(s) – v

(
+)]

ds�m+(t, t, . . . , tm)

= E

∫

dtρ(k)(t)Ft

∫ ∞


ρ(k)(s)

[
v(s) – v

(
+)]

ds�m(t, . . . , tm)

which is norm bounded by ‖E‖
∫

dtρ(k)(t)‖Ft‖‖Z+
m‖, and we note that in fact

∫
dtρ(k)(t) ×

‖Ft‖ =
∫

dτρ(τ )‖Fτ /k‖. An equivalent bound is easily shown to hold for EA(ρ(k))Z–
m and

so by an argument similar to lemma  we obtain the desired result. �

4.1 Epilogue
After completion of this work, the authors became aware of the book by W. von Waldenfels
[] which gives a complete resolvent analysis of the Chebotarev-Gregoratti-von Walden-
fels Hamiltonian, and in the final chapter describes a strong resolvent limit by colored
noise approximations. The convergence is comparable to the strong uniform convergence
considered here, but the approach is very different.
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