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Full list of author information is precise manipulation of dynamics of complex quantum systems has led to the

available at the end of the article development of efficient theoretical modeling and simulation tools and opened

avenues for new practical implementations. This work explores the applicability of the
integrated silicon photonics platform for implementing scalable CQFC networks. If
proven successful, on-chip implementations of these networks would provide
scalable and efficient nanophotonic components for autonomous quantum
information processing devices and ultra-low-power optical processing systems at
telecommunications wavelengths. We analyze the strengths of the silicon photonics
platform for CQFC applications and identify the key challenges to both the theoretical
formalism and experimental implementations. In particular, we determine specific
extensions to the theoretical CQFC framework (which was originally developed with
bulk-optics implementations in mind), required to make it fully applicable to
modeling of linear and nonlinear integrated optics networks. We also report the
results of a preliminary experiment that studied the performance of an in situ
controllable silicon nanophotonic network of two coupled cavities and analyze the
properties of this device using the COFC formalism.

1 Introduction
Over the last decade, coherent quantum feedback control (CQFC) has emerged as a new
interdisciplinary field in the areas of quantum control and quantum engineering, and en-
joyed rapid theoretical and experimental advances. In particular, a powerful theoretical
framework based on input-output theory has been developed for modeling networks of
quantum systems connected by electromagnetic fields [1-6]. Such networks can be de-
signed to operate as autonomous devices for quantum information tasks, e.g., quantum
state preparation and stabilization [7-9], as well as ultra-low-power optical processing el-
ements for applications such as optical switching [10, 11]. Recent developments such as the
SLH formalism for modular analysis of optical networks [12, 13] and the QHDL language
and QNET software tools for specification and simulation of photonic circuits [14] have
added important capabilities for efficient and automated design and modeling of CQFC
networks.

These advances bring CQFC to the level where it can help design and quantitatively
analyze quantum effects in integrated optics systems and, reciprocally, benefit from fab-
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rication capabilities of nanophotonics technology. Indeed, the true potential of CQFC is
realized at scales where many optical elements are interconnected as potentially recon-
figurable networks [15]. Bulk-optics implementations are impractical for the realization
of such complex networks, and a form of integrated optics is necessary. In addition to
the obvious size advantage of integrated optics, other benefits include reproducibility and
mass production capability, and long-term optical path and phase stability. In particular,
CMOS-compatible silicon integrated nanophotonics is seen as a leading platform for con-
structing large-scale CQFC networks.

In this paper, we present a detailed analysis of the potential of silicon nanophotonics
for implementing CQFC networks. We describe the behavior of nanophotonic compo-
nents relevant for construction of CQFC networks and also discuss the key challenges to
silicon nanophotonics implementation of CQFC. Finally, we describe our fabrication and
measurement of a simple on-chip CQFC network composed of two coupled cavities and
analyze it using the SLH formalism. As many of the general points raised in the paper
are revealed in the analysis of this device, this implementation serves as a useful testbed
on which to explore the benefits and challenges of silicon nanophotonics realizations of
CQEC.

The remainder of the paper is structured as follows. Section 2 presents a brief intro-
duction to the theoretical framework that enables efficient modeling of optical networks
composed of modular components connected by quantum fields. In Section 3 we discuss
the current capabilities of CMOS-compatible integrated optics platforms, including the
common linear and nonlinear components that are available for constructing quantum
optical networks. Section 4 explores potential challenges in extending the standard CQFC
theory presented in Section 2 to the integrated photonics realm. In Section 5, we present
a preliminary on-chip implementation of a network of two coupled cavities, and analyze
its properties. Finally, Section 6 concludes with a discussion of potential future directions
in integrated optics CQFC.

2 The SLH formalism for modeling CQFC networks

In this section, we provide a brief summary of the approach to modeling CQFC networks
using quantum stochastic calculus, or alternatively input-output theory from quantum
optics (for further details, see Refs. [4—6]). The basis of this approach is the decompo-
sition of a quantum optical network into localized components with arbitrary internal
degrees of freedom, which are connected via freely propagating unidirectional broadband
fields. This allows one to eliminate the explicit description of the fields propagating be-
tween components to arrive at an effective description of the network just in terms of the
localized degrees of freedom and their couplings. We refer to this modular approach and
the associated modeling machinery as the SLH formalism [12, 13].

The starting point for this formalism is the Hudson-Parthasarathy theory that uses a
quantum stochastic differential equation (QSDE) to represent time evolution of the uni-
tary operator, U(¢), describing coupled evolution of the system and field degrees of free-
dom [16]:

du(t) = {(s ~1)dA(t) + LdB'(t) — LTS dB(¢)

- GLTL + iH) dt}u(t). 1)
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Here, B(t) and B'(t) are integrated versions of the freely propagating bosonic fields linearly
interacting with the system at an interface or “port” (these could be output fields from

another system):

B(t) = /tb(s) ds, B'(¢) = /Otb*(s) ds, 2)
0

with [b(¢), bT(s)] = 8(¢ — s). This commutation relation defines the bosonic fields as rather
singular objects, and hence the increments, dB(t) = B(t + dt) — B(¢) (and similarly dB'(¢)),
are operator-valued stochastic variables that are analogous to Ito increments. Finally, A(z)
is a quantum stochastic process that corresponds to the observable counting the number
of quanta in the bosonic field that have interacted with the system up to time ¢:

At) = /0 t b’ (s)b(s) ds. ®3)

The other components of Eq. (1), the system operators S, L, and H, describe the system
and its interaction with the propagating field at the interface. Specifically, S describes the
impact on system when photons are scattered between ports (this component is most in-
teresting when we consider systems with multiple ports, as we shall below), L is the system
operator that is directly and linearly coupled to the field, and H is the system Hamiltonian
that accounts for the internal dynamics that does not involve interaction with the field.
These components are often grouped together into a triple G = (S, L, H), which is suffi-
cient to completely characterize the system evolution.

The generalization of Eq. (1) to the case where the system has multiple ports, with inde-

pendent fields at each port interacting with system, is:
du(t) = {Z(S;‘k — &) d A (t)
jk

+ ZL, dBj(t) - Z L]-}-Sjk dBy(t)
j

jk
_ (% ZL}L, + iH) dt}LI(t), (4)
j

where Sj; describes the effect on the system of a photon scattering from portj to k, and L;
is the system operator coupled to the field at port j. In the multi-port case, we still describe
the system evolution using an SLH triple, but now S is an # x # matrix and L isan # x 1

matrix (where # is the number of ports) containing operator-valued elements:

Sun ... Su Ly
s=1: - L=]: 1. (5)

The key advantage of the SLH formalism is that one can easily construct effective de-
scriptions of arbitrarily connected networks of localized components, each of which is
represented by a triple: G = (S, L, H). Connecting two components in series, parallel, or
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feedback loop results in another system represented by another SLH triple whose ma-
trices can be derived by simple algebraic rules [12]. As an example, consider connecting
two localized systems in series, where the outputs from G; = (51, L1, H;) are connected to
the inputs of Gy = (82, Ly, Hy), where for simplicity we assume that the number of input
ports that G, has is the same as the number of output ports that G; has. The resulting
system is represented as Gs = Gy < Gy = (83, L3, H3), where S5 = 5381, Ly = SpL1 + Ly, and
H;=H; + Hy + Im{LzSle}. See Refs. [5, 12] for more details on the composition rules for
the SLH formalism.

Once the SLH triple for a network of components has been calculated, the output fields
from the network are easily calculated through the prescription:

dBY(£) = Li(t)dt + ) SudB}(2). (6)
!

Finally, since we are interested in applying the SLH formalism to integrated optics net-
works, it is useful to explicitly list the most relevant assumptions used in developing the
formalism:

1. The propagating fields are bosonic (although extensions of the formalism to

fermionic fields are possible [17]).

2. The interaction between the system and a field - and the system and any other
reservoir - is Markovian, in the sense that the strength of the interaction is
independent of the frequency of the field mode, at least for a reasonably wide band
of frequencies. See [18], Section 5.3 for a formal specification of this assumption.

3. The SLH composition rules assume that fields propagate between localized system
components in a lossless, dispersionless, linear medium, and furthermore that the
propagation time is negligible compared to timescales relevant to the localized
systems.

We will discuss the validity of these assumptions for integrated optics in the following

sections.

3 On-chip optical elements for CQFC networks

Solid-state based realizations of quantum optical networks are possible on several plat-
forms nowadays, including microwave quantum optics on superconducting integrated
structures [19-21] and visible/near infrared quantum optics on integrated photonic struc-
tures [22]. In this work, we focus on the latter and, in particular, on integrated photonics
implementations using silicon and silicon nitride at telecommunications wavelengths cen-
tered on 1550 nm. The CMOS compatibility and relative maturity of integrated photonics
on these platforms makes them appealing candidates for implementing scalable CQFC
networks. See Combes et al. [6] for a review of integrated implementations of quantum
optical networks, and a discussion of the issues relevant to superconducting circuit im-
plementations.

Silicon (Si) and silicon nitride nanowire waveguides guide light through total internal
reflection, enabled by the high index contrast between the guiding core and the surround-
ing cladding. Usually the waveguide is designed to guide only a fundamental single mode
at a desired wavelength. The shape of the waveguide is fully etched, which naturally fits
with CMOS compatible processes. Since the waveguide is rectangular with greater width
than height, the profile of the guided mode of light is elliptical. The large index contrast
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between the core and the cladding allows for waveguide dimensions to be only a fraction
of the wavelength (several hundreds of nanometers).

A crucial factor that differentiates transmission in silicon waveguides from transmission
in vacuum is scattering of photons due to roughness of waveguide surfaces. This leads to
a linear loss mechanism (loss that is independent of light intensity) in waveguides and res-
onant structures. In the nanowire type single mode waveguides, scattering loss arises due
to side-wall inhomogeneities created in the etch process used to define the waveguide.
This scattering can be minimized by sophisticated fabrication techniques [23-26], but
is an intrinsic non-ideality that cannot be completely mitigated. In the nitride nanowire
waveguides, absorption due to unsaturated bonds is another source of propagation loss
and can be mitigated by sophisticated passivation, deposition and fabrication techniques,
e.g., [27, 28]. Other waveguide types, such as ridge waveguides, can have lower scatter-
ing loss although they are intrinsically multi-mode. These ridge modes are usually more
tightly confined and hence interact weakly with side-wall roughness. All integrated opti-
cal waveguides and resonant structures will have intrinsic losses that cannot be completely
mitigated.

3.1 Linear optics elements

Nearly all linear optical elements have been realized in silicon integrated optics, and in
Table 1 we list common linear bulk-optics elements and their integrated-optics counter-
parts. One element that requires particular attention in this list is the integrated optics
cavity. These cavities are typically resonant structures such as microring resonators that
result in high field intensity in a localized region. This high field intensity implies that non-
linear effects cannot be ignored. Effectively, this means that any integrated optics cavity
with a sufficiently high quality factor (Q factor) must be treated as a nonlinear element,
rather than a simple linear cavity. We discuss in more detail the conditions for nonlinear
dynamics in integrated resonant structures in the next section.

3.2 Nonlinear optics elements
Silicon and silicon nitride are highly nonlinear materials and a variety of optical nonlin-
earities with a typical Kerr coefficient n; ~ 4 x 1078 m2/W, a hundred times larger than

Table 1 Common linear bulk-optics elements and their integrated-optics counterparts

Bulk optics Integrated optics Notes

Beam splitter Directional coupler The transmissivity tuned by proximity of waveguides.

Cavity Microring resonator, whispering  The dimensions of integrated optics cavities are typically
gallery mode resonator in the micrometers, allowing for very large (GHz) cavity

bandwidths. Photon build-up and dissipation times are
accordingly shortened, allowing for GHz switching.
Furthermore, due to the reduced mode volume,
integrated optics has great potential to demonstrate
strongly coupled cavity quantum electrodynamics [29].

Mirror Distributed Bragg mirror The reflectivity tuned through modulation depth and/or
number of Bragg periods.
Phase Phase modulation by Carrier density manipulation achieves much greater
shifter/modulator  thermo-optic effect, or carrier frequency of phase modulation compared to the
injection/depletion thermo-optic effect.
Amplitude Mach-Zehnder Interferometer The amplitude of the MZI output field is controlled by

modulator (MZI) through phase modulators  varying the phase shift in one arm of the MZI.
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the silica fibers, have been demonstrated on these platforms at 1550 nm [30]. Due to the
centrosymmetry of these materials, x® processes are negligible and x® processes are
the dominant sources of nonlinearity.? The intrinsic nonlinearity of silicon can be effec-
tively enhanced by using structures that provide high optical field confinement, such as
ring resonators.

To get an idea for conditions where the nonlinearity of the guiding material must be
taken into account, consider the nonlinear phase shift acquired by a light mode after trav-
eling a length ¢ along a waveguide: A¢, = y£P, where P is the peak power for a pulse and
average power for a continuous-wave (CW) mode, and y = (2w n,)/(LAeg) is the nonlin-
earity parameter defined in terms of the mode wavelength, A, nonlinear refractive index of
the material, 715, and the effective area of the mode, Aeg. If A¢, = 0.1, this nonlinear phase
shift, and other nonlinear effects associated with propagation in the material such as wave
mixing, cannot be ignored.” Assuming an input power of P = 1 W (typical for CQFC
applications), and a nonlinear coefficient of y = 1.5 x 10° W™ km™ for a strip waveguide
in silicon guiding light at 1550 nm [31], we find that the nonlinearity is significant for
waveguides of length ¢ 2> 670 m. This result shows that, under typical conditions relevant
for CQFC applications, nonlinear effects are negligible for silicon integrated waveguides.
However, in structures that localize and concentrate light, such as ring resonators, the
circulating power is enhanced by a factor B over the input power. In an ideal (lossless)
resonator this enhancement factor is related to the resonator Q factor by [32]

A
B= Q ,
ﬂneﬁzr

7)

where ¢, is the circumference of the ring resonator. Using this expression for the power
enhancement factor, an effective index of n.¢ = 2.85, and an input power of 1 ©W, we find
that the nonlinearity plays a role if the resonator Q factor is Q > 3.5 x 10°. Therefore in
very high quality resonant integrated structures one must be mindful of nonlinear effects.

Even though significant progress has been made in utilizing nonlinear integrated op-
tics elements for classical optical processing [33], for example, lasing [34—36], parametric
amplification [30, 37, 38], electro-optical modulation [39-41], and frequency conversion
[42], on-chip quantum nonlinear optics is still in its infancy. The primary obstacle to re-
alizing high quality nonlinearities for quantum optics on the silicon photonics platform is
the need to overcome the deleterious processes that accompany advantageous nonlinear
processes such as four-wave mixing (FWM). Two such deleterious processes that are par-
ticularly important in silicon are two-photon absorption (TPA) and dispersion. The first
is a source of photon loss that can counteract any nonlinear gain [43], while the second
makes phase matching in quasi-one-dimensional waveguides challenging [33].

Despite these challenges, there have been several recent demonstrations of on-chip
quantum nonlinear optics, for example, spontaneous FWM using a silicon microring res-
onator [44], and squeezed light generation using a silicon nitride microring resonator
functioning as an optical parametric oscillator (through FWM) [45]. We discuss the lat-
ter in more detail since the optical parametric oscillator (OPO) is an essential nonlinear
component in many CQFC networks that have been proposed or constructed to date.

Dutt et al. state [45] that silicon nitride was chosen for its lack of TPA and moderate
nonlinearity. In addition to minimizing loss, they engineered several features in order to

successfully exploit the FWM process in the material, including: (i) the resonator had very
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high intrinsic Q factor while simultaneously being over-coupled to the output waveguide,
which enabled field concentration as well as high bandwidth squeezing, (ii) the disper-
sion and quality factors of the resonator were engineered to yield wide spectrally spaced
resonant modes, three of which could be selected as pump, signal, and idler modes (the
wavelength separation enabled spectral isolation of the desired squeezed output modes),
and (iii) a high numerical aperture optical lens was utilized to minimize the detection
losses. As a result of these efforts, the detected signal and idler modes had intensity cor-
relations 1.7 dB below the shot-noise level. The same group has recently also reported on
a system of coupled silicon nitride cavities that were engineered to enable tuning of the
degree of squeezing from 0.9 dB to 3.9 dB (on chip) [46]. Clearly there are more engineer-
ing challenges to on-chip squeezed light generation compared to its bulk-optics analogue,
but given these demonstrations of experimental feasibility [45, 46], we expect that ma-
terial and design improvements will make OPOs a standard nonlinear integrated optics

element in the near future.

3.3 Sources and detectors
Integrated photon sources within Si photonics are extremely limited. This is due mainly
to the fundamental issue of the direct band-gap of Si. Instead, the most widely adapted
approach to generation of light on chip uses heterogenous integration of III-V laser gain
materials bonded to Si as the laser cavity and/or transport media [47]. Recently, there
have also been reports that strained and heavily n-type doped germanium (Ge) can be
made to lase at telecom wavelengths [48]. The effect of compressive strain on Ge is to
split the light hole and heavy hole bands effectively shrinking the direct band-gap of Ge.
The n-type doping is used to fill the L-valley indirect band-gap effectively Pauli blocking
these states and in essence making the Ge a direct band-gap material. These Ge laser
devices are typically optically pumped and due to the highly doped nature of the Ge and the
resulting free-carrier absorption require excessive power resulting in thermal destruction
of the devices during operation. Other integrated sources include germanium-tin (GeSn)
[49] and highly strained Ge [50] which emit at longer infrared wavelengths outside of the
telecom band and are currently the subject of much work on mid-infrared photonics.
The state of integrated detectors is completely different from that of integrated sources.
Many groups have demonstrated integrated on-chip high performance Ge on Si pho-
todiodes [51-55]. Standard Ge on Si p-i-n photodiodes and separate absorption charge
multiplication linear mode avalanche photodiodes have been integrated into Si photon-
ics processes and demonstrated record performance [52, 56]. Geiger mode operation of
these top-illuminated devices have also shown single photon detection with efficiencies
ranging from 5 to 10% [57, 58]. Furthermore, superconducting nanowire single photon
detectors (SNSPDs) based on W silicide [59] and niobium and niobium nitride supercon-
ducting films [60] are completely compatible with advanced Si photonics manufacturing
processes and have demonstrated waveguide coupled performance in excess of 93% [61].
It therefore remains to develop an integrated process to incorporate SNSPDs with cryo-
genically compatible Si photonics.

3.4 Isolators
A standard bulk optics element that is not commonly available in silicon integrated pho-
tonics is an isolator. Optical isolators minimize back reflection along a channel and are
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critical for defining unidirectional fields, which is especially important in feedback loops
where a clear direction of signal flow is required. Despite some recent progress in con-
structing an on-chip optical isolator [62—64], this remains a difficult element to incorpo-
rate into the integrated photonics toolbox, and other techniques for ensuring unidirec-
tional propagation are necessary. For example, back reflection from cavity interfaces can
be minimized by side coupling waveguides to ring resonator cavities with minimal sur-
face roughness. Also, for a train of optical pulses, it is possible to reduce back-scattering
using a timed add-drop multiplexer (although this requires that the arrival window of the
back-scattered or reflected light pulse is known) [65].

4 Application of the SLH formalism to integrated photonics networks

As mentioned in the introduction, one of the primary advantages of implementing CQFC
networks in integrated photonics is the scalability of this platform. Since the SLH formal-
ism, and accompanying automation tools such as the QHDL language [14] and the QNET
simulation package [66], implement the analogue of lumped element analysis for quan-
tum optical networks, they are most powerful for analyzing large-scale modular networks
that are difficult to simulate from first principles. Practical realizations of such networks
require integrated platforms such as superconducting circuits or silicon photonics. How-
ever, originally the SLH formalism was developed primarily with bulk-optics implemen-
tations in mind, and needs to be reassessed and possibly modified before application to
integrated platforms.

The primary challenges in porting the SLH formalism to integrated photonics stem from
the need to capture the range of optical phenomena resulting from electromagnetic field
propagation in a nonlinear, dispersive medium. In terms of the assumptions listed at the
end of Section 2, assumption 3 is the one that needs further examination, since the prop-
agation medium is no longer vacuum. Specific effects that need to be taken into account
are dictated by the material substrate and the wavelength of light used in the nanopho-
tonics platform implementation. The dominant physical phenomena present in silicon
and silicon nitride integrated photonics at 1550 nm, and absent in bulk-optics networks,
were discussed in Section 3. To reiterate, these are: (i) dispersion, (ii) scattering by the
medium, including surface roughness scattering, Raman scattering, and Brillouin scatter-
ing, and (iii) two-photon absorption and subsequent free carrier generation and heating
in the medium.

In the following, we examine each of the physical effects identified above and assess their
impact on the SLH formalism.

4.1 Dispersion
In integrated photonics waveguides, chromatic dispersion is a combination of waveguide
dispersion and material dispersion. The former is present if the waveguide’s guiding prop-
erties depend on the light wavelength, and the latter arises from dependence of the ma-
terial’s refractive index on the wavelength. Both types of dispersion can be minimized by
engineering the waveguide properties [67-69], however, this engineering is typically very
challenging and nontrivial. Therefore, we must examine the consequences of chromatic
dispersion on SLH models of integrated photonics devices.

Dispersion needs to be taken into account both in resonant structures and bus waveg-
uides. In the former, it is largely an experimental design issue since it complicates phase
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matching, which subsequently makes the design of nonlinear elements such as OPOs diffi-
cult [45]. Resonant structures must be engineered to have required phase matching prop-
erties and also be resonant for frequencies of the modes participating in the desired four-
wave mixing process. For bus waveguides, dispersion manifests itself as the dependence
of the propagation velocity along the bus on the wavelength. This is fundamentally incom-
patible with the assumptions of CQFC and the SLH formalism because strong dispersion
can violate the Markov approximation that is necessary for the validity of SLH models
(assumption 2 in Section 2) [6, 70]. Although there has been some work on mimicking
restricted types of dispersive propagation within the standard input-output theory (and
SLH) framework [71], to date there is no general extension to the SLH formalism that can
accommodate arbitrary dispersive propagation.

4.2 Scattering

Surface roughness scattering leads to conversion of photons from modes of interest into
other modes. This can be phenomenologically modeled as a linear loss mechanism that
can be easily incorporated into the SLH description of CQFC networks. Specifically, loss
in a bus waveguide can be modeled by a fictitious directional coupler (analogous to a beam
splitter in bulk-optics) and loss in a localized component can be modeled by an additional
fictitious port with vacuum input.

Lack of unidirectional propagation due to spurious impurity-driven back scattering is
also a concern in integrated waveguides. If this type of backscattering can be identified,
it is possible to model within extensions of the SLH formalism [6], however, this requires
precise characterization of backscattering amplitudes in the waveguide.

Effects of nonlinear scattering phenomena such as Raman and Brillouin scattering can-
not be modeled as simply as those of surface roughness scattering because the loss coeffi-
cient is dependent on the light intensity in these cases. As argued above, these nonlinear
scattering effects can be safely ignored in integrated bus waveguides because the field in-
tensities for CQFC applications are typically too small for these effects to be significant.
However in resonant structures, especially those constructed to specifically behave in a
nonlinear fashion (e.g., integrated-optics implementations of an OPO), nonlinear scatter-
ing effects must be taken into account. Since the underlying scattering mechanisms ulti-
mately arise from interactions with crystal phonons, they can be modeled fully quantum
mechanically ([72], Sections 6.4.1, 11.6). As these models show, such scattering produces
incoherent loss or gain of population in the modes of interest, as well as phase decoher-
ence. Most significantly for the CQFC framework, only in some special situations can
these phenomena be modeled by a coupling to a Markovian reservoir [72], which means
that in most cases the effects of these nonlinear scattering processes cannot be modeled
within the standard SLH formalism. Accurately incorporating these nonlinear scattering
processes within the SLH formalism is an avenue for future work.

4.3 Two-photon absorption

At 1550 nm, TPA is an important process in silicon, but is of less concern in silicon ni-
tride where the band gap is larger. Again, as a nonlinear process it is of concern to us in
resonant structures and not in bus waveguides. In resonant structures TPA is a source
of nonlinear (intensity dependent) loss, but unlike the case of Raman/Brillouin scatter-
ing, this process is Markovian and thus can be described by a Markovian master equation
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[73]. Therefore, we can model the effect of TPA in a localized component by an additional
port with vacuum input and coupling quadratic in the amplitude of the component’s in-
ternal field mode - i.e., the element of the L matrix corresponding to the additional port
is proportional to a2, where a is the annihilation operator of the internal field mode.

However, TPA has secondary effects that are not captured by this model. Specifically,
TPA typically results in the creation of free carriers, whose concentration affects the re-
fractive index of the material, which in turn changes its nonlinear and guiding properties
(and causes dispersion if this change in refractive index is wavelength dependent). Con-
sequently, TPA can dynamically change the underlying parameters of a localized compo-
nent’s system, something that is not captured by the SLH formalism, which usually as-
sumes static parameters. For example, consider an on-chip ring resonator (cavity) that is
characterized by the resonance frequency of its fundamental mode and the strength of
its coupling to a bus waveguide. If the Q factor of the resonator and input light power
are high enough, TPA-induced free carriers in the ring material can shift the resonance
frequency. Modifications to the SLH formalism to capture these effects will be essential
for accurately modeling resonant integrated optics elements. Some noteworthy progress
has recently been made in this direction through the formulation of a quantum model for
free carrier dispersion in nanophotonic cavities [74]. Unfortunately although this model
is in-principle compatible with the SLH formalism, it is not practical to implement di-
rectly using the formalism due to the large number of degrees of freedom that must be
accounted for. Hamerly and Mabuchi adopt a semi-classical approach to efficiently sim-
ulate their model and it is possible that such methods could be integrated with the SLH
formalism to treat such physics.

5 Experiment: on-chip implementation of CQFC network of two coupled
cavities
In order to study the differences and similarities between bulk-optics and silicon nanopho-
tonics networks, we fabricated one of the simplest CQFC networks: two cavities coupled in
a feedback loop; see Figure 1. We refer to this network as the coupled cavity device (CCD),
and its implementation was inspired by the disturbance rejection network implemented
in bulk optics by Mabuchi in Ref. [75], and previously theoretically analyzed in Ref. [76].
Figure 1 shows the schematic of the CCD, which consists of two thermally controlled
ring resonators (denoted as cavity 1 and cavity 2) coupled by Si nanowire bus waveguides
with an integrated thermo-optic phase shifter on each bus waveguide. The device has four
actual ports (additional fictitious ports can be used to model losses), two at each cavity.
A coherent input drive (w) from a widely tunable telecom laser is coupled onto chip from a

Figure 1 The coupled cavity device (CCD)
consists of two ring resonators coupled by two
waveguides. Fach of the rings is 6 wm in diameter
and the center-to-center distance between the N
ringsis 15 wm. A coherent input drive w is applied Porta ua) | 2
at one port, and the output field z is monitored at r’ ﬂ Pon—;
another port. The two remaining ports have a N\ Voase Ay -

vacuum input and an unmonitored output field Z. y (plant)
<« N\ / -

Viter Cavity 2. vary
(controller)

The SLH model of the CCD is described in the 2 Port1
Appendix. The inset shows a magnified image of Port3
the device.

Page 10 of 18
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lensed fiber into port 1. The intensity of the output signal (z) at port 2 is monitored off chip
using a power meter. The ports of cavity 2 are unmonitored and have vacuum input. The
signal in the output field z is a result of interference between the outputs of both cavities
since they are coupled. In Refs. [75, 76], one of the cavities is treated as a plant system
and the other as a controller, in which case the signal propagating from cavity 2 to cavity 1
(field ) is viewed as a feedback signal from controller to plant.

The CCD is controlled using two thermo-optic phase shifters activated by externally
applied voltages. One phase shifter, controlled by the voltage Vi, is used to tune the
resonance frequency w, of cavity 2, and the other, controlled by the voltage Vjpase, is used
to induce a phase shift ¢ in the feedback signal (field «). The variable parameters w, and ¢
are the primary in situ controllable degrees of freedom of the CQFC network implemented
by the CCD. During the experiment the probe laser wavelength is swept and the upper
phase shifter voltage, Vphase is varied from 0 to 18 V for fixed controller Ve, bias. We
estimate that the resonators have quality factors in the range 1 x 10% — 4 x 103,

The coupled cavities behave in a similar fashion to electromagnetically induced trans-
parency (EIT), where two nearly degenerate resonances can interfere creating sharp null
in the transmission spectrum. Vjpaee acts as a variable coupling between the two resonant
cavities and can be used to shift in wavelength the interference null in the transmission
spectrum (cf. Refs. [77, 78]). However, for disturbance rejection we require that the trans-
mission is suppressed at all wavelengths. This can be achieved in the CCD if the linewidth
of the controller cavity and the phase shift induced in the feedback signal # can be con-
trolled independently, while the other parameters are fixed [75]. Disturbance rejection
means that, with suitable parameter values, the output field z is in the vacuum state re-
gardless of the amplitude and phase of the input field w. Physically, this results from all
the input power being routed to the output port z' due to the interference between the
cavities. We are unable to tune the cavity linewidths in situ with this generation of the
CCD, however, we will evaluate whether disturbance rejection can be achieved with the
parameter values determined at fabrication and the ix situ tuning capabilities we do have.

In the Appendix, we develop a model of the CCD using the SLH formalism. Here, we
explicitly list the parameters entering the model:

1. wp: the resonance frequency of the fundamental mode of the plant cavity.

2. w,: the resonance frequency of the fundamental mode of the controller cavity.

3. «: the coupling rate of both cavities to the bus waveguides. This rate is assumed to
be the same for both interfaces of both cavities since it results from an evanescent
coupling that is dictated by the distance between the ring resonator and the bus
waveguide. This distance is the same, up to fabrication precision, for all interfaces in
the CCD.
¥p: the loss rate of the plant cavity.

v.: the loss rate of the controller cavity.
¢: the phase shift induced in the feedback signal u.

N oo ;b

n: the power loss in the waveguide in which the feedback signal u propagates. This
parameter accounts for potential losses due to active control of this waveguide.

It should be noted that if the CCD is driven by a low-power laser (i.e., the input field w is
prepared in a low-intensity coherent state) and the cavities remain in the linear regime (i.e.,
their Q factors are not too large), then the entire network is linear and thus can be modeled
by an equivalent classical transfer function as shown in Refs. [75, 76]. In this case, the
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Figure 2 The spectra of the output field z of the CCD driven by a coherent input field w. Each subplot
shows the output power spectrum (in dB) for a different value of the voltage Vphase that controls the phase
shift ¢ induced in the feedback field u. The blue lines are data measured in the experiment and the orange
lines are theoretical predictions based on the SLH model for the CCD with optimally fitted parameter values.
The parameter fitting was done independently for each value of Vphase.

input-output relationships predicted by the SLH model and the transfer function agree.

The experiment is conducted in this linear regime and therefore the SLH model does not

incorporate nonlinearities. In the following, we assess the agreement between this model

and experimental data.

Figure 2 shows the spectra of the output field z when the input CW field w is prepared in

a coherent state. The input power (after accounting for on-chip coupling loss) is calibrated
to be ~100 W, and Ve, is held fixed at 1.4 V. Each subplot shows the output spectrum
for a different value of the voltage Vjhase, which controls the phase shift ¢ induced on the

feedback field u. In each subplot, the experimental spectrum is shown together with the

spectrum predicted by the theoretical SLH model (developed in the Appendix) with pa-

rameter values selected to achieve the best fit with the experimental data. The parameter

fitting was performed independently for each value of Vphase, using a simulated annealing

algorithm initialized with a good estimate of the parameter values from knowledge of the

chip fabrication details. The fits are seen to be reasonably good, which gives us confidence

that the linear model is an accurate representation of the system.

Figure 3 shows the fitted values of the model parameters (A,, Ac, ¥p, ¥e» ¢, 1, and k)

obtained for each value of Vjpqe. Note that A/, =

2nc
Neff Wc/p

with neg = 2.85 being the effective

index of the resonator at 1550 nm. Surprisingly, we see that not only the feedback phase

¢, but almost all other parameters change with Vjpae. This is hardly ideal as it means
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Figure 3 Parameter values that produce the best fit of the theoretical SLH model to the
experimentally measured output spectrum (shown in Figure 2), for each value of the voltage Vppase
applied to the phase shifter. Each subplot shows the variation of one of the parameters (A,, Ac, ¥p, e, @, 1,
and k) as Vphase Changes between 0 and 18 V.

that the parameters in the system are not independently tunable. In particular, we cannot
tune the system to operate in the parameter regime required for disturbance rejection.
Physically, the effect of the voltage applied to a phase shifter (where Joule heating changes
the material refractive index via the thermo-optic effect) does not seem to be localized to
the bus waveguide connecting the cavities; the produced heat also affects the properties
of adjacent optical elements, including cavity resonances, cavity-waveguide coupling and
cavity losses. This cross-talk effect associated with the physical nature of controls and size
characteristics of the nanophotonics platform, is an important issue that distinguishes on-
chip implementations of optical networks from their bulk-optics analogues.

We comment on the behavior of each of the parameters in Figure 3. For the most part,
the phase shift ¢ changes predictably and monotonically with Vjhase. The power loss in
the waveguide, 7, also behaves rather regularly: it increases with the applied voltage for
Vihase S5V and then stays approximately constant at higher voltages; this behavior im-
plies that the waveguide becomes lossier when the thermo-optic phase shifter is active,
but losses saturate at Vphase 2 5 V. On the other hand, the rate of cavity-waveguide cou-
plings, k, does not change much for Vipase S5 V, but decreases when the voltage increases
for Vihase 2 5 V; this behavior might indicate that cavity-waveguide interfaces become af-
fected when a higher voltage generates a larger amount of heat. Judging by the changes
of cavity resonance wavelengths A, and 1., the cavity resonances are linearly red-shifted
with increasing Vhase; and by roughly the same amount for both cavities. The cavity loss
rates behave surprisingly dissimilar for the plant and controller resonators. The plant cav-
ity’s loss rate y, is constant for Vypase S 6 V and increases with Vipage for higher voltages.
In contrast, the controller cavity’s loss rate y, mostly decreases when the applied voltage
increases, but its behavior is significantly non-monotonic and least regular of all the pa-
rameters. We were unable to find a high quality, monotonic fit to this parameter even after
randomizing the initial state for the simulated annealing optimization algorithm.

We also performed experiments where both Va5 and the resonance frequency of the
controller cavity were tuned (via Vi), but were also unable to achieve disturbance re-
jection in this case. We attribute this to the inability to tune the CCD to the disturbance
rejection parameter regime due to (i) the cross-talk effect mentioned above inhibiting in-
dependent tuning of device parameters, and (ii) the large mismatch between the quality
factors of the two cavities due to the much larger linewidth of the controller cavity com-
pared to the plant cavity.
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6 Discussion

In this work, we analyzed the suitability of integrated silicon photonics to serve as a plat-
form for implementing scalable CQFC networks. In addition to summarizing the strengths
of silicon photonics for this application, we also outlined the principal challenges to both
the theoretical framework and practical implementations. In particular, Section 4 pre-
sented the features of the integrated photonics platform that are not yet taken into account
by the SLH formalism, which was largely developed with bulk-optics implementations in
mind. We identified a number of extensions to the SLH formalism, which are needed to
make it more applicable to linear as well as nonlinear integrated optics networks.

In Section 5, we presented the results of a preliminary experiment that explored an on-
chip implementation of a simple CQFC network of two coupled cavities, and analyzed its
properties using the SLH formalism. The main lesson that we learned from this analysis
is that in situ controls applied to one component of the nanophotonic device significantly
affected properties of the rest of the components. This cross-talk is a result of the small
size of the device and the physical nature of the controls that utilize Joule heating to ma-
nipulate optical properties. Therefore, it is important to understand all the impacts of in
situ controls including thermal effects due to the heat transfer and effects on carrier con-
centration, both of which can change properties of integrated network components. It is
also clear that it is advantageous to use in situ control mechanisms that act locally, and
have as few side effects, as possible.

The fast progress in the field of nanophotonics technology is likely to generate new ad-
vances that will be beneficial to integrated optics implementations of CQFC networks.
In particular, recent advances in non-silicon CMOS-compatible platforms utilizing low-
loss materials such as silicon nitride and Hydex will likely enable more versatile integrated
components, especially for nonlinear optics [79]. For example, the Hydex platform was
used to implement an integrated photon pair source [80] employing an above-threshold
OPO, akey nonlinear optics element. Another promising development is the use of hydro-
genated amorphous silicon (a-Si:H) whose nonlinear optical properties in the telecommu-
nications band (including ultrahigh optical nonlinearity, low nonlinear loss, and reduced
impact of free-carrier processes) are superior to those of undoped crystalline silicon [81].
The a-Si:H platform was used to demonstrate integrated photonics implementations of
various nonlinear optical processes, including parametric amplification [38], four-wave
mixing for low-power optical frequency conversion [82—84], and cross-phase modulation
for all-optical switching [85]. The incorporation of new materials into CMOS compatible
processes and heterogenous integration into the Si photonics platform will greatly expand
the integrated quantum optics toolbox, and enable the construction increasingly complex

quantum optical networks.

Appendix: SLH model for the coupled cavity device

In order to develop the theoretical model of the CCD depicted in Figure 1, we use a
schematic representation of the equivalent network shown in Figure 4. Note that the net-
work shown in Figure 4 includes additional fictitious components (a beam splitter and two
mirrors) that are used to model losses. This network can be decomposed as a concatena-

tion product [5, 12] of several components in series. Specifically, the SLH triple for the
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CCD, Gcep, is given by:

Gcep = [(sz HG)<G,<(GsBG) < (G B Gl)]

B[Ga <G <G, BG,sBGs, (A1)
where the components are specified by the following SLH triples:

Gp = (1,vka, a)pafa),
Gp2 = (1,+/ka,0),

Gp3 = (1, /¥4, 0),

Ga = (1, /&b, w:b'b),
Ge = (1,4/kb,0),

Ge = (1, /b, 0),

G, =1,0,0),
Gy = (¢%,0,0),
Gi =(1,0,0),

e[ )
N I-n

Here, a is the annihilation operator for the fundamental mode of the plant cavity, of fre-
quency w,, and b is the annihilation operator for the fundamental mode of the controller
cavity, of frequency w,. G, and G represent the “mirrors” of the plant cavity that cou-
ple to the bus waveguides. Similarly, G4 and G, represent the “mirrors” of the controller
cavity that couple to the bus waveguides. We assume that all these mirrors have the same
leakage rate « (the leakage rate « of a cavity mirror relates to its power transmittance T
as k = cT/(2negt), where c is the speed of light, n.q is the refractive index of the cavity
medium, and £ is the cavity length). G,3 and G.3 represent the fictitious “mirrors” that
leak light and are used to model intrinsic losses in the plant cavity and the controller cav-
ity, respectively; these “mirrors” have leakage rates y, and y., respectively. G,, represents
the drive field applied to the plant cavity (signal w), which is assumed to be prepared in
a coherent state with complex amplitude «. G4 represents the phase shifter that induces
the phase shift ¢ in the feedback field u, and G; represents a simple passthrough. Finally,
G, represents the fictitious beam-splitter that models the loss in the waveguide linking
the controller and plant. The power loss in the waveguide is 7, so the /T — 7 portion of
the field amplitude is transmitted. We see from this component breakdown that there are
seven free parameters in this model: w,, w, &, ¥, Ve, 1, and ¢.

Equation (A1) expresses the power of the SLH formalism; it captures the modular nature
of the optical network and also gives us a prescriptive formula for how to model the prop-
erties of the entire device by knowing properties of each module. For simple networks like
the one considered here, it is possible to model each component and deduce the appropri-

ate product by examination. However, there exist systematic and prescriptive techniques
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to achieve the same SLH component breakdown for an arbitrary network [5, 12]. Further-
more, the QNET software package [66] enables complete automation of this task, starting
from a specification of the network in terms of its physical components.

Carrying out the series and concatenation products in Eq. (A1), yields the SLH triple
representing the entire CCD:

VI=neé® gm0 0 0 Ji(a+ J/T=1e?b)
Je? -7 0 0 0 JKne?h
Gceep = 0 0 1 0 0/ Jk@+b)+a )
0 0 0 1 O N7
0 0 0 0 1 ﬂb
a)pa%a +ob'b+ ﬁ (aTa - aot*)

FE [ et Tl - (- T ab] . (A2

The ordering of elements in matrices S and L corresponds to the numbering of input and
output ports in Figure 4, i.e., the matrix element Sj; is the scattering amplitude from input
port i to output port j, and the matrix element L; represents the field at output port i.

Given the SLH triple (A2) for the CCD, one can explicitly see that (i) the Hamiltonian
includes a coupling term representing an effective interaction between the plant cavity and
the controller cavity, induced by the feedback, and (ii) the signal field z at output port 1
is produced by an interference (i.e., composed of a linear combination) of the two cavity
fields: a + /T = neb. The observation made in Refs. [76] and [75] is that by appropriate
choice of parameters, especially the phase shift ¢, this output can be made zero regardless
of the driving field w at input port 3.

We can explicitly write output field at port 1 (outl or z) as

dBoutl = L1 (t) dat + Z Sll d. i[n
1

= Vi(a+/1-ne?b)dt + /1 -ne” dBi + /1 dBina. (A3)
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It can be verified that the input-output relationship predicted by this SLH model is iden-
tical to that predicted by the transfer function derived in Ref. [75]. This is to be expected
since the system is linear and the input is in a coherent state.

More generally, for CQFC networks with non-linear optical components, the SLH for-
malism can be used to model quantum optical phenomena that have no classical ana-
logues. For example, the SLH model of a network of two coupled OPOs [86] predicts
interferences that enable to achieve a degree of control over properties of the output field,
such as its squeezing spectrum [8], which would be impossible without the coherent feed-
back.
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