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Abstract
Quantum control could be implemented by varying the system Hamiltonian.
According to adiabatic theorem, a slowly changing Hamiltonian can approximately
keep the system at the ground state during the evolution if the initial state is a
ground state. In this paper we consider this process as an interpolation between the
initial and final Hamiltonians. We use the mean value of a single operator to measure
the distance between the final state and the ideal ground state. This measure
resembles the excitation energy or excess work performed in thermodynamics, which
can be taken as the error of adiabatic approximation. We prove that under certain
conditions, this error can be estimated for an arbitrarily given interpolating function.
This error estimation could be used as guideline to induce adiabatic evolution.
According to our calculation, the adiabatic approximation error is not linearly
proportional to the average speed of the variation of the system Hamiltonian and the
inverse of the energy gaps in many cases. In particular, we apply this analysis to an
example in which the applicability of the adiabatic theorem is questionable.
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1 Introduction
Adiabatic process is aimed at stabilizing a parameter-varying quantum system at its eigen-
state. This process has many applications in the engineering of quantum systems [–],
and in particular plays the fundamental role in adiabatic quantum computation (AQC)
[–]. The adiabatic theorem [, ] states that a system will undergo adiabatic evolution
given that the system parameter varies slowly.

Quantifying the applicability of adiabatic approximations is an interesting topic of cur-
rent research efforts. On the one hand, this kind of research has been spurred by so-called
shortcuts to adiabaticity [], and on the other hand recent insights from thermodynam-
ics haven put adiabatic processes back into focus [, ]. In particular, the validity of the
adiabatic theorem has been under intensive studies both theoretically and experimentally
since it was proposed, and much of these efforts were devoted to the rigorous description
of the sufficient quantitative conditions of adiabatic theorem, and the estimation of the er-
ror accumulated over a long time [, –]. Once the exact knowledge on the adiabatic
process is available, it is straightforward to apply the results to the optimal design of adia-
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batic control on specific systems [, ]. The most interesting progress is that the validity
of the adiabatic theorem itself has been challenged in the recent decade [–], both
by strict analysis and counter-examples. According to these findings, the errors induced
by the adiabatic approximation could accumulate over time despite certain quantitative
condition is satisfied [–, , ], e.g., when there exists an additional perturbation or
driving that is resonant with the system. Particularly as indicated in [], it is not new that
resonant driving can cause population transfer between eigenstates. Also, a proof can be
found in [] stating that only a resonant perturbation whose amplitude gradually decays
to zero can result in a violation of a well-known sufficient condition.

In this paper we consider the following process: the process starts at t = . The system
Hamiltonian at t =  is H, and the system Hamiltonian at t = T is H = H + λ�H , λ > .
λ is a dimensionless quantity. �H is a fixed operator and so the direction of the variation
is fixed. We assume H, H, and �H are bounded operators throughout this paper. T is
the evolution time. The transition of the system from H to H can be described using an
interpolating function f (t) so that

H(t) = H + f (t)(H – H) = H + λf (t)�H , ()

with f () =  and f (T) = . We work under the condition that a valid perturbative analysis
of the system evolution is available. This often means λ should be smaller than a threshold
value. It is worth mentioning that the classical adiabatic theorem was proved also using
a perturbative analysis, which cannot be applied directly to a large variation of Hamilto-
nian. Therefore, our analysis in this paper is not concerned with the adiabatic evolution
for a large variation of Hamiltonian. However, our analysis provides a rigorous estima-
tion of the error accumulated during this small-variation evolution for an arbitrarily given
interpolation.

Our work is different from the previous works in two ways. First, instead of studying
the evolution of the eigenstates and their corresponding probability amplitudes, the mean
value of a Hermitian operator is defined as a measure of the error. For example, in the
context of adiabatic quantum computation where one wants to prepare the ground state
of a target Hamiltonian Ĥ ≥  whose ground-state energy is , ε = 〈Ĥ〉ρt serves as a good
measure of the distance between the real-time state ρt and the ground state. This measure
resembles the excitation energy or excess work performed during the process, as studied
in thermodynamics []. In this paper we only consider the error accumulated over the
entire process, which means we are only interested in ε = 〈Ĥ〉ρT . The second difference
is that the error, or the excitation energy or excess work performed during the process,
can be estimated with a sufficient precision for arbitrarily given interpolating functions.
As a result, the parameters which are related to the suppression of the error can be easily
identified. For example, we have ε = O( λ

Tλ


) as λ →  in the case of linear interpolation.
Here λ is the energy gap between the ground and first-excited states of the initial Hamil-
tonian. However for the interpolation in the counterexample [, ], the scaling of ε is
not so simple.

This paper is organized as follows. In Section , we introduce the model of this paper.
In Section , we give the estimation of the error for linear interpolation. In Section , we
present the general algorithm to estimate the error for an arbitrarily given interpolating
function. We discuss three examples in Section . Conclusion is given in Section .
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2 Definitions and preliminaries
The system is defined on an N-dimensional Hilbert space. We set Dirac constant � = .
‖ · ‖ denotes the matrix norm. Two real functions f(x) and f(x) can be denoted as f(x) =
O(f(x)), x → ∞, if and only if there exists a positive real number M and a real number x

such that |f(x)| ≤ M|f(x)|, x ≥ x, where | · | denotes the absolute value.
Let {ωi : i = , , . . . , N} be the monotonically increasing sequence of eigenvalues of H, so

that ωi ≥ ωj when i > j, and {|i〉} be the corresponding eigenstates. We denote the energy
gap between the ith eigenstate and the ground state as λi = ωi –ω. Similarly, we define the
increasing sequence of eigenvalues of H, {ω′

i : i = , , . . . , N} and {λ′
i}, {|i′〉} correspond-

ingly.
For convenience, we also introduce two offset Hamiltonians, Ĥ and Ĥ. The Hamilto-

nian Ĥ is defined as Ĥ = H – ω, i.e., by offsetting the Hamiltonian of the system at t = 
by a constant operator ω so that Ĥ ≥ . By Ĥ ≥  we mean Ĥ is positive semidefinite
and its the smallest eigenvalue of Ĥ is zero. Similarly, we define Ĥ = H – ω′

 ≥  by off-
setting the system Hamiltonian by a constant operator ω′

. Let ρt denote the system state
at time t and let ρg be the initial state of the system at t = . We always assume that ρg is
the ground state of Ĥ, and so we have 〈Ĥ〉ρg = .

The measure of adiabaticity is proposed as follows

Definition  The distance between the final state and the ground state of H is measured
by

ε = 〈Ĥ〉ρT . ()

Obviously, if the evolution is adiabatic, i.e., ρT is the ground state of H, then we have
ε = . In particular, ε is closely related to the fidelity of the final state and ground state in
the Schrödinger picture (see Appendix C). A small error ε implies a large fidelity.

In this paper we also call ε the adiabatic approximation error, as ε reflects how well we
can approximate the evolution as a perfect adiabatic process.

In this paper we only consider λ such that ρt , t ∈ [, T] can be expanded using Magnus
series in the interaction picture. For more details about the expansion in the interaction
picture, please refer to Appendix A. If the series expansion is valid in the interaction pic-
ture, we can transform back to the Schrödinger picture and write the evolution of the state
as (see Appendix A)

ρt = e–iHt
(

ρg + R(t) + i
[
ρg ,λ

∫ t


dt′eiHt′ f

(
t′)�He–iHt′

])
eiHt , ()

where we have ‖R(t)‖ = O(λ). A sufficient condition for the Magnus series to converge is
given by (see Appendix A)

λ <
π

‖�H‖ ∫ T
 f (t) dt

. ()

Our aim is to estimate an asymptotic behaviour of ε provided λ → . Furthermore, we
will use the obtained estimate to analyze several cases of the adiabatic theorem including
those where some difficulties with adiabatic approximation have been encountered.
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3 Adiabatic approximation under linear interpolation of the Hamiltonian
The Heisenberg evolution of the expectation of an observable is written as

d
dt
〈
X(t)

〉
ρg

=
〈
–i
[
X(t), H

]〉
ρg

, ()

where H is the system Hamiltonian. Recall that ρg = |〉〈|. Since H|〉 = ω|〉, 〈X(t)〉ρg is
a constant of motion under the action of H:

d
dt
〈
X(t)

〉
ρg

=
〈
–i
[
X(t), H

]〉
ρg

=  =
〈
–i
[
X(t), Ĥ

]〉
ρg

()

for any Hermitian operator X(t).
We will need to study the dynamics of 〈Ĥ〉ρt = 〈Ĥ(t)〉ρg in order to solve for ε. The time

evolution of 〈Ĥ〉ρt is determined by its generator d
dt 〈Ĥ〉ρt = 〈–i[Ĥ, H(t)]〉ρt . For linear

interpolating function f (t) = t
T , integration of d

dt 〈Ĥ〉ρt over [, T] results in the following
expression (see details in Appendix B):

〈Ĥ〉ρT – 〈Ĥ〉ρg

=
∫ T



(〈
–i
[
Ĥ, H(t)

]〉
ρt

)
dt

=
∫ T


dt
[

–
(
 – f (t)

)∑
i�=

(ωi – ω)〈|Ĥ|i〉〈i|Ĥ|〉

×
∫ t


dt′f
(
t′) cos

(
(ωi – ω)

(
t′ – t

))]

+
∫ T


dt Tr

{
–ieiHt[Ĥ,

(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}
()

=
∑
i�=

(
–


λi

+
 sin(λiT/)

Tλ
i

)
〈|Ĥ|i〉〈i|Ĥ|〉

+
∫ T


dt Tr

{
–ieiHt

[
Ĥ,
(

 –
t
T

)
Ĥ

]
e–iHtR(t)

}
. ()

As we noted before, 〈Ĥ〉ρT is exactly zero if ρT is the ground state of Ĥ. If ρT is not the
ground state of Ĥ, we can determine the bound on ε = 〈Ĥ〉ρT from the following equality

〈Ĥ〉ρT – 〈Ĥ〉ρg =
∫ T



〈
–i
[
Ĥ, H(t)

]〉
ρt

dt

=
∫ T



〈
–i
[
H, H(t)

]〉
ρt

dt = 〈H〉ρT – 〈H〉ρg . ()

Since

Ĥ = H – ω′
, ()

the error ε can be expressed as

ε = 〈H〉ρT – 〈H〉ρg –
[
ω′

 – 〈H〉ρg

]
. ()
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With the aid of (), we can investigate the rate of convergence of ε to zero as λ tends to
zero in the case where f (t) defines a linear interpolation, as summarized in the following
proposition:

Proposition  Assume λ >  (the ground state of H is non-degenerate) and suppose f (t) =
t/T , which corresponds to the linear interpolation of the Hamiltonian. The estimation of ε

is given by
∑

i�=
λ sin(λiT/)|〈|�H|i〉|

Tλ
i

+ O(λ), which is of the order O( λ

Tλ


) as λ → .

Proof Referring to () and (), we need to compute the difference between () and ω′
 –

〈|H|〉. First we write () as

〈H〉ρT – 〈H〉ρg =
∑
i�=

(
–


λi

+
 sin(λiT/)

Tλ
i

)
〈|Ĥ|i〉〈i|Ĥ|〉

+
∫ T


dt Tr

{
–ieiHt[Ĥ,

(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}
()

= –
∑
i�=

λ|〈|�H|i〉|
λi

+
∑
i�=

λ sin(λiT/)|〈|�H|i〉|
Tλ

i

+
∫ T


dt Tr

{
–ieiHt[Ĥ,

(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}
, ()

by noting that

∑
i�=

|〈|Ĥ|i〉|
λi

=
∑
i�=

|〈|H + λ�H – ω′
|i〉|

λi
=
∑
i�=

λ|〈|�H|i〉|
λi

. ()

Moreover, by the definition of the notation O(·) in Section  we can write∑
i�=

λ sin(λiT/)|〈|�H|i〉|
Tλ

i
= O( λ

Tλ


).

Denote H̄ = maxf (t)∈(,) ‖H(t)‖. Since

∥∥∥∥
∫ T


dt Tr

{
–ieiHt[Ĥ,

(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}∥∥∥∥≤ Tλ


H̄∥∥R(t)

∥∥ ()

is O(λ), we can further write () as

〈H〉ρT – 〈H〉ρg = –
∑
i�=

λ|〈|�H|i〉|
λi

+
∑
i�=

λ sin(λiT/)|〈|�H|i〉|
Tλ

i
+ O
(
λ). ()

Next we will calculate ω′
 – 〈|H|〉. We have

〈|H|〉 = 〈|H + λ�H|〉 = ω + λ〈|�H|〉. ()

The smallest eigenvalue ω′
 of H can be calculated using the first-order time-independent

perturbation theory for non-degenerate system. Assume H is the unperturbed Hamilto-
nian and the perturbation is λ�H , then the lowest eigenvalue of the perturbed Hamilto-
nian H + λ�H can be written as series in terms of λ and ω []:

ω′
 = ω + λ〈|�H|〉 – λ

∑
i�=

|〈|�H|i〉|
λi

+ O
(
λ). ()
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Thus we conclude

ω′
 – 〈H〉ρg = ω′

 – 〈|H|〉 = –λ
∑
i�=

|〈|�H|i〉|
λi

+ O
(
λ). ()

Comparing () and (), the terms –λ∑
i�=

|〈|�H|i〉|
λi

cancel and so the error ε is estimated
by

ε =
∑
i�=

λ sin(λiT/)|〈|�H|i〉|
Tλ

i
+ O
(
λ)

= O
(

λ

Tλ


)
, λ → . ()

�

4 Error estimation for arbitrary interpolations
The approach derived in the previous section can be easily generalized for arbitrary given
continuous interpolating functions. The generalization can simply be done by replacing
the linear interpolation function with the given continuous function f (t) and then recal-
culating the double integration

Ai(T) = –
∫ T


dt
∫ t


dt′
(

 –
t
T

)
λif
(
t′) cos

(
λi
(
t′ – t

))
()

in (). The error estimation can easily be obtained from the proof of Proposition :

Proposition  For an arbitrarily given f (t), the error estimation is given by

ε = λ
∑
i�=

Ai(T)
∣∣〈|�H|i〉∣∣ + λ

∑
i�=

|〈|�H|i〉|
λi

+ O
(
λ) ()

as λ → .

Proof ε is still calculated by (), using 〈H〉ρT – 〈H〉ρg and ω′
 – 〈H〉ρg . We have

〈H〉ρT – 〈H〉ρg =
∑
i�=

Ai(T)λ∣∣〈|�H|i〉∣∣ + O
(
λ) ()

and

ω′
 – 〈H〉ρg = –λ

∑
i�=

|〈|�H|i〉|
λi

+ O
(
λ). ()

�

It must be pointed out that A(T) is very easy to calculate with the aid of any softwares
that can perform symbolic integration, and therefore it is straightforward to apply Propo-
sition  to find the error estimation for a given interpolating function, as we are going to
do in the next section.
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5 Examples
5.1 Linear interpolation: f (t) = t/T
By Proposition , the error estimation is ε =

∑
i�=

 sin(λiT/)
Tλ

i
|〈|�H|i〉|λ +O(λ) as λ → .

Since sin(λiT/) and �H are bounded, this error term is primarily determined by λ
T

which is the average speed of the variation of the system Hamiltonian, and 
λi

which is
the inverse of the energy gap between the ground and ith eigenstates of H, as λ → . In
particular, we have

lim
λ→

ε

( λ
T )

=
∑
i�=

 sin(λiT/)
λ

i

∣∣〈|�H|i〉∣∣. ()

Therefore, when the inverse of the energy gaps 
λi

are fixed values, the approximation error
ε is estimated to be proportional to the square of the average speed of the variation of the
Hamiltonian, which is ( λ

T ), as λ → .

5.2 Quadratic interpolation: f (t) = t2/T2

Replace f (t) with a nonlinear function f (t) = t

T in () and we recalculate the integral to be

∑
i�=

Ai(T) =
∑
i�=

(
–


λi

+
 sin( Tλi

 ) + Tλ
i – Tλi sin(Tλi)

Tλ
i

)∣∣〈|�H|i〉∣∣. ()

By Proposition , for sufficiently small λ, the error is estimated to be of order of λ:

εquad = λ
∑
i�=

 sin( Tλi
 ) + Tλ

i – Tλi sin(Tλi)
Tλ

i

∣∣〈|�H|i〉∣∣ + O
(
λ)

=
(

λ

T

)∑
i�=

[ sin( Tλi
 )

Tλ
i

+

λ

i
–

 sin(Tλi)
Tλ

i

]∣∣〈|�H|i〉∣∣ + O
(
λ). ()

That is, in contrast to the linear interpolation case, we have

lim
λ→

εquad

( λ
T )

=
∑
i�=

[ sin( Tλi
 )

Tλ
i

+

λ

i
–

 sin(Tλi)
Tλ

i

]∣∣〈|�H|i〉∣∣. ()

This calculation shows that if the evolution speed is infinitely slow, then the system dy-
namics is adiabatic during t ∈ [, T]. However, the scaling of εquad with respect of the
square of the average evolution speed λ

T is not as simple as in the linear case, where the
scaling of ε with respect of ( λ

T ) is primarily determined by the inverse of the energy gaps
as λ → . In the quadratic case, this scaling is primarily determined by a complex factor

[  sin( Tλi
 )

Tλ
i

+ 
λ

i
–  sin(Tλi)

Tλ
i

] which depends mainly on the inverse of the energy gaps {λi} and

the inverse of the evolution time T .

5.3 Interpolation with decaying resonant terms
Here we assume a linear interpolating function with an additional oscillating term that
gradually decays to zero. That is,

f (t) =
t
T

+ g
(

 –
t
T

)
sin(λct),
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where λc is the oscillating frequency of the perturbation. Ortigoso observed in [] the
inconsistency in the applicability of the adiabatic theorem when the Hamiltonian contains
resonant terms whose amplitudes go asymptotically to zero.

Replace f (t) with f (t) = t
T + g( – t

T ) sin(λct) in () and we recalculate the integral to be

∑
i�=

Ai(T) =
∑
i�=

Q(g, T ,λi,λc)
T(λ

i – λ
i λ


c + λ

i λ

c – λ

i λ

c + λ

i λ

c )

. ()

Q is a function of four parameters. In particular, we note that each term in () is well
defined for all λc, including λc = λi, since as λc → λi, the ith term in () approaches

[
– sin

(
Tλi



)
– g sin(Tλi) + g sin(Tλi) + g

+ g( sin(Tλi) – 
)

– Tλ – gTλi + gTλ
i

+ gTλ
i sin(Tλi) – gTλi

(
 sin

(
Tλi



)
– 
)

– gTλ
i
(
 sin(Tλi) – 

)
– gTλi sin(Tλi)

]/
Tλ

i

= –

λi

+
g


Tλi +

g
λi

sin(Tλi) –
g

λi

(
 sin(Tλi) – 

)
+ Q(T), ()

where Q(T) is a complicated fraction with T being in its denominator. The error resulting
from the ith term is given by

εi =
∣∣〈|�H|i〉∣∣

[
gTλi


+

gT sin(Tλi)
λi

–
gT( sin(Tλi) – )

λi
+ TQ(T)

](
λ

T

)

+ O
(
λ) ()

as λ → . We have

lim
λ→

εi

( λ
T )

=
∣∣〈|�H|i〉∣∣

[
gTλi


+

gT sin(Tλi)
λi

–
gT( sin(Tλi) – )

λi
+ TQ(T)

]
. ()

The scaling of εi with respect of ( λ
T ) is additionally determined by T and T, as compared

to the quadratic case. This is where adiabatic approximation error may not be small if the
average evolution speed is slow. In particular by (), if one chooses a comparably large
value for T in an adiabatic evolution experiment, the adiabatic approximation error may
not decrease as expected when one applies a slow evolution speed λ

T .
In order to further illustrate this point, we can heuristically compare the speed of con-

vergence of ε to zero observed in this case and the quadratic case, as the speed of the
adiabatic process (λ/T ) reduces and the evolution horizon T increases. The difference in
the speed of convergence can be clearly seen using the ratio

lim
T→∞

(
lim

(λ/T)→

εi

εquad

)
= ∞. ()
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Therefore, the rate of convergence considered in this subsection is slower than that in the
quadratic or linear case. That is, ε goes to zero as λ →  at a much slower rate than in the
linear interpolation case or the quadratic interpolation case if T is large. Furthermore, the
larger T is, the slower the convergence.

6 Conclusion
In this paper we provide a rigorous analysis of the time-dependent evolution of
Hamiltonian-varying quantum systems. As we calculated, the adiabatic approximation
error is not proportional to the average speed of the variation of the system Hamiltonian
and the inverse of the energy gaps in many cases. The results in this paper may provide
guidelines when applying complicated interpolation for adiabatic evolution.

Appendix A
The Magnus expansion is proposed to solve the following time-dependent equation []

dY (t)
dt

= A(t)Y (t). ()

The solution of the above equation can be written as

Y (t) = exp

( ∞∑
k=

�k(t)

)
Y (), ()

where the first three terms in the Magnus series {�k , k = , , . . . ,∞} are calculated by

�(t) =
∫ t


A(t) dt,

�(t) =



∫ t


dt

∫ t


dt
[
A(t), A(t)

]
, ()

�(t) =



∫ t


dt

∫ t


dt

∫ t


dt
([

A(t),
[
A(t), A(t)

]]
+
[
A(t),

[
A(t), A(t)

]])
.

The rest terms in the Magnus series can also be written as the integrals of nested commu-
tators.

The dynamical equation of the quantum state in interaction picture is given by

i
∂|ψI(t)〉

∂t
= eiHtλf (t)�He–iHt∣∣ψI(t)

〉
, ()

where |ψ(t)〉 = e–iHt|ψI(t)〉. Applying the Magnus expansion to () yields

∣∣ψI(t)
〉

=
(

 – iλ
∫ t


dt′eiHt′ f

(
t′)�He–iHt′ + R(t)

)∣∣ψ()
〉
, ()

where R(t) includes all the higher-order terms as determined by {�k}. Obviously, ‖R(t)‖
is of the order O(λ). Transforming back to Schrödinger picture we obtain the expression
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for the density operator as

ρt = e–iHt
(

 – iλ
∫ t


dt′eiHt′ f

(
t′)�He–iHt′ + R(t)

)

× ρg

(
 + iλ

∫ t


dt′eiHt′ f

(
t′)�He–iHt′ + R†

(t)
)

eiHt

= e–iHt
(

ρg + R(t) + i
[
ρg ,λ

∫ t


dt′eiHt′ f

(
t′)�He–iHt′

])
eiHt . ()

Obviously, ‖R(t)‖ is also of the order O(λ).
An explicit condition for the Magnus series to converge is given by []

‖�H‖
∫ T


λf (t) dt < π . ()

Appendix B
The derivative of 〈Ĥ〉ρt is calculated as

d
dt

〈Ĥ〉ρt

=
〈
–i
[
Ĥ, H + f (t)(H – H)

]〉
ρt

=
〈
–i
[
Ĥ, Ĥ + f (t)(Ĥ – Ĥ)

]〉
ρt

=
〈
–ieiHt[Ĥ,

(
 – f (t)

)
Ĥ
]
e–iHt〉

ρg +i[ρg ,λ
∫ t

 dt′eiHt′ f (t′)(�H)e–iHt′ ]+R(t)

= –
〈[

eiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHt ,λ

∫ t


dt′eiHt′ f

(
t′)�He–iHt′

]〉
ρg

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}

= –
〈[

eiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHt ,

∫ t


dt′eiHt′ f

(
t′)Ĥe–iHt′

]〉
ρg

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}
, ()

where we made use of the relation () and λ�H = Ĥ – Ĥ + ω′
 – ω. Calculating ()

further leads to

d
dt

〈Ĥ〉ρt

= –
(
 – f (t)

)〈
eiωtĤĤe–iHt

∫ t


dt′eiHt′ f

(
t′)Ĥe–iωt′

+
∫ t


dt′eiωt′ f

(
t′)Ĥe–iHt′eiHtĤĤe–iωt

〉
ρg

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}

= –
(
 – f (t)

)〈
eiωtĤĤ

∑
|i〉〈i|e–iHt

∫ t


dt′eiHt′ f

(
t′)Ĥe–iωt′
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+
∫ t


dt′eiωt′ f

(
t′)Ĥe–iHt′eiHt

∑
|i〉〈i|ĤĤe–iωt

〉
ρg

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}

= –
(
 – f (t)

)∑
i�=

(ωi – ω)
〈
Ĥ|i〉〈i|Ĥ

〉
ρg

∫ t


dt′f
(
t′)(ei(ωi–ω)(t′–t) + ei(ωi–ω)(t–t′))

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}

= –
(
 – f (t)

)∑
i�=

(ωi – ω)〈|Ĥ|i〉〈i|Ĥ|〉
∫ t


dt′f
(
t′) cos

(
(ωi – ω)

(
t′ – t

))

+ Tr
{

–ieiHt[Ĥ,
(
 – f (t)

)
Ĥ
]
e–iHtR(t)

}
. ()

With the linear interpolating function f (t) = t
T , the direct integration of () over [, T]

gives ().

Appendix C
The state of the system will remain a pure state during the evolution. Therefore, we can
express the final state as ρT = |ψ〉〈ψ | with |ψ〉 =

∑N
i= ci|i′〉. Using this expression, the error

measure ε defined by () can be written as

ε = 〈Ĥ〉ρT = 〈ψ |Ĥ|ψ〉 =
N∑

i=

|ci|λ′
i ≥

N∑
i=

|ci|λ′
. ()

The fidelity of the final state and the ground state |′〉 is calculated by

F
(|ψ〉, ∣∣′〉) =

√∣∣〈ψ∣∣′〉∣∣ =
√

|c| =

√√√√ –
N∑

i=

|ci| ≥
√

 –
ε

λ′


. ()
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