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Abstract
Optical homodyne tomography consists in reconstructing the quantum state of an
optical field from repeated measurements of its amplitude at different field phases
(homodyne data). The experimental noise, which unavoidably affects the homodyne
data, leads to a detection efficiency η < 1. The problem of reconstructing quantum
states from noisy homodyne data sets prompted an intense scientific debate about
the presence or absence of a lower homodyne efficiency bound (η > 0.5) below
which quantum features, like quantum interferences, cannot be retrieved. Here, by
numerical experiments, we demonstrate that quantum interferences can be
effectively reconstructed also for low homodyne detection efficiency. In particular, we
address the challenging case of a Schrödinger cat state and test the minimax and
adaptive Wigner function reconstruction technique by processing homodyne data
distributed according to the chosen state but with an efficiency η < 0.5. By
numerically reproducing the Schrödinger’s cat interference pattern, we give evidence
that quantum state reconstruction is actually possible in these conditions, and
provide a guideline for handling optical tomography based on homodyne data
collected by low efficiency detectors.
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1 Introduction
The rapid development of experimental and theoretical techniques in quantum optics has
made it simpler to prepare and manipulate quantum states of light []. Consequently, esti-
mating the quantum state of an optical field is now an essential tool in this research field.
Nowadays, optical homodyne tomography, proposed for the first time by Vogel and Risken
in  [] and then experimentally demonstrated by Smithey et al. in  [], constitutes
a well-established method for the reconstruction of optical quantum states with contin-
uous variables []. The technique is based on two subsequent phases. The first consists
in the experimental procedure known as balanced homodyne detection, while the second
concerns the tomographic reconstruction, where statistical algorithms are used for re-
trieving the optical quantum state from the measured homodyne data. In the experimen-
tal phase, balanced homodyne detection, a single mode photon state, the signal, is mixed
with a coherent reference state, the so-called local oscillator, by a / beam splitter. The
outputs are collected by two photodiodes and the difference photocurrent is measured. It
can be proved that, when the local oscillator is significantly more intense than the signal,
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the homodyne photocurrent is proportional to the signal quadrature []. The quadrature
operator is defined as

x̂φ =
âe–iφ + â†eiφ

√


, ()

where â and â† denote the single mode annihilation and creation operators associated with
the signal and φ is the relative phase between signal and local oscillator. The continuum
set of quadratures with φ ∈ [,π ] provides a complete characterization of the signal state
[, ]. Repeated homodyne measurements on identically prepared light modes in the state
ρ̂ provide an experimental histogram which approaches the probability distribution of the
quadrature outcome at a fixed phase:

pρ(xφ ,φ) = Tr
[
ρ̂|xφ〉〈xφ |] = 〈xφ |ρ̂|xφ〉. ()

This represents the probability of having as outcome the eigenvalue xφ when measuring
x̂φ . Once such histograms have been obtained for different φ ∈ [,π ], the second phase of
optical homodyne tomography starts. A tomographic mathematical procedure uses the
experimental homodyne data in order to provide a complete characterization of the quan-
tum state by reconstructing its density matrix ρ̂ or equivalently its Wigner function Wρ .
The Wigner function, defined later, is a convenient representation of the optical quan-
tum state as a pseudo, that is non-positive definite, distribution on phase space whose
marginals exactly correspond to the quadratures probability distributions in ().

The mathematical approaches to the quantum state reconstruction problem are divided
in two main categories, the inverse linear transform techniques and the statistical infer-
ence techniques [, , ]. The first category is based on accessing the state ρ̂ by directly
inverting the linear relation in () through back-projection algorithms []. The second
category is instead based on looking for the most likely density matrix that generates the
observed homodyne data by means of non linear algorithms like maximum likelihood es-
timation [].

Here we focus on the first approach with particular attention to the problem of process-
ing homodyne data with low detection efficiency. In detail we adopt quantum statistical
methods based on minimax and adaptive estimation methods of the Wigner function [,
] which have been developed to intrinsically counteract the effects of detection ineffi-
ciencies. Usually, a very high detection efficiency and ad hoc designed apparatuses with
low electronic noise are required []. However, the scientific debate about how to pro-
cess homodyne data with low efficiency is of crucial importance [–, –] towards
applying optical homodyne tomography to study physical systems where high noise con-
ditions are unavoidable [–]. In this context an intense discussion developed about the
presence or absence of a lower homodyne efficiency bound (η = .), under which quan-
tum state reconstruction is not achievable [, , , –, , , ]. In this framework,
it has been mathematically demonstrated that the algorithms of minimax and adaptive
estimation of the Wigner function to be used in the following allow the tomographic re-
construction of quantum states of light for any homodyne detection efficiency η, excluding
the existence of a lower bound to the efficiency beyond which faithful reconstruction is
impossible [, ]. Nevertheless the absence of a test of such algorithms for η < . could
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suggest that they might not be of practical use. In a precedent work [] we tested the al-
gorithm for the reconstruction of Gaussian states starting from homodyne data obtained
with a commercially available detection apparatus associated with an efficiency of about
.. In that paper the discrimination between different Gaussian states (like coherent and
squeezed states) has been proved. However, Gaussian states are a very special class of
states characterized by Gaussian and always positive Wigner functions. This leaves open
the question about whether intrinsically quantum features, like quantum interferences
(characterized by negative portions of the Wigner function), can be retrieved in low effi-
ciency conditions or whether they would be made practically invisible by optical losses.
In this respect, a physically relevant example is provided by the so-called Schrödinger cat
states, that is by linear superpositions of two coherent states []. The main challenge is
to make it clear whether or not the reconstruction algorithm can distinguish the linear
superposition from the statistical mixture of the constituent coherent states. Indeed, the
first state exhibits purely quantum interference patterns, while they are absent in the sec-
ond state. Such a challenge has so far not been taken on. In order to fill this gap, in the
following we test the reconstruction algorithm by means of numerical experiments where
we generate homodyne data according to the probability distribution corresponding to
a given Schrödinger cat, but distorted by an independent Gaussian noise that simulates
an efficiency lower than .. By suitably enlarging the size of the set of numerically gen-
erated data, we are able to reconstruct the Wigner function of the linear superposition
within errors that are compatible with the theoretical bounds. Our results show that the
Schrödinger cat interference pattern can actually be unambiguously reconstructed even in
low homodyne detection efficiency conditions, demonstrating also the concrete feasibility
of the adopted tomographic approach for η < ..

2 Methods
2.1 Wigner function reconstruction
Let us consider a quantum system with one degree of freedom described by the Hilbert
space L(R) of square integrable functions ψ(x) over the real line. The most general states
of such a system are density matrices ρ̂ , namely convex combinations of projectors |ψj〉〈ψj|
onto normalized vector states

ρ̂ =
∑

j

λj|ψj〉〈ψj|, λj ≥ ,
∑

j

λj = .

Any density matrix ρ̂ can be completely characterized by the associated Wigner function
Wρ(q, p) on the phase-space (q, p) ∈R

; that is, by the non-positive definite (pseudo) dis-
tribution defined by

Wρ(q, p) =


(π )

∫

R
du dvei(uq+vp) Tr

[
ρ̂e–i(uq̂+vp̂)]

=


π

∫

R

dveivp〈q – v/|ρ̂|q + v/〉. ()

Here q̂ and p̂ are the position and momentum operators obeying the commutation relation
[q̂, p̂] = i (� = ), and |q ± v/〉 are eigenstates of q̂: q̂|q ± v/〉 = (q ± v/)|q ± v/〉. Notice
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that Wρ(q, p) is a square integrable function:

π

∫

R
dq dp

∣
∣Wρ(q, p)

∣
∣ = Tr

(
ρ̂) ≤ . ()

Among the advantages of such a representation is the possibility of expressing the mean
value of any operator Ô with respect to a state ρ̂ as a pseudo-expectation with respect to
Wρ(q, p) of an associated function O(q, p) over the phase-space, where

O(q, p) =


(π )

∫

R
du dve–i(uq+vp) Tr

[
Ôei(uq̂+vp̂)]. ()

Indeed, by direct inspection one finds

π

∫

R
du dvWρ(q, p)O(q, p) = Tr(ρ̂Ô). ()

In homodyne detection experiments the collected data consist of n pairs of quadrature
amplitudes and phases (X�,	�): these can be considered as independent, identically dis-
tributed stochastic variables. Given the probability density pρ(xφ ,φ) in (), one could re-
construct the Wigner function by substituting the integration with a sum over the pairs
for a sufficiently large number of data. However, the measured values xφ are typically not
the eigenvalues of x̂φ , but rather those of

x̂η

φ =
√

ηx̂φ +
√

 – η


y,  ≤ η ≤ , ()

where y is a normally distributed random variable describing the possible noise that may
affect the homodyne detection data and η parametrizes the detection efficiency that in-
creases from  to % with η increasing from  to  []. The noise can safely be con-
sidered Gaussian and independent from the statistical properties of the quantum state,
that is y can be considered as independent from x̂φ . Then, as briefly summarized in Ap-
pendix A, the Wigner function is reconstructed from a given set of n measured homodyne
pairs (X�,	�) by means of an estimator of the form []

W η,r
h,n(q, p) = W η

h,n(q, p)χr(q, p), W η

h,n(q, p) =

n

n∑

�=

Kη

h

(
[
(q, p),	�

]
–

X�√
η

)
, ()

Kη

h

([
(q, p),	�

]
–

X�√
η

)
=

∫ /h

–/h
dξ

|ξ |
π

eiξ (q cos	�+p sin	�–X�/√η)eγ ξ , ()

where the positive constant γ is given in Eq. () of Appendix A. This expression is an
approximation of the Wigner function in () of Appendix A by a sum over n homodyne
pairs (X�,	�). The parameter h serves to control the divergent factor exp(γ ξ ), while r,
through the characteristic function χr(q, p) of a circle Cr() of radius r around the origin,
restricts the reconstruction to the points (q, p) such that q + p ≤ r. Both parameters
have to be chosen in order to minimize the reconstruction error which is conveniently
measured [] by the L-distance between the true Wigner function and the reconstructed
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one, ‖Wρ – W η,r
h,n‖. Since such a distance is a function of the data through W η,r

h,n , the L-
norm has to be averaged over different sets, M, of quadrature data:


η,r
h,n(ρ̂) = E

[∥∥Wρ – W η,r
h,n

∥
∥



] ≡ E
[∫

R
dq dp

∣
∣Wρ(q, p) – W η,r

h,n(q, p)
∣
∣

]
, ()

where E denotes the average over the M data samples, each sample consisting of n quadra-
ture pairs (X�,	�) corresponding to measured values of xφ with φ ∈ [,π ]. In [], an op-
timal dependence of the parameters r and h upon the number of data, n, is obtained by
minimizing an upper bound to 

η,r
h,n(ρ̂).a

3 Results
3.1 Interfering coherent states
Homodyne reconstruction is particularly useful to expose quantum interference effects
that typically spoil the positivity of the Wigner function: it is exactly these effects that are
often claimed not to be accessible by homodyne reconstruction in presence of efficiency
lower than %, i.e. when η in () is smaller than . []. In contrast, in [] it is theo-
retically shown that η < . only requires increasingly larger data sets for achieving small
reconstruction errors. However, this claim was not put to test in those studies as the values
of η in the considered numerical experiments were close to .

One major concern, often presented as a challenge to reconstruction methods in low
efficiency conditions, is that they might be unable to sort out the interference pattern
arising from a linear superposition of two coherent states,

|�α〉 =
|α〉 + |–α〉

√
( + e–|α| )

, |α〉 = e–|α|/eαa† |〉, ()

with α any complex number α + iα ∈ C, a so-called Schrödinger cat state. Thus, in the
following, we will consider an efficiency η < . and reconstruct the Wigner function of
ρ̂α = |�α〉〈�α|: its general expression together with that of its Fourier transform and of
the probability distributions pρ(xφ ,φ) and pη

ρ(xφ ,φ) are given in Appendix B. The Wigner
function corresponding to the pure state ρ̂α is shown in Figure .

In Appendix C, a derivation is provided of the L-errors and of the optimal dependence
of h and r on the number of data n and on a parameter β that takes into account the
fast decay of both the Wigner function and its Fourier transform for large values of their
arguments. The following upper bound to the mean square error in () is derived:


η,r
h,n(ρ̂α) ≤ ,  =

r

nh
eγ /h

(γ ) + e–βr
(β) + e–β/h

(β), ()

with  < β < / and γ as given in () of Appendix A.
As explained in Appendix C, the quantities ,, do not depend on h, r and n. By taking

the derivatives with respect to r and h, one finds that the upper bound to the mean square
deviation is minimized, for large n, by choosing

r =

h

=

√
log n

β + γ
. ()



Esposito et al. EPJ Quantum Technology  (2016) 3:7 Page 6 of 17

Figure 1 True Schrödinger cat Wigner function. Wigner function corresponding to the pure state
ρ̂α = |�α〉〈�α | (α1 = 3/

√
2; α2 = 0).

This relation between the various parameters of the reconstruction algorithm is the one
which minimizes the theoretical upper bounds. In particular, it points to the way the es-
timator in () depends on the parameter β . If η is very small, γ diverges and β + γ 
 γ :
however, for η < / but not too small, the integration interval [–/h, /h] shrinks with in-
creasing β , therefore a larger β , through a smaller /h, can reduce the impact of numerical
noise coming from too large an integration interval. More details on the role of β are given
in Appendix C.

In order to reconstruct the Wigner function of |�α〉, we generated M =  samples of
n =  ×  quadrature data (X�,	�) distributed according to the noisy probability den-
sity pη

ρ(xφ ,φ) explicitly given in () of Appendix B, namely by considering an efficiency
lower than % (η = .). Starting from each set of simulated quadrature data we re-
constructed the associated Wigner function by means of () and (). The processing of
such an amount of data has been supported by an efficient calculation of the estimator as
detailed in Appendix D. The averaged reconstructed Wigner functions E[W η,r

h,n(q, p)] for
η = . are shown in Figure  for two representative values of the parameter β .

The choice to average over the M reconstructed Wigner functions has the benefit
of reducing the noise and to show more clearly the interference pattern proper to the
Schrödinger cat state. This pattern is exhibited, though more noisily, by each of the M re-
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Figure 2 Reconstructed Wigner functions. Averaged reconstructed Wigner functions E[Wη,r
h,n(q,p)] over

M = 100 samples of n = 16× 106 noisy quadrature data (efficiency η = 0.45). Two different values of β are
considered.

Table 1 Calculated �
η,r
h,n(ρ̂) for M = 100 samples of noisy quadrature data (η = 0.45) for two

different values of β . Comparison with the mathematical prediction of the upper bound �

β �
η,r
h,n(ρ̂) �

0.05 0.21 2.39
0.1 0.097 26.07

constructed Wigner functions: if it were a mere artifact of the reconstruction, its visibility
would not increase by averaging over one hundred independent reconstructions.

The mean square error of the reconstructed Wigner functions has been computed as in
() and compared with the mathematically predicted upper bounds . The dependence
of the upper bound reconstruction error on the parameter β is discussed at the end of
Appendix C. In Table , we compare the reconstruction errors 

η,r
h,n(ρ̂) with their upper

bounds  for two significant values of β .
Despite common beliefs, the interference features clearly appear in the reconstructed

Wigner function also for an efficiency lower than % and the reconstruction errors are
compatible with the theoretical predictions. In the following, we make a quantitative study
of the visibility of the interference effects.

3.2 A Schrödinger cat interference witness
The real challenge to any reconstruction technique is to show that, working in low effi-
ciency conditions, that technique is really able to overcome the effects of the noisy data.
These effects are expected to hamper a faithful reconstruction by destroying the interfer-
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ence pattern present in the Wigner function of the projection |�α〉〈�α| onto the linear
superposition |�α〉 and reducing it to an incoherent mixture of the projections onto the
two constituent coherent states,

ρ̂αλ = λ|α〉〈α| + ( – λ)|–α〉〈–α|,  ≤ λ ≤ , ()

whose Wigner function differs from the previous one only by the absence of the interfer-
ence pattern. Section . qualitatively shows that the interference pattern can survive the
reconstruction based on noisy data. In the following, we provide a quantitative way of wit-
nessing the coherent interferences by means of a suitable observable Ôα that we choose
of the form

Ôα =
|α〉〈–α| + |–α〉〈α|

( + e–|α| )
. ()

Indeed, Ôα is the observable contribution to |�α〉〈�α| that does not come from the pro-
jectors onto the constituent coherent states |±α〉: its mean value with respect to the linear
superposition 〈�α|Ôα|�α〉 = /, while, for sufficiently large |α|, its mean value with re-
spect to ρ̂αλ becomes small, as shown by

Tr(ρ̂αλÔα) =
e–|α|

 + e–|α| . ()

From () it follows that the phase-space function Oα(q, p) associated to Ôα is

Oα(q, p) =
e–q–p

cos(
√

(qα + pα))√
π ( + e–|α| )

, α = α + iα. ()

For details see () and () in Appendix B.
Let us denote by W α

j,rec(q, p), the estimated Wigner function W η,r
h,n(q, p) in () for the j-th

set of collected quadrature data. It yields a reconstructed mean value

〈Ôα〉j,rec =
∫

R
dq dpOα(q, p)W α

j,rec(q, p), ()

of which one can compute mean, Av(〈Ôα〉rec), and standard deviation, Sd(〈Ôα〉rec), with
respect to the M sets of collected data:

Av
(〈Ôα〉rec

)
=


M

M∑

j=

〈Ôα〉j,rec, ()

Sd
(〈Ôα〉rec

)
=

√√
√√ 

M

M∑

j=

((〈Ôα〉j,rec
) –

(
Av

(〈Ôα〉rec
))). ()

We computed Av(〈Ôα〉rec) and Sd(〈Ôα〉rec) with M =  simulated sets of noisy data
with η = . for two different numbers of simulated quadrature data (see the caption in
Figure ). We repeated the procedure for different values of the parameter β . The results
are presented in Figure , where the error bars represent the computed Sd(〈Ôα〉rec).
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Figure 3 Interference witness. Av(〈Ôα〉rec) – e–2|α|2
1+e–2|α|2 as a function of β . The error bars represent

Sd(〈Ôα〉rec). For each β , M = 100 set of n noisy quadrature data have been considered. The square markers
refer to η = 0.45 (n = 16× 106 blue marker and n = 5× 105 green markers) while the round ones refer to
η = 0.95 (n = 16× 106). The error bars for η = 0.95 have been multiplied by 20 in order to make themmore
visible.

In order to be compatible with the interference term present in |�α〉, the reconstructed
Wigner functions should yield an average incompatible with the incoherent mean value
in (), namely such that

∣
∣∣
∣Av

(〈Ôα〉rec
)

–
e–|α|

 + e–|α|

∣
∣∣
∣ > Sd

(〈Ôα〉rec
)
. ()

We thus see that the condition in () is verified for η = ., that is the reconstructed
Wigner functions are not compatible with incoherent superpositions of coherent states,
if enough data are considered. We also notice that the same behavior is valid for the high
efficiency η = ..

The dependence of the errors on β can be understood as follows: when β decreases the
integration interval in () becomes larger and approaches the exact interval [–∞, +∞].
However, this occurs at the price of increasing the reconstruction error. This can be noted
both in Figure  (larger error bars) and in Figure  (increasing noise effects in the recon-
structed Wigner function). This problem can be overcome with a larger number of data
samples M, that would reduce the reconstruction noise and compensate the effect of de-
creasing β .

4 Conclusions
We have numerically shown that quantum interference effects can be reconstructed by
means of optical homodyne tomography also in low efficiency conditions. In particular,
we simulated quadrature data affected by high electronic noise associated with a detection
efficiency lower than % and, based on the tomographic techniques developed in [],
we reconstructed the Wigner function of a Schrödinger cat state. The ability of doing so
in presence of noisy data is a challenging task that any novel reconstruction technique is
asked to overcome. Then, taking into account the decay properties of the Wigner function
and its Fourier transform, we have checked that the reconstruction errors conform with
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the theoretical error bounds computed via L norms. In order to clearly exhibit the quan-
tum interference effects, both qualitatively in the graphic reconstruction of the Wigner
function, and quantitatively in the variance of an interference witness, larger sets of ho-
modyne data are necessary as the detection efficiency gets smaller. Our results not only
support the theoretical indications that homodyne reconstruction of quantum features is
actually possible for efficiencies lower than ., but also demonstrate for the first time the
concrete applicability of this method for low efficiencies in terms of computational effort
and number of needed homodyne data.

Appendix A: Wigner function reconstruction
The quadrature probability distribution () can be conveniently related to the Wigner
function by passing to polar coordinates u = ξ cosφ, v = ξ sinφ, such that  ≤ φ ≤ π and
–∞ < ξ < +∞:

Wρ(q, p) =
∫ π


dφ

∫ +∞

–∞
dξ

|ξ |
(π ) eiξ (q cosφ+p sinφ) Tr

[
ρ̂e–iξ (q̂ cosφ+p̂ sinφ)]

=
∫ π


dφ

∫ +∞

–∞
dξ

|ξ |
(π )

∫ +∞

–∞
dxeiξ (q cosφ+p sinφ–x)pρ(x,φ)

=
∫ π


dφ

∫ +∞

–∞
dξ

|ξ |
(π )

∫ +∞

–∞
dxeiξ (q cosφ+p sinφ)F

[
pρ(x,φ)

]
(ξ ), ()

where F[pρ(x,φ)](ξ ) denotes the Fourier transform with respect to x of the probability
distribution:

F
[
pρ(x,φ)

]
(ξ ) =

∫ +∞

–∞
dxe–ixξ pρ(x,φ). ()

Since y can be considered a normally distributed random variable independent of x̂φ , the
noise affected distribution of the eigenvalues of x̂φ in () is given by the following convo-
lution:

pη
ρ(x,φ) =

∫ +∞

–∞
du

e–u/(–η)
√

π ( – η)

pρ( x–u√
η

,φ)
√

η
. ()

Its Fourier transform is connected with that of pρ(x,φ) according to

F
[
pρ(x,φ)

]
(ξ ) = eγ ξ

F
[
pη

ρ(x,φ)
]
(ξ /

√
η), γ =

 – η

η
. ()

By inserting F[pρ(x,φ)](ξ ) into (), one can finally write the Wigner function in terms of
the noisy probability distribution pη

ρ(x,φ):

Wρ(q, p) =
∫ π


dφ

∫ +∞

–∞
dξ

|ξ |
(π )

∫ +∞

–∞
dxeiξ (q cosφ+p sinφ–x/√η)eγ ξ

pρ(x,φ). ()
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Appendix B: Coherent state superposition: Wigner function
The Wigner function corresponding to the pure state ρ̂α = |�α〉〈�α| and its Fourier trans-
form read

Wα(q, p) =


π ( + e–|α| )
(
e–(q–

√
α)–(p–

√
α)

+ e–(q+
√

α)–(p+
√

α)
+ e–q–p

cos
(

√

(qα + pα)
))

, ()

F[Wα](w, w) =


( + e–|α| )
(
e– (w+

√
α)+(w–

√
α)



+ e– (w–
√

α)+(w+
√

α)
 + e–

w
 +w


 cos

(√
(wα + wα)

))
. ()

For a generic Wigner function Wρ(q, p) one computes the quadrature probability density
pρ(xφ ,φ) in () by means of the so-called Radon transform:

〈xφ|ρ̂|xφ〉 =
∫

R

dpWρ(xφ cosφ – p sinφ, xφ sinφ + p cosφ). ()

It follows that the probability density pρ(xφ ,φ) and the noise affected probability density
pη

ρ(xφ ,φ) in () are given by:

pα(xφ ,φ) =



√

π ( + e–|α| )
(
e–(xφ–

√
α(φ))

+ e–(xφ+
√

α(φ))

+ e–x
φ–α(–φ) cos

(

√

xφβ(–φ)
))

; ()

pη
α(xφ ,φ) =



√

π ( + e–|α| )
(
e–(xφ–

√
ηα(φ))

+ e–(xφ–
√

ηα(φ))

+ e–x
φ–|α|+η|β(–φ)| cos

(

√

ηxφβ(–φ)
))

, ()

where

α(φ) = α cosφ + α sinφ, β(φ) = α cosφ – α sinφ.

Appendix C: Upper bound reconstruction error estimation
Here we derive an upper bound to the mean square error of the reconstructed Wigner
function. This analysis is necessary in order to find an optimal functional relation between
the free parameters in the reconstruction algorithm such as to minimize the reconstruc-
tion error. For this purpose we follow the techniques developed in [], adapting them
to the case of a linear superposition of coherent states. Using () and (), one starts by
rewriting the error in () as the sum of three contributions:


η,r
h,n(ρ̂) =

∫

Cr ()
dq dp

(
E
[∣∣W η

h,n(q, p)
∣
∣] –

∣
∣E

[
W η

h,n(q, p)
]∣∣) ()

+
∫

Cc
r ()

dq dp
∣
∣Wρ(q, p)

∣
∣ ()

+
∫

Cr ()
dq dp

∣∣E
[
W η

h,n(q, p)
]

– Wρ(q, p)
∣∣, ()
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Cc
r () denoting the region outside the circle Cr(), where q +p > r. The first and the third

term correspond to variance and bias of the reconstructed Wigner function, respectively,
while the second term is the error due to restricting the reconstruction to the circle Cr().

Given a density matrix ρ̂ , the second term can be directly calculated. This is true also of
the bias; indeed, because of the hypothesis that the pairs (X�,	�) are independent identi-
cally distributed stochastic variables, it turns out that

E
[
W η

h,n(q, p)
]

=


πn

n∑

�=

E
[

Kη

h

([
(q, p);	�

]
–

X�√
η

)]

=

π

E
[

Kη

h

([
(q, p);	

]
–

X√
η

)]

=
∫ π


dφ

∫ /h

–/h
dξ

|ξ |
(π )

∫ +∞

–∞
dxeiξ (q cosφ+p sinφ–x/√η)eγ ξ

pρ(x,φ) ()

differs from the true Wigner function Wρ(q, p) in () by the integration over ξ being
restricted to the interval [–/h, /h]. Moreover, its Fourier transform reads

F
[
E
[
W η

h,n
]]

(w)

=
∫ +∞

–∞
dq

∫ +∞

–∞
dpe–i(qw+pw)E

[
W η

h,n(q, p)
]

= χ[–/h,/h]
(‖w‖)F[Wρ](w), ()

where w = (w, w), and χ[–/h,/h](‖w‖) is the characteristic function of the interval
[–/h, /h]. Then, by means of Plancherel equality, one gets

∫

Cr()
dq dp

∣∣E
[
W η

h,n(q, p)
]

– Wρ(q, p)
∣∣

≤
∫

R
dq dp

∣∣E
[
W η

h,n(q, p)
]

– Wρ(q, p)
∣∣

=
∥∥E

[
W η

h,n
]

– Wρ

∥∥
 =


π

∥∥F
[
E
[
W η

h,n
]]

– F[Wρ]
∥∥



=


π

∥∥F[Wρ]χ[–/h,/h] – F[Wρ]
∥∥

 =


π

∫

‖w‖≥/h
dw

∣∣F[Wρ](w)
∣∣. ()

The variance contribution can be estimated as follows: firstly, by using () and (), one
recasts it as

∫

Cr()
dq dp

(
E
[∣∣W η

h,n(q, p)
∣
∣] –

∣
∣E

[
W η

h,n(q, p)
]∣∣)

=


πn

{
E
[∥∥
∥∥Kη

h

([
(q, p);	

]
–

X√
η

)
χr(q, p)

∥∥
∥∥

]

–
∥∥
∥∥E

[
Kη

h

([
(q, p);	

]
–

X√
η

)
χr(q, p)

]∥∥
∥∥

}
. ()
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Then, a direct computation of the first contribution yields the upper bound

E
[∥∥
∥∥Kη

h

([
(q, p);	

]
–

X√
η

)
χr(q, p)

∥∥
∥∥

]
≤

√
π

γ

r

h
e

γ

h
(
 + o()

)
, γ :=

 – η

η
, ()

with o() denoting a quantity which vanishes as h when h → . On the other hand, the
second contribution can be estimated by extending the integration over the whole plane
(q, p) ∈R

 and using () together with ():

∥
∥∥
∥E

[
Kη

h

(
[
(q, p);	

]
–

X√
η

)
χr(q, p)

]∥
∥∥
∥



≤ 
π

∥∥F[Wρ]
∥∥ = ‖Wρ‖ ≤ 

π
. ()

Let us consider now the specific case of ρ̂ = ρ̂α , the superposition of coherent states
defined in (). The auxiliary parameter β labelling the class of density matrices Aβ ,s,L in
endnote a with s =  can be used to further optimize the reconstruction error 

η,r
h,n(ρ̂α). In

particular, since |∑M
j= zj| ≤ M

∑M
j= |zj|, we get the upper bounds

∣∣Wα(q, p)
∣∣ ≤ 

π
,

∣∣F[Wα](w, w)
∣∣ ≤ , ()

∣
∣Wα(q, p)

∣
∣ ≤ 

π

(
e–(q–

√
α)–(p–

√
α)

+ e–(q+
√

α)–(p+
√

α)
+ e–(q+p))

≤ 
π

(
e–(

√
R–|α|) + e–R), ()

∣
∣F[Wα](w, w)

∣
∣ ≤ 


(
e– (w+

√
α)+(w–

√
α)

 + e– (w–
√

α)+(w+
√

α)
 + e–

w
 +w




)

≤ 

(
e–(R/

√
–|α|) + e–R/), ()

where R = q + p in () and R = w
 + w

 in (). Then, one derives the upper bounds

∫

R
dq dp

∣∣Wα(q, p)
∣∣eβ(q+p)

≤
( + eβ|α|/(–β)( + 

√
π |α|√
–β

– e–|α|/(–β)))

π ( – β)
, ()

∫

R
dw dw

∣∣F[Wα](w, w)
∣∣eβ(w

 +w
)

≤
π ( + eβ|α|/(–β)( + 

√
π |α|√

–β
– e–|α|/(–β)))

 – β
()

which simultaneously hold for  < β < /.
Then, by means of the Cauchy-Schwartz inequality, one can estimate the contribution

() to the error,

∫

Cc
r ()

dq dp
∣∣Wα(q, p)

∣∣

=
∫

R
dq dp

∣
∣Wα(q, p)

∣
∣eβ(q+p)e–β(q+p)�

(
q + p – r)



Esposito et al. EPJ Quantum Technology  (2016) 3:7 Page 14 of 17

≤
√∫

R
dq dp

∣
∣Wα(q, p)

∣
∣eβ(q+p)

×
√∫

R
dq dp

∣
∣Wα(q, p)

∣
∣e–β(q+p)�

(
q + p – r

) ≤ e–βr
(β), ()

and similarly for (),


π

∫

‖w‖≥/h
dw dw

∣
∣F[Wα](w, w)

∣
∣ ≤ e–β/h

(h), ()

where �(x) =  if x ≤ , �(x) =  otherwise, and

(β) =

√√√
√( + eβ|α|/(–β)( + 

√
π |α|√
–β

– e–|α|/(–β)))

π( – β)
, ()

(β) =

√√
√√( + eβ|α|/(–β)( + 

√
π |α|√

–β
– e–|α|/(–β)))

π( – β)
. ()

Altogether, the previous estimates provide the following upper bound to the mean square
error in ()–():


η,r
h,n(ρ̂α) ≤ ,  =

r

nh
eγ /h

(γ ) + e–βr
(β) + e–β/h

(β), ()

where ,, do not depend on h, r and n and (γ ) =
√

π/(π√γ ) is the leading order
term in (). By setting the derivatives with respect to r and h of the right hand side equal
to , one finds

γ

h + βr = log n + log

(
βh

(β)
(γ )

)
, ()

γ + β

h = log n + log

(
βh

r(h + γ )
(β)
(γ )

)
. ()

Whenever β is such that the logarithm of the number of data is much larger than the
logarithms in which β appears explicitly, then, to leading order in n, the upper bound to
the mean square deviation is minimized by

r =

h

=

√
log n

β + γ
. ()

The behavior of the optimal theoretical upper bound  as a function of β is shown in
Figure .

Notice that this approximation breaks when β gets close to / and . In the first case,
the quantity (β) diverges and so the bound becomes loose, while, in the second one,
the logarithms which contain β diverge to –∞ and no solution for /h is possible. It thus
follows that the range of values β ∈ [β,β] where the numerical errors 

η,r
h,n(ρ̂α) are com-

parable with meaningful theoretical upper bounds  depends on the number n of data



Esposito et al. EPJ Quantum Technology  (2016) 3:7 Page 15 of 17

Figure 4 Theoretical error bound. Upper bound reconstruction error  as a function of the parameter β .
Two efficiencies η are considered.

Figure 5 Error bound comparison. Comparison of the reconstructed with the theoretical upper bound for
different values of β .

and on the efficiency η. For the case considered in this work, n =  ×  and η = .,
β = – and β = .. In Figure  the optimal theoretical upper bound  is compared
with the real reconstruction errors calculated according to () for different values of β in
the range where the comparison is meaningful.

Appendix D: Calculation of the estimator
To facilitate the treatment of a large amount of data, we sought to optimize the compu-
tation of the estimator. Our starting point is (), where we are interested in the efficient
calculation of the integral for a fixed position in phase space (q, p) and a given quadra-
ture data point (X�,	�). Hence, to simplify the notation, let us introduce the variable
x = q cos	� + p sin	� – X�/√η, suppressing all its dependencies. Then the estimator ()
writes as

Kη

h (x) =
∫ /h

–/h
dξ

|ξ |
π

eiξxeγ ξ
. ()
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Through a series of transformations, this can be written in terms of the error function erf

as

Kη

h (x) =
exp( γ

h ) cos(rx) – 
πγ

+
√

πx
√

γ
exp

(
x

γ

)(


(
erf

(
x

√
γ

– i
√

γ

h

))
– erf

(
x

√
γ

))
, ()

where  denotes the real part. This changes the problem from the cumbersome numerical
integration to that of the evaluation of the error function, for which a large body of work
exists. We settled for the series expansion given in [], Eq. (..), which in our case
leads to good convergence already with as few as six terms [].

Since the calculation is independent for both individual quadrature data points and dif-
ferent points in phase space, the problem is well suited for parallelization. Furthermore,
the quadrature data alone allows for an estimate of the support of the Wigner function in
phase space, which can be exploited to construct a well adapted mesh automatically, with-
out any prior information about the state. The resulting algorithm has been implemented,
optionally making use of multiple cores in a single computer or the advanced computa-
tional abilities of modern graphics cards for the parallelization, and is available as Open
Source Software [].
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Endnote
a The functional relation between the parameters h and r on n also depends on an auxiliary parameter β > 0. This

was introduced in [11] in order to characterize the localization properties on R
2 of the Fourier transforms of the

Wigner functions and to possibly exploit them in the reconstruction methods. These have been which are indeed

applied to the following class of density matrices:Aβ ,s,L = {ρ̂ :
∫
R2 dqdp|F[Wρ ](q,p)|2e2β(q2+p2)s/2 ≤ (2π )2L}.
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