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Abstract
Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal
nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering
rates in this structure. The strong coupling between WL-DQD-MNPs was considered.
An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The
transition momenta are calculated accordingly to specify the normalized Rabi
frequency on this structure, considering the strong coupling between the
WL-DQD-MNP structures. This approach is important for realizing scattering rates,
including in-and-out capture and relaxation rates, which are essential for specifying
the type of structure used depending on the optimum value of the scattering time
required to fit the application. The QD hole capture rate is the highest, and the hole
capture times are the shortest. The relaxation times are less than the electron capture
times by one order, while they are half of the hole capture times. The capture rates
increase with increasing distance R between the DQDs and the MNP. High tunneling
increases hole-capture rates and changes the relaxation rates, showing the
importance of tunneling in controlling the scattering rates.

Keywords: Coulomb scattering rates; Metal nanoparticle; Double quantum dot;
Capture rate; Relaxation rate; OPW; Wetting layer

1 Introduction
Quantum dot (QD) nanostructures are promising for future devices [1]. The develop-
ment of nano growth methods has made aligning QDs with metal nanoparticles (MNPs)
easy. As strong coupling in MNP-QD systems has been proven, controlling the dynam-
ics and parameters of MNP-QD systems has become desirable [2–4]. The MNP surface
plasmonic field and QD excitons interact via Coulomb interactions with energy transfer
[5]. The frequency-dependent absorption and scattering, i.e., near-field enhancement, are
detected in the strong coupling regime. This enables the spectroscopy of the enhanced sur-
face used in many applications, such as Raman spectroscopy and biochemical sensors [6].
He and Zho [5] studied the strong coupling in a double MNP-QD system via quantum elec-
trodynamics and canonical transformations. The importance of Fano resonance is deter-
mined. Trügler and Hohenester used quantum mechanics to describe surface-plasmon-
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polaritons and molecular dynamics and demonstrated strong coupling in an MNP-QD
hybrid system [2]. In the quasistatic regime, where the light wavelength is much larger
than the MNP size, and the MNP-QD distance, Hohenester and Trügler used the Green
function as an essential couple between classical Maxwell and quantum electrodynamics.
These methods separate the decay rate into radiative and nonradiative components [6].
Both [2] and [6] use the boundary element approach to calculate the decay rates. Refs.
[1, 5, 6] exploit the Drude model to describe the electrons in an MNP.

Many-body effects affect the optical properties of QD nanostructure devices. The sim-
ple rate equations cannot represent the essential dynamics in a nonequilibrium case [7].
The density matrix theory simulates QD, DQD, and MNP-DQD systems [8]. Such mod-
eling is adequate for describing the interaction between states well through the density
element ρij, which cannot be calculated with rate equations. Modeling of QD and DQD
systems under many-body effects has been performed [9]. However, modeling the many-
body effect in MNP-QDs has not been achieved.

The QD nanostructure was grown conventionally on a wetting layer (WL) in Stranaska–
Krastanov growth mode (by molecular beam epitaxy). It is an ordinary quantum well
(QW) layer, a two-dimensional layer quantized in one dimension (1D). As shown in Fig. 1,
carrier transitions from WL to QDs are inevitable in the WL-QD structures. This is be-
cause the WL is a reservoir of carriers, and if there is an injection in the device (laser or
light emitting diode device), the injection occurs on the WL, and then the carriers can
reach the QD state. WL is only quantized in 1D, while QDs are quantized in total (3D).
Physically, the transitions occur only between the states of the same quantized numbers.
Therefore, transitions between the in-plane (two dimensions) WL and the QDs are im-
possible. The orthogonalized plane wave (OPW) approximation is required in the WL-QD
simulation to satisfy this reality. In OPW, the plane wavefunction of the WL is orthogonal-
ized on the QD state wavefunctions. Then, the transitions occur only between quantized
states of the same quantum numbers. This formulation is not easy to apply and is only used
in a limited number of works [8, 9]; simplified approximations are employed. Earlier works
[10, 11] used OPW and considered the QD wavefunction as a simple harmonic oscillator
and the quantum well (QW) WL an infinite structure that oversimplified the problem.
However, one must refer to their high work on putting the main points on modeling.

The InAs/GaAs DQD system was detected experimentally by Tarasov et al. [12]. The at-
tachment of QDs to MNPs via bimolecular centers was described in many articles [13, 14].
Zhang et al. clarified the alignment of MNPs to QDs via molecular beam epitaxy through
strain-driven nucleation [15]. Therefore, preparing such a hybrid structure was possible.

The WL-DQD-MNP structure was studied in our earlier works [8, 16] by applying the
OPW (which has not been involved before in QD-MNP works). However, the Coulomb
effect has never been discussed in these works or others dealing with WL-QD-MNPs in the
strong coupling case. Each work addresses QD-MNPs or semiconductor nanostructure-
MNPs; one can see the direct lines in their sketches, referred to as the Coulomb effect.
However, no one has studied this phenomenon, and the real problem of strong coupling
(in the case here, where MNP is nearest to QDs) has been approximated and not solved.

This work models the many-body effects in the WL-DQD-MNP structure considering
the OPW, which is inevitable in WL-QD transitions. In addition to this modeling, this
work has many perspectives. The effect of MNP was evaluated by normalization of the
Rabi frequency. The carrier occupation probability is computed through the density ma-
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Figure 1 Schematic diagram of the DQD and MNP hybrid system, where rd1 and rd2 are the radii of DQD and
the radius rm of MNP, respectively

trix theory by modeling the scattering rates. The literature uses experimental data from
materials different from those in the understudy or normalized values for energies and
momenta. In this work, the WL and QD energies are calculated and subsequently used
to estimate the momenta, which calculates the Rabi frequency. The capture rates increase
with increasing distance R between the DQDs and the MNP.

The paramount importance of such modeling is to specify the scattering (capture and
relaxation) rates. Therefore, one can determine if the scattering is strong (one of the results
here is increasing the scattering with MNP-DQD distance). For example, high scattering is
required for high-speed frequency modulation. Then, one can desire the structure neces-
sary depending on the needed application. A comparison with the results of other works
(with WL-QD structures) provides insight into the correctness of the results obtained
here.

2 DQD-MNP structure
The case of study here is the hybrid DQD-MNP structure with DQDs of two InAs QDs, a
quantum disk shape, each with rd1 (= 13 nm) and rd2 (= 11 nm) radii and hd1 (= 2 nm) and
hd2 (= 3 nm) heights, for QD1 and QD2, respectively. The MNP is a sphere with a radius
rm (= 8 nm), the distance between the DQDs and the MNP is denoted by R (= 7 nm); see
Fig. 1. A Coulombic study assumes strong coupling; of course, R < rm < rd1 and rd2 must be
fulfilled [17] as strong coupling conditions. The dielectric constants εs and εM are defined
as those of the QD and MNP, respectively. WL is the QW on which the QDs are grown.

3 Theoretical model
3.1 Wave function
The QD wavefunction is defined in cylindrical coordinates (ρ,φ, z) as follows [9],

ϕQD(
⇀
r ) = ϕd(⇀ρ )ϕQD(

⇀
z )u(

⇀
r ) (1)
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The in-plane QD envelope function ϕd(⇀ρ ) is defined by Jm(p⇀
ρ ), the first kind of Bessel

function [9],

ϕd(⇀ρ ) = CnmJm(p⇀
ρ ) (2)

where Cnm is the normalization constant, and the constant p is defined by,

p =
√

2m∗
d(Eρ – Vd)
�

(3)

Eρ is the QD-energy state in the in-plane direction, and Vd and m∗
d are the potential

and the effective mass of the QD, respectively. Vd is taken as zero inside the disk. The QD
is defined by the conduction CB (valence VB) band offset �Ec(�Ev). The QD envelope
function in the z-direction resembles that of the QW [9],

ϕQD(z) = AZQD cos(kzz) (4)

where AZQD is the normalization constant of the QD function in the z-direction. u(
⇀
r ) is

the periodic part of the Bloch function in the QD crystal. The QW-WL wavefunction is
written as [18],

ϕw(�r) = ϕ0
k (⇀ρ )ϕw(z)u(�r) (5)

where ϕ0
k (⇀ρ ) is the in-plane (⇀ρ -direction) WL wavefunction and the superscript (0) dis-

tinguish it from the orthogonalized wavefunction. It is defined by [18],

ϕ0
k (⇀ρ ) = Awρ exp(i�kwρ .⇀ρ ) (6)

In the in-plane WL, �kwρ is the wavevector, and Awρ is the normalization constant. In the
z-direction [18],

ϕw(z) = Awz cos(kzwz) (7)

Awz is the normalization constant, and kzw is the WL wavevector in the z-direction.

3.2 Coulomb potential
According to [19], the Hamiltonian in the second quantization for carrier–carrier scatter-
ing is written for the DQD–WL–MNP hybrid system (Fig. 2) as follows,

Hsys = Hkin + HC =
∑

b

εba†
bab + VC(DQD – WL – MNP) (8)

The parts define the Hamiltonian Hkin as the kinetic contribution and HC as the
Coulomb interaction. The electron creation and annihilation operators are ax and a†

x at
energy εx in the |x〉 state. The bare Coulomb potential of the DQD-WL-MNP Coulomb
interaction is,

VC(DQD – WL – MNP) =
1
2

∑

bfgh

{
Vbfgha†

ba†
f agah

}
+ VM (9)
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Figure 2 Energy band diagram of the DQD-WL-MNP hybrid system. Note that k1, k2, k3 are three wave
vectors in the WL (in the z-direction), which are chosen depending on the WL energy states in the CB while
k1h , k2h , k3h are those in the VB

The MNP potential is VM . Additionally, note that b, f , g , and h in the sum denote all
possible electron states. For the QD structure [19, 20],

Vbfgh =
∫∫

dr dr′ϕ∗
b (r)ϕ∗

f
(
r′) e2

0
4πε0εQD|r – r′|ϕg

(
r′)ϕh(r) (10)

ϕx(r) is the wave function of the single particle. The permittivity of the vacuum and back-
ground are given by ε0 and εQD, respectively, and –e0 is the elementary electronic charge.
The wave functions are separated into an in-plane �a-dimensional part and a z-dimensional
part. Then, under a Fourier transform, the bare Coulomb potential as a function of the 2D
wavevector �q is [20]

Vc
(|�r1 – �r2|

)
=

∑

q
e–i�q.( �ρ– �́ρ)V (�q, z – ź) (11)

Under [14]

V (�q,�z – �́z) =
e2

0
2ε0q

e–q|z–ź| (12)

In Eq. (10), the Coulomb potential, including the screening effect (through ε0εQD), is de-
fined. Equations (11) and (12) define the bare Coulomb potential. To formulate the prob-
lem to the DQD – WL – MNP system under study, with disk shape QDs (in-plane �ρ , and
�z-dimensions quantized) and 2D WL (�z-dimension quantized only), the bare Coulomb
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potential is separated according to the �ρ , and �z-dimensions dependence wave functions
as follows,

Vvv2v3v1 =
1
A

∑

q
V b,b2

σσ2σ3σ1 (�q)δb,b1δb2,b3 × 〈
ϕb

d
∣∣e–i�q. �ρ∣∣ϕb1

k1

〉〈
ϕ

b2
k2

∣∣ei�q. �ρ∣∣ϕb3
k3

〉
(13)

A is the WL area, and the available carrier states are vv2v3v1, while the z-direction quan-
tum numbers are σ , σ2, σ3, σ1. The DQD states are referred to here by d, while ki (i = 1, 2, 3)
refers to the wavevectors in the in-plane direction of the WL. In the 2D-momentum (�q),
the Coulomb potential is given by [19]

Vσσ2σ3σ1 (�q) =
e2

0
2ε0q

∫∫
dz dźϕ∗

σ (z)ϕ∗
σ2 (ź)e–q|z–ź|ϕσ1 (z)ϕσ3 (ź) (14)

Considering the approximation [9, 21],

|z – ź| ≈ z –
�z�́z
z

e–q|z–ź| ≈ e–q(z– �z�́z
z )

Then, set q �z
z
∼= �́q. The Coulomb potential in the z-direction is then written as,

Vσσ2σ3σ1 (�q) =
e2

0
2ε0q

{[∫
dzϕ∗

σ (z)e–qzϕσ1 (ź)
][∫

dźϕ∗
σ2 (ź)eq́źϕσ3 (ź)

]}
(15)

3.3 The screened Coulomb matrix element
The screening effect can be introduced through the 2D static limit of the dynamic Lind-
hard equation [9–11, 19, 22]. In the DQD-WL-MNP hybrid system, the screened Coulomb
matrix element is given by

W (DQD – WL – MNP)(�q) =
VC(DQD – WL – MNP)(�q)

ε(q)

→ VC(DQD – WL – MNP)(�q)
1+k0
kvv1

(16)

The 2D dielectric function ε(q) is defined through the 2D inverse screening length k0,
given by [10],

k0 =
∑

b=e,h

2mbe2

ε0εQD�2

[
1 – exp

(
–
�

2πwb

kBTmb

)]
(17)

The thermal energy is kBT , the effective mass and the frequency of the carrier are mb

and wb, respectively.

3.4 DQD-MNP applied fields
To calculate Eq. (16), one needs to compute the MNP potential, as shown in Eq. (9). It is
estimated from the integration over the DQD-MNP distance R as

VM = –
∫ R

0
EMNP.dR (18a)
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According to Ref. [23], the DQD-MNP hybrid system has a total field inside the MNP,
as shown in Fig. 2, given by,

EMNP =
1

εeffm

[
E(0)

02
2

+
SaPQD

εeffsR3

]
(18b)

The screening effect is considered for both MNP and DQD fields as [23],

εeffi=
(2ε0 + εi)

3ε0
(18c)

where εi is either εs for the dielectric constant of the semiconductor DQD or εm for the
MNP. The probe amplitude is E0

02, and the polarization in the DQD is PQD (= μ20(ρ20 +
ρ02)). Considering the probe field applied between QD states (v, v1), the potential of the
MNP reads,

VMvv1
= –

1
εeffm

[
E(0)

02
2

R –
Saμvv1ρvv1

2εeffsR2

]
(18d)

where μvv1 and ρvv1 are the momentum and the density matrix elements, respectively,
between QD states v, v1.

The probe field between the states |0〉 ↔ |2〉 of the DQD-MNP system was applied. This
field is written as E02(t) = E0

02
2 e–iω02t + c.c. with a transition frequency ω02. Considering the

MNP effect, the total QD field is [23],

EQD =
1
2

E(0)
02

εeff s
+

SaPMNP

εeff sR3 (19)

The direction of the electric field is specified by Sa, where Sa = 2 is the z-axis polarization
and Sa = –1 is the parallel direction. The MNP-induced polarization is PMNP (= βEMNP).
β (= γ a3) defined by [23],

γ =
εm(w) – ε0

εm(w) + 2ε0
(20)

Using the PMNP definition in Eq. (19) and then substituting into Eq. (18b), the total QD
field becomes,

EQD =
1
2

E(0)
02

εeffs
+

1
2

E(0)
02

εeffs

Saγ a3

R3 +
S2

aγ PQD

ε2
effs

a3

R6 (21)

The second and third terms in Eq. (21) define the normalized Rabi frequency [16],

�
(r)
20 = �

(1)
20 – ηρ20 (22a)

where

�
(1)
20 = �

(0)
20

(
1 +

Saγ a3

R3

)
(22b)
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and

η =
S2

aγμ2
20

�ε2
eff 1

a3

R6 (22c)

The definitions in Eq. (22a)–(22c) are attained at strong coupling [16]. Note that the un-

normalized Rabi frequency of the probe field is �
(0)
20 = μ12E(0)

02
2�εeffs

[23]. The dielectric function
of the MNP is defined by [24],

εm(w) = εd(w) + εs(w) (23a)

where εs(w) gives the electrons of the s-state contribution to the dielectric constant. It is
defined in the Drude model by [24]

εs(w) = 1 –
w2

p

w2 + iw(γbulk + Avf
rm

)
(23b)

where γbulk is the damping constant of the metal bulk structure, vf is the Fermi energy
electron velocity, wp is the metal plasma frequency, A is related to the MNP electron scat-
tering, and εIB(w) is the d-state contribution of electrons in the MNP and is defined for
the gold-plasma frequency wp = 2.5 (eV ) by [24],

εd(w) = 1.15 + i10.5 (23c)

Using the Drude model to describe electrons in the MNP is a common assumption with
a strong coupling regime. Such behavior results from the high electron concentration even
with MNP [25–28].

3.5 The processes in the DQD-WL-MNP system under the Coulomb effect
The QD-WL carrier scattering rates are listed in Ref. [11]. For the hybrid DQD-WL-MNP
system, shown in Fig. 2, the carrier scattering rate can be written as,

Sb,M,d =
2π

�

∑

k1,k2,k3,b′

[
2|WM,dk2k3k1 |2 – WM,dk2k3k1 W ∗

M,dk3k2k1

]
δ
(
εb

d – εb
k1 + εb′

k2 – εb′
k3

)

× {(
1 – f b

d
)
f b
k1

(
1 – f b′

k3

)
f b′
k2 – (f → 1 – f )

}
(24)

In Eq. (24), the direct and exchange partners (the first and second terms in the square
brackets) determine the screened Coulomb matrix element. The spin degeneracy causes
a factor of 2 in the direct Coulomb process. This factor is discarded in the exchange
electron-hole process. Accordingly, seven possible scattering processes for the WL-QD-
MNP hybrid system are listed in Table 1 (the fifth process is an exchange process added
to processes 3 and 4). These processes are diagrammed in Fig. 3.

For the 1st scattering rate in Table 1 (Fig. 3), an electron is captured from the WL electron
|k1〉 to the |12〉 electron state in QD1 with the assistance of the WL transition |k2〉 → |k3〉.
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Table 1 QD states where capture and relaxation processes can occur. Note that an assistant process
is associated with each process (capture or relaxation) as a four-carrier Coulomb process

No. Process Substate

1 Capture |k1〉 → |c12〉
Assistant |k2〉 → |k3〉

2 Capture |k1h〉 → |v32〉
Assist |k2h〉 → |k3h〉

3 Relaxation |c02〉 → |c01〉
Assist |k2〉 → |k3〉

4 Relaxation |k2〉 → |c01〉
Assist |c11〉 → |k3〉

5 Coulomb exchange |c02〉 → |c01〉
Assist |k2〉 → |k3〉

6 Mixed |k1〉 → |c01〉
Assist |v21〉 → |k3h〉

7 Capture |k1〉 → |c12〉
Assist |c01〉 → |c11〉

8 Relaxation |c02〉 → |c01〉
Assist |c11〉 → |k1〉

It is written as,

Scap
M,e,c12

= Scap
M,ee,c12

+ Scap
M,eh,c12

=
2π

�
δ
(
Ee

c12 – Ee
k1 + Ee

k3 – Ee
k2

)

× WM,c12k3k2k1

[
2W ∗

M,c12k3k2k1 – W ∗
M,c12k3k1k2

]

× {
(1 – fc12 )fk1 (1 – fk3 )fk2 – fc12 (1 – fk1 )fk3 (1 – fk2 )

}

+
2π

�
δ
(
Ee

c12 – Ee
k1 + Eh

k3h
– Eh

k2h

) × 2|WM,c12k3hk2hk1 |2

× {
(1 – fc12 )fk1 (1 – fk3h )fk2h – fc12 (1 – fk1 )fk3h (1 – fk2h )

}
(25)

The Coulomb scattering matrix element is WM,c12k3k2k1 of the four-carrier DQD interac-
tion under the MNP effect, where M refers to the MNP, c12 refers to the |12〉 QD CB state,
and ki and kih refer to the WL states according to the quantum numbers in the CB and
VB, respectively. Ee

cij
is the QD electron energy of the |ij〉 QD CB state, Ee

ki
and Eh

k2h
are,

respectively, that of WL CB electron and VB hole energies corresponding, respectively, to
their wave numbers ki and k2h. fi refers to the Fermi function of the referred state in the
QD or WL in the CB or VB. All these states and wave numbers are clarified in Fig. 2 above.
δ(E) refers to the delta function. The Coulomb matrix element for the e-e interaction is
[10],

WM,c12k3k2k1 (�q) =
Vc12k3k2k1 (�q)

ε(q)
→ Vc12k3k2k1 (�q)

1+k0
kc12

(26a)

With the Vc12k3k2k1 is the interaction matrix element of the bare Coulomb potential and
ε(q) is the dielectric function. To determine the Coulomb interactions for QD-WL-MNPs,
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Figure 3 Scattering processes in the WL-DQD system. Each process has two lines of the same color for two
carrier processes (ee and eh or he and hh with e: electron and h: hole). Only the exchange process (black line),
contributed to by other processes, appears lonely. Cap: capture, relax: relaxation, mix: mixed, and exch:
exchange processes. The processes are numbered according to their appearance in Table 1. For example, p1
refers to the process no. 1 in Table 1

we have the following integrations:

Vc12k3k2k1 =
{

Vc12k3k2k1 (�z) × 〈
�c12 ( �ρ)

∣∣e–i�q. �ρ∣∣�k1 ( �ρ)
〉〈
�k3 ( �ρ)

∣∣ei�q. �ρ∣∣�k2 ( �ρ)
〉}

+ VM02 (26b)

In the z-direction, we have

Vc12k3k2k1 (�z) =
e2

0
2ε0kz

× 〈
�c12 (�z)

∣∣e–�q.�z∣∣�k1 (�z)
〉〈
�k3 (�z)

∣∣e�q.�z∣∣�k2 (�z)
〉

(26c)

With �cij ( �ρ) and �ki ( �ρ) in Eq. (26b) are, respectively, the in-plane ( �ρ) wave functions of
the QD and WL in the CB. Also �c12 (�z) and �k1 (�z) in Eq. (26c) are their corresponding in
the z-direction. VM02 is the MNP potential between QD states |0〉 and |2〉 where the field
is applied. For the WL-DQD system with QDs of a quantum disk shape, it is written (in
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the z-direction) as,

Vd1k3k2k1 (�z) =
e2

2ε0kw
×

∫ zw

0
AQDz cos(kzc12 z) exp(–k1z)Aw cos(k1z) dz

×
∫ zw

0
Aw cos(ḱ3ź) exp(ḱ2ź)Aw cos(k2ź) dź (26d)

where kzc12 is the QD wavenumber for the QD state, and ḱ3 is the WL wavevector in the
QW sublevel, which is slightly different from that represented by k3.

3.6 OPW in the QD-WL interaction
In the �ρ-dimension, some difficulty arises from considering the OPW, which is inevitable
in WL-QD transitions. In the �ρ-dimension, each WL-WL integration has eight integra-
tions due to the consideration of OPW according to [9],

〈
�k2

∣∣ei�q. �ρ∣∣�k3

〉

=
1

Nk2 Nk3

{〈
�◦

k2

∣∣ –
∑

i

〈
�i

d
∣∣〈�◦

k2

∣∣�i
d
〉}∣∣ei�q. �ρ∣∣

{∣∣�◦
k3

〉
–

∑

j

∣∣�j
d′
〉〈
�

j
d′
∣∣�◦

k3

〉}

=
1

Nk2 Nk3

{〈
�◦

k2

∣∣ei�q. �ρ∣∣�◦
k3

〉
–

∑

i

〈
�◦

k2

∣∣ei�q. �ρ∣∣�i
d
〉〈
�i

d
∣∣�◦

k3

〉

–
∑

i

〈
�i

d
∣∣ei�q. �ρ∣∣�◦

k3

〉〈
�◦

k2

∣∣�i
d
〉
+

∑

ij

〈
�i

d
∣∣ei�q. �ρ∣∣�j

d′
〉〈
�◦

k2

∣∣�i
d
〉〈
�

j
d′
∣∣�◦

k3

〉}
(27)

with Nk2 =
√

1 – |∑i〈�i
d|�◦

k2
〉|2. Also, �i

d and �
j
d′ are the QD wave functions for states |i〉

and |j〉 and �◦
kj

is the WL wave function before using OPW.

3.7 Scattering rates in the WL-DQD-MNP hybrid system
The other scattering rates in the WL-DQD-MNP hybrid system are listed in Table 1 and
shown in Fig. 3. Process no. 2 in Table 1 is defined as,

Scap
M,h,v32

= Scap
M,hh,v32

+ Scap
M,he,v32

=
2π

�
δ
(
Eh

v32 – Eh
k1h

+ Eh
k3h

– Eh
k2h

)

× WM,v32k3hk2hk1h

[
2W ∗

M,v32k3hk2hk1h
– W ∗

M,v32k3hk1hk2h

]

× {
(1 – fv32 )fk1h (1 – fk3h )fk2h – fv32 (1 – fk1h )fk3h (1 – fk2h )

}

+
2π

�
δ
(
Eh

v32 – Eh
k1h

+ Ee
k3 – Ee

k2

) × 2|WM,v32k3k2k1h |2

× {
(1 – fv32 )fk1h (1 – fk3 )fk2 – fv32 (1 – fk1h )fk3 (1 – fk2 )

}
(28)

hh and he in the S rates are, respectively, refer to the hole-hole and hole-electron interac-
tions. Please return to Fig. 2 to know the numbering of states in this equation. Process no.
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3 in Table 1 is defined as,

Srelax
M,e,c01 = Srelax

M,ee,c01 + Srelax
M,eh,c01

=
2π

�
× 2|WM,c01k3k2c02 |2δ

(
Ee

c01 – Ee
c02 + Ee

k3 – Ee
k2

)

× {
(1 – fc01 )fc02 (1 – fk3 )fk2 – fc01 (1 – fc02 )fk3 (1 – fk2 )

}

+
2π

�
× 2|WM,c01k3hk2hc02 |2δ

(
Ee

c01 – Ee
c02 + Eh

k3h
– Eh

k2h

)

× {
(1 – fc01 )fc02 (1 – fk3h )fk2h – fc01 (1 – fc02 )fk3h (1 – fk2h )

}
(29a)

Process no. 4 in Table 1 is defined as,

Srelax
M,e,c01a = Srelax

M,ee,c01a + Srelax
M,eh,c01a

=
2π

�
× 2|WM,c01k3c11k2 |2δ

(
Ee

c01 – Ee
k2 + Ee

k3 – Ee
c11

)

× {
(1 – fc01 )fk2 (1 – fk3 )fc11 – fc01 (1 – fk2 )fk3 (1 – fc11 )

}

+
2π

�
× 2|WM,c01k3hv31k2 |2δ

(
Ee

c01 – Ee
k2 + Eh

k3h
– Eh

v31

)

× {
(1 – fc01 )fk2 (1 – fk3h )fv31 – fc01 (1 – fk2 )fk3h (1 – fv31 )

}
(29b)

Process no. 5 in Table 1, which is a Coulomb exchange contribution process, is defined as,

Srelax
M,e,c01b

= Srelax
M,ee,c01b

+ Srelax
M,eh,c01b

=
2π

�
× 2 Re

[
WMc01k3k2c02 W ∗

Mc01k3c02k2

]
δ
(
Ee

c01 – Ee
c02 + Ee

k3 – Ee
k2

)

× {
(1 – fc01 )fc02 (1 – fk3 )fk2 – fc01 (1 – fc02 )fk3 (1 – fk2 )

}

+
2π

�
× 2 Re

[
WMc01k3hk2hc02 W ∗

Mc01k3hc02k2h

]
δ
(
Ee

c01 – Ee
c02 + Eh

k3h
– Eh

k2h

)

× {
(1 – fc01 )fc02 (1 – fk3h )fk2h – fc01 (1 – fc02 )fk3h (1 – fk2h )

}
(29c)

Re() refers to the real part. Note that the relaxations in processes 3 and 4 are used with the
Coulomb exchange part as follows,

Srelax = Srelax
M,e,c01 + Srelax

M,e,c01a – Srelax
M,e,c01b

(29d)

Additionally, define,

Srelax
M,ee,a = Srelax

M,ee,c01 + Srelax
M,ee,c01a – Srelax

M,ee,c01b
(29e)

Srelax
M,eh,a = Srelax

M,eh,c01 + Srelax
M,eh,c01a – Srelax

M,eh,c01b
(29f)
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The subscripts a and b are used to recognize these terms from the above terms that began
with the same QD state. Process no. 6 in Table 1 is a mixed process and is defined by

Smixed
M,eh,c01 =

2π

�
× 2|WM,c01k3hv21k1 |2δ

(
Ee

c01 – Ee
k1 + Eh

k3h
– Eh

v21

)

× {
(1 – fc01 )fk1 (1 – fk3h )fv21 – fc01 (1 – fk1 )fk3h (1 – fv21 )

}
(30)

Process no. 7 in Table 1 is defined as,

Scap
M,e,c12

= Scap
M,ee,c12a

+ Scap
M,eh,c12a

=
2π

�
δ
(
Ee

c12 – Ee
k1 + Ee

c11 – Ee
c01

)

× WMc12c11c01k1

[
2W ∗

Mc12c11c01k1 – W ∗
Mc12c11k1c01

]

× {
(1 – fc12 )fk1 (1 – fc11 )fc01 – fc12 (1 – fk1 )fc11 (1 – fc01 )

}

+
2π

�
δ
(
Ee

c12 – Ee
k1 + Eh

v31 – Eh
v21

) × 2|WMc12v31v21k1 |2

× {
(1 – fc12 )fk1 (1 – fv31 )fv21 – fc12 (1 – fk1 )fv31 (1 – fv21 )

}
(31)

Process no. 8 in Table 1 is defined as,

Srelax
M,b,m = Srelax

M,ee,c01a + Srelax
M,eh,c01a

=
2π

�
δ
(
Ee

c01 – Ee
c02 + Ee

k1 – Ee
c11

)

× WMc01k1c11c02

[
2W ∗

Mc01k1c11c02 – W ∗
Mc01k1c02c11

]

× {
(1 – fc01 )fc02 (1 – fk1 )fc11 – fc01 (1 – fc02 )fk1 (1 – fc11 )

}

+
2π

�
δ
(
Ee

c01 – Ee
c02 + Eh

k1h
– Eh

v31

) × 2|WMc01k1hv31c02 |2

× {
(1 – fc01 )fc02 (1 – fk1h )fv31 – fc01 (1 – fc02 )fk1h (1 – fv31 )

}
(32)

4 Calculation scenario
Each of the scattering rates of these eight processes in Eqs. (25), (28)-(32) is defined by two
types of parameters: the screened Coulomb matrix element W (for direct or exchange
process or both) and the Fermi distribution functions fcij (or fvij ). The first type, W , is
defined by Eq. (26a) for electrons (and a similar equation for holes), which is calculated
through Eq. (26b) and their related integrations in Eqs. (26c), (26d) and the OPW de-
fined in Eq. (27). For the Fermi distribution functions, they are calculated by the distri-
bution functions (ρii) for their states (|0〉 . . . |5〉), see Fig. 2. The distributions are defined
in Appendix B through the density matrix system equations. The first five equations in
Appendix B define these distributions as the occupation probabilities of the WL-DQD
states. The rest of the equations in Appendix B define the density operators (ρij) for the
interactions between WL-DQD states (|i〉 and |j〉).

The screened Coulomb matrix elements here obey the Markov approximation in the
time scale. Thus, the carrier population of the WL-DQD states is cast into the equation
ρ· = Sin(1 – ρ) – Soutρ [10]. Then, the scattering rates are prepared to this form in Ap-
pendix A before introducing them into the density matrix system, Appendix B.
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Table 2 The parameters used in the calculations

Parameter Symbol Value (unit) Ref.

The Lorentzian line width �(= γ0) 1/(2.5 ns) [30]
Dephasing time τt 500 ps [31]
InAs QD dielectric constant εs 15.15ε0 [32]
Damping constant of the bulk metal γbulk 0.1 (eV) [24]
Electron velocity at Fermi energy vf 1.4× 106 m/sec [24]
Plasma frequency of the metal wp 2.5 (eV) [24]

Calculated QD Momenta

Momentum Value (nm.e) Momentum Value (nm.e)

μ10 13.2789 μ25 4.2353e–05
μ20 4.3492e–04 μ35 4.2667e–05
μ03 0.0014 μ14 6.1838e–04
μ32 2.4485 μ04 6.8385e–04
μ31 6.2797e–04 μ21 3.9315e–04

5 Results and discussion
MAOUD-37 software written in the MATLAB environment [9] was built in our laboratory
to interact with the optical properties of QDs, and it is used in many of our articles. Plas-
monic structures are also studied by this software [8]. This work involved strong coupling
between DQDs and MNPs. It has material properties. The calculations began with QD en-
ergy levels, transition momenta, and Rabi frequencies. In the literature, QD energy states
and momenta are taken from experimental values for materials different from those under
study. This simulation has another property. The Coulomb interaction between QDs and
MNPs is considered here, but this interaction is implicitly taken only through the Rabi
frequency in the literature. QD energy states are calculated via the quantum disk model
[29] and compared with experimental results [8]. The QD-WL-MNP scattering rates are
defined in Eqs. (25) and (28)-(32). These equations are introduced to the density matrix
system equations in Appendix B, which are then solved via the Runge–Kutta method in
the MAOUD-37 software. The resulting energy states and momenta are listed in Table 2
for easy results. The pump and probe powers are defined by Ii = c√εbε0|Ei|2/104, where
i = 0, 1 is the probe and pump power, and Ei is the intensity. The data used are listed in
Table 2.

5.1 DQD-MNPs in the presence of WL (OPW)
Figure 4 shows the capture and relaxation rates of the WL-DQD-MNP hybrid system. For
the in-capture rates, as shown in Fig. 4 (a), the WL hole in-capture rate S5

h (magenta curve)
is the highest. The peak rate is 0.135 ps–1 and occurs at the WL occupation of electrons
ρ44 = 0.4. This result is acceptable because the quantum well WL has many energy states
and becomes a carrier reservoir for QDs [33]. As a result, more carriers can enter the WL,
and a high carrier scattering rate is obtained. The QD electron rate S1

e (the red curve) is
less by one order, where its peak is 0.01 ps–1. After that, the QD hole rate S3

h appears (the
black curve). The QD in-capture rates of S0

e and S2
h are very low. For the out-capture rate,

as shown in Fig. 4 (b), the QD hole rate S3
h is the highest, and its peak is 0.135 ps–1. After

that, the QD electron rate S1
e is 0.01 ps–1. The WL hole rate S5

h then appears and is reduced
by two orders of magnitude from S3

h. The values of S0
e and S2

h are very small. Figure 4 (c)
shows the in-relaxation rates, which are the same for all the states. This is because of the
calculation method, which is abstracted in Eqs. (A.2g), (A.2h) in Appendix A below. The
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Figure 4 (a) In-capture rates, (b) out-capture rates, (c) in-relaxation rates, and (d) out-relaxation rates of the
DQD-MNP hybrid system. These figures are plotted at T10 = 150γ0, I1 = 8× 10–12W , and I0 = 10–15W . The
MNP radius is rm = 8 nm, and the distance between the DQDs and the MNP is R = 7 nm

in-relaxation peak occurs at ρ44 ∼ 0.4 and is reduced at complete WL occupation. Figure 4
(d) shows that the out-relaxation rate is one order longer than the in-relaxation rate. Ad-
ditionally, all the states have the same relaxation for the same reason. The results in Fig. 4
are consistent with those in [34], where the Sh in-and-out-capture rates are the higher
rates, having a peak, and the Sh out-rate peaked at 0.12 ps–1. The excited-state in-capture
rate for holes is also the highest in [35]. The Pauli blocking is evident in the scattering rate
behavior in all panels of Fig. 4, where the rates vanish at complete occupation (ρ44 = 0.4).

Figure 5 shows the scattering times. Figure 5 (a) illustrates the electron capture time τ 1
e .

Figure 5 (b) shows that the hole capture time τ 3
h is shorter than the electron capture time in

Fig. 5 (a) by one order. This result is with [36]. The electron capture time τe is longer than
the hole in [11] by more than one order of magnitude. The electron capture time τe in [11]
is more significant than our results by ∼ one order, demonstrating the ability of MNP to
shorten the scattering time. The excited-state capture time for holes in [11] doubles our
results. Figure 5 (c) shows the relaxation times for electrons and holes, respectively. As
the relaxation rates are similar (in relation), their times are identical. At zero and full WL
occupation, the relaxation times are high, while a dip occurs at ρ44 ∼ 0.45. The relaxations
are less than the hole (electron) capture time by one (two) order(s). The QD relaxation
times in [11] are shorter than the capture times, coinciding with our results.

Figure 6 shows the effect of changing the distance R between the DQDs and the MNP
on the scattering rate. Figure 6 (a) indicates that the S1

e in-capture rate is increased by
0.021 ps–1 and peaks at ρ44 = 0.65 when R is increased by 1 nm. Figure 6 (b) shows that the
S5

h in-capture rate is increased by 0.04 ps–1, corresponding to a more significant increase
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Figure 5 (a) Electron capture times, (b) hole capture times, and (c) electron relaxation time of the DQD-MNP
hybrid system. These figures are plotted at T10 = 150γ0, I1 = 8× 10–12W , and I0 = 10–15W . The MNP radius is
rm = 8 nm, and the distance between the DQDs and the MNP is R = 7 nm

in the hole capture rate. Figure 6 (c) shows that the S1
e out capture rate is increased by

0.004 ps–1. Figure 6 (d) shows that the S3
h out capture rate increment is 0.05 ps–1. Figure 6

(e) shows that the in-relaxation S5
h rate increment is 0.05 ps–1. Figure 6 (f ) shows that the

out-relaxation rate S0
e is 0.02 ps–1 at the complete occupation of ρ44. It was shown [37] that

QD-MNP properties develop with increasing interparticle distance R. Except for Fig. 6 (f ),
the scattering rates peak at moderate WL occupation, while the difference between the two
curves is maximized at the peak.

Figure 7 shows the scattering rates at two values of tunneling T10 = 1500γ0 (blue curve)
and T10 = 15,000γ0, (red curve). The in–and–out–scattering rates with shallow values are
not shown here. The S1

e in-capture rate, Fig. 7 (a), is not changed under increased tunnel-
ing; this is also the case for S1

e out-capture rate, Fig. 7 (c). This result occurs due to the vast
distance (in energy) between DQD states in the CB, see Fig. 2, and the high relaxation rate
from states (greater by one order). So, even high tunneling does not change the situation.
The vast energy distance between CB QD states is assigned [29, 38]. The S5

h in-capture rate
increases under increased tunneling, Fig. 7 (b). When tunneling is increased by one order,
S5

h in-capture rate is (approximately) doubled. Similar behavior for S3
h out-capture rate is

shown in Fig. 7 (d). This can be reasoned to the nearest VB QD energy states [29, 38], see
Fig. 2. As the relaxations are taken similarly, S0

e in-relaxation and S2
h out-relaxation rates

are shown in Fig. 7 (e) and (f ), respectively. It is shown that S2
h out-relaxation rate, Fig. 7 (f ),

is reduced under tunneling; all other scattering rates contradict the behavior. The reason
for this is that with increasing tunneling, the carriers can be distributed between DQD
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Figure 6 Scattering rates at two different DQD-MNP distances: (a) S1e in-capture rate, (b) S
5
h in-capture rate, (c)

S1e out-capture rate, (d) S
3
h out-capture rate, (e) S

5
h in-relaxation rate, and (f ) S0e out-capture rate of the

DQD-MNP hybrid system. These figures are plotted at T10 = 150γ0, I1 = 8× 10–12W , and I0 = 10–15W . The
MNP radius is rm = 8 nm

states, and then, there is a possibility of filling new carriers in these states. This behavior
means increasing in-relaxation and reducing out-relaxation.

Figure 8 shows the scattering rates at two values of MNP radius. Figure 8 (a) for S1
e in-

capture rate and Fig. 8 (b) for S3
h out-capture rate. In both figures, the change in scattering

rate is marginal and occurs at moderate WL electron occupation ρ44. Such behavior occurs
because of the strong coupling, and then the system behaves as a whole, and the change
under structure parameters is small.

The eh and he (e: electron and h: hole) processes are essential in most of the processes
studied here and also to satisfy the stringent energy conservation conditions. Figure 9
shows the scattering rates under the approximation of neglecting these processes to see
their importance. The S0

e in-capture rate is shown in Fig. 9 (a) and S3
h out-capture rate is

shown in Fig. 9 (b). Also, the eh and he processes effect is marginal. Such behavior is also
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Figure 7 Scattering rates at two values of tunneling component: T10 = 1500γ0 (blue curve) and
T10 = 15000γ0, (red curve). (a) S1e in-capture rate, (b) S

5
h in-capture rate, (c) S

1
e out-capture rate, (d) S

3
h

out-capture rate, (e) S0e in-relaxation rate, and (f ) S2h out-capture rate of the DQD-MNP hybrid system. These
figures are plotted at I1 = 8× 10–12W , and I0 = 10–15W . The MNP radius is rm = 8 nm

shown in [39]. This work deals with the WL-DQD-MNP hybrid structure under strong
coupling. In both Figs. 8 and 9, the marginal change lies under the main effect of the MNP
potential.

6 Conclusions
In this work, Coulomb scattering rates in the WL-DQD-MNP structure are modeled con-
sidering the MNP potential, which was not modeled earlier. The strong coupling and the
OPW are considered. The Rabi frequency is normalized by considering strong coupling.
It is then solved in the density matrix theory, where the modeled capture and scatter-
ing rates are introduced. The highest capture rate occurs for the QD hole states with
the shortest capture times. The electron capture times are more significant than the one-
order-of-magnitude relaxation times. The capture rates increase with increasing distance
R between the DQDs and the MNP. Tunneling is of great importance in controlling the
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Figure 8 Scattering rates at two values of MNP radius: rm = 4.5 nm (blue curve) and rm = 10.5 nm (red
curve). (a) S1e in-capture rate, (b) S

3
h out-capture rate of the DQD-MNP hybrid system. These figures are plotted

at T10 = 150γ0, I1 = 8× 10–12W , and I0 = 10–15W

Figure 9 Comparison of scattering rates with the case of neglecting mixed processes (red line): rm = 4.5 nm
(blue curve) and (red curve). (a) S3h out-capture rate and (b) S0e in-relaxation rate of the DQD-MNP hybrid
system. These figures are plotted at T10 = 150γ0, I1 = 8× 10–12W , I0 = 10–15W and rm = 8 nm

scattering rates. From a physical point of view, the scattering rates of the WL-DQD-MNP
hybrid structure studied here lie under the Pauli-blocking behavior in filling the states, the
energy distance between states, and the effect of the MNP potential under strong coupling.

Appendix A: Capture and relaxation rates
For some DQD states, there is more than one rate (capture or relaxation). Therefore, one
needs to introduce the total rate of entering the states. The occupation probability for the
states included in the Coulomb matrix element is defined as shown in Eq. (24). Taking
the matrix element WM,dk2k3k1 , the occupations associated with the in-scattering rate are
f b
k1

(1 – f b′
k3

)f b′
k2

, while those associated with the out-scattering rate are (1 – f b
k1

)f b′
k3

(1 – f b′
k2

).
Then, the capture rate that comes from the mixing process in Eq. (30) is written as

Scap,in
M,eh,4 = Smixed

M,eh,c01

(
ρ44 × (1 – ρ55) × ρ22

)
(A.1a)

Scap,out
M,eh,4 = Smixed

M,eh,c01

(
(1 – ρ44) × ρ55 × (1 – ρ22)

)
(A.1b)

The electron and hole occupation probabilities are ρii for the |i〉 state of the DQD. Note
that ρ44 and ρ55 refer to the WL CB and VB (states |4〉 and |5〉) respectively, see Fig. 2. Ad-
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ditionally, there are many relaxation processes. The total relaxation rate must be collected.
Using Eqs. (29b) and (29c), one can write,

Srel,in
M,ee,4 = Srelax

M,ee,a
(
ρ00 × (1 – ρ44) × ρ44

)
(A.1c)

Srel,out
M,ee,4 = Srelax

M,ee,a
(
(1 – ρ00) × ρ44 × (1 – ρ44)

)
(A.1d)

Srel,in
M,eh,5 = Srelax

M,eh,a
(
ρ00 × (1 – ρ55) × ρ55

)
(A.1e)

Srel,out
M,eh,5 = Srelax

M,eh,a
(
(1 – ρ00) × ρ55 × (1 – ρ55)

)
(A.1f)

Where Srel,in
M,ee,4, Srel,out

M,ee,4, Srel,in
M,eh,5, Srel,out

M,eh,5 are the in-and out-scattering relaxation rates for elec-
trons and holes from states |4〉, |5〉, respectively. Collecting Eqs. (A.1c) with (A.1e) and
(A.1d) with (A.1f) to get,

Srel,in
M,e,WD,0 = Srel,in

M,ee,4 + Srel,in
M,eh,5 (A.1g)

Srel,out
M,e,WD,0 = Srel,out

M,ee,4 + Srel,out
M,eh,5 (A.1h)

Where the subscript WD is WL-QD transition. Additionally, there is another relaxation
transition. Using Eq. (29b) and (29c),

Srel,in
M,ee,1 = Srelax

M,ee,a
(
ρ00 × (1 – ρ44) × ρ11

)
(A.2a)

Srel,out
M,ee,1 = Srelax

M,ee,a
(
(1 – ρ00) × ρ44 × (1 – ρ11)

)
(A.2b)

Srel,in
M,eh,3 = Srelax

M,eh,a
(
ρ00 × (1 – ρ55) × ρ33

)
(A.2c)

Srel,out
M,eh,3 = Srelax

M,eh,a
(
(1 – ρ00) × ρ55 × (1 – ρ33)

)
(A.2d)

By combining equations (A.2a) with (A.2b) and (A.2c) with (A.2d), we obtain

Srel,in
M,e,DD,0 = Srel,in

M,ee,1 + Srel,in
M,eh,3 (A.2e)

Srel,out
M,e,DD,0 = Srel,out

M,ee,1 + Srel,out
M,eh,3 (A.2f)

Where the subscript DD is for QD-QD transitions. Now, the total relaxation rate is,

Srel,in
M,e,0,tot = Srel,in

M,e,WD,0 + Srel,in
M,e,DD,0 (A.2g)

Srel,out
M,e,0,tot = Srel,out

M,e,WD,0 + Srel,out
M,e,DD,0 (A.2h)

Where the subscript “tot” refers to the total rate. Also have, for the contributions to the
ρ11 from Eq. (25),

Scap,in
M,ee,c12

= Scap
M,ee,c12

(
ρ44 × (1 – ρ44) × ρ44

)
(A.3a)

Scap,out
M,ee,c12

= Scap
M,ee,c12

(
(1 – ρ44) × ρ44 × (1 – ρ44)

)
(A.3b)

Scap,in
M,eh,c12

= Scap
M,eh,c12

(
ρ44 × (1 – ρ55) × ρ55

)
(A.3c)

Scap,out
M,eh,c12

= Scap
M,eh,c12

(
(1 – ρ44) × ρ55 × (1 – ρ55)

)
(A.3d)
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By collecting equations (A.3a) with (A.3c) and (A.3b) with (A.3d), one gets,

Scap,in
M,e,W ,4 = Scap,in

M,ee,c12
+ Scap,in

M,eh,c12
(A.3e)

Scap,out
M,e,W ,4 = Scap,out

M,ee,c12
+ Scap,out

M,eh,c12
(A.3f)

Additionally, from Eq. (31),

Scap,in
M,ee,c12a

= Scap
M,ee,c12a

(
ρ44 × (1 – ρ11) × ρ00

)
(A.4a)

Scap,out
M,ee,c12a

= Scap
M,ee,c12a

(
(1 – ρ44) × ρ11 × (1 – ρ00)

)
(A.4b)

Scap,in
M,eh,c12a

= Scap
M,eh,c12a

(
ρ44 × (1 – ρ33) × ρ22

)
(A.4c)

Scap,out
M,eh,c12a

= Scap
M,eh,c12a

(
(1 – ρ44) × ρ33 × (1 – ρ22)

)
(A.4d)

By collecting Eqs. (A.4a) with (A.4c) and (A.4b) with (A.4d), one gets,

Scap,in
M,e,D,4 = Scap,in

M,ee,c12a
+ Scap,in

M,eh,c12a
(A.4e)

Scap,out
M,e,D,4 = Scap,out

M,ee,c12a
+ Scap,out

M,eh,c12a
(A.4f)

With the total capture rates,

Scap,in
M,e,1,tot = Scap,in

M,e,W ,4 + Scap,in
M,e,D,4 (A.4g)

Scap,out
M,e,1,tot = Scap,out

M,e,W ,4 + Scap,out
M,e,D,4 (A.4h)

For ρ22

Scap,in
M,e,2 = Scap,out

M,eh,4 (A.5a)

Scap,out
M,e,2 = Scap,in

M,eh,4 (A.5b)

For ρ33, using Eq. (28),

Scap,in
M,hh,v32

= Scap
M,hh,v32

(
ρ55 × (1 – ρ55) × ρ55

)
(A.6a)

Scap,out
M,hh,v32

= Scap
M,hh,v32

(
(1 – ρ55) × ρ55 × (1 – ρ55)

)
(A.6b)

Scap,in
M,he,v32

= Scap
M,he,v32

(
ρ55 × (1 – ρ44) × ρ44

)
(A.6c)

Scap,out
M,he,v32

= Scap
M,he,v32

(
(1 – ρ55) × ρ44 × (1 – ρ44)

)
(A.6d)

Collecting Eqs. (A.6a) with (A.6c) and (A.6b) with (A.6d), one gets,

Scap,in
M,e,5,tot = Scap,in

M,hh,v32
+ Scap,in

M,he,v32
(A.6e)

Scap,out
M,e,5,tot = Scap,out

M,hh,v32
+ Scap,out

M,he,v32
(A.6f)

Therefore, for ρ33 and ρ55

Scap,in
M,e,3 = Scap,in

M,e,5,tot and Scap,in
M,e,5 = Scap,out

M,e,5,tot (A.6g)
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Scap,out
M,e,3 = Scap,out

M,e,5,tot and Scap,out
M,e,5 = Scap,in

M,e,5,tot (A.6h)

Now, for ρ44 in Eqs. (A.1a), (A.1b), (A.3e), (A.3f), and (A.4e), (A.4f),

Scap,in
M,e,4,tot = Scap,out

M,e,W ,4 + Scap,out
M,eh,4 + Scap,out

M,e,D,4 (A.7a)

Scap,out
M,e,4,tot = Scap,in

M,e,W ,4 + Scap,in
M,eh,4 + Scap,in

M,e,D,4 (A.7b)

Appendix B: Density matrix of the DQD-MNP system under Coulomb
scattering with OPW

Applying the density matrix formalism for the WL-DQD-MNP structure, as shown in
Fig. 2, under the rotating wave approximation, the change in occupation probability under
the probe and pump applied fields with Rabi frequencies �02 and �13 and the tunneling
component T10 with time is written as

˙ρ00 = Srel,in
M,e,0,tot(1 – ρ00) –

(
Srel,out

M,e,0,totρ00
)

+ Scap,in
M,eh,4(1 – ρ00) –

(
Scap,out

M,eh,4 ρ00
)

+ iT10(ρ10 – ρ01) + i(�02 – ηρ20)(ρ20 – ρ02) + iβ03(ρ30 – ρ03) + iβ04(ρ40 – ρ04)

˙ρ11 = Srel,in
M,e,0,tot(1 – ρ11) –

(
Srel,out

M,e,0,totρ11
)

+ Scap,in
M,e,1,tot(1 – ρ11) –

(
Scap,out

M,e,1,totρ11
)

+ iT10(ρ10 – ρ01) + iβ12(ρ21 – ρ12) + i�13(ρ31 – ρ13) + iβ14(ρ41 – ρ14)

˙ρ22 = Srel,in
M,e,0,tot(1 – ρ22) –

(
Srel,out

M,e,0,totρ22
)

– Scap,in
M,e,2 (1 – ρ00) +

(
Scap,out

M,e,2 ρ00
)

+ iβ23(ρ32 – ρ23) + i(�02 – ηρ20)(ρ02 – ρ20) + iβ12(ρ12 – ρ21) + iβ25(ρ52 – ρ25)

˙ρ33 = Srel,in
M,e,0,tot(1 – ρ33) –

(
Srel,out

M,e,0,totρ33
)

+ Scap,in
M,e,3 (1 – ρ33) –

(
Scap,out

M,e,3 ρ33
)

+ iβ30(ρ03 – ρ30) + i�13(ρ13 – ρ31) + iβ23(ρ23 – ρ32) + iβ35(ρ53 – ρ35)

˙ρ44 = Srel,in
M,e,0,tot(1 – ρ44) –

(
Srel,out

M,e,0,totρ44
)

– Scap,in
M,e,4,tot(1 – ρ11) +

(
Scap,out

M,e,4,totρ11
)

+ iβ40(ρ04 – ρ40) + iβ41(ρ14 – ρ41)

˙ρ55 = Srel,in
M,e,0,tot(1 – ρ55) –

(
Srel,out

M,e,0,totρ55
)

– Scap,in
M,e,5 (1 – ρ33) +

(
Scap,out

M,e,5 ρ33
)

+ iβ52(ρ25 – ρ52) + iβ53(ρ35 – ρ53)

˙ρ10 = –(γ0 + γ1)ρ10 + iT10(ρ00 – ρ11) + (iβ12ρ20) + (i�13ρ30) + (iβ14ρ40)

– i(�02 – ηρ20)ρ12 – iβ30ρ13 – iβ40ρ14

˙ρ20 =
(
ρ20(–i�20) – (γ0 + γ2)

)
+ i(�20 – ηρ20)(ρ00–ρ22) + (iβ21ρ10) + iβ23ρ30

– (iβ40ρ24) – iT10ρ21 – (iβ30ρ23) – iβ52ρ25

˙ρ30 = –(γ0 + γ3)ρ30 + iβ30(ρ00–ρ33) + (iβ13ρ10) + iβ23ρ20

– iT10ρ31 – i(�20 – ηρ20)ρ32 + (iβ35ρ50) – (iβ40ρ34)

˙ρ40 = –(γ0 + γ4)ρ40 – i(�20 – ηρ20)ρ42 + iβ40(ρ00–ρ44) + (iβ41ρ10) – iT10ρ14 – (iβ30ρ43)

˙ρ21 = –(γ2 + γ1)ρ21 + iβ21(ρ11 – ρ22) + i(�20 – ηρ20)ρ01 + iβ23ρ31 + (iβ25ρ51)

– iT10ρ20 – (iβ41ρ24) – (i�13ρ23)
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˙ρ31 = –(γ3 + γ1)ρ31 + i�13(ρ11–ρ33) + (iβ30ρ01) + iβ23ρ21

– iT10ρ30 – (iβ21ρ32) + (iβ35ρ51) – (iβ41ρ34)

˙ρ41 = –(γ4 + γ1)ρ41 + iβ41(ρ11–ρ44) + (iβ40ρ01) – iT10ρ40 – (iβ21ρ42) – (i�13ρ43)

˙ρ23 = –(γ2 + γ3)ρ23 + iβ23(ρ33 – ρ22) + i(�20 – ηρ20)ρ03 – iβ53ρ25 + (iβ21ρ13)

+ (iβ25ρ53) – (iβ03ρ20) – (iβ53ρ25) – (i�13ρ21)

˙ρ24 = (–γ2 + γ4)ρ42 + i(�20 – ηρ20)ρ04 + iβ21ρ41 – (iβ14ρ21) – (iβ04ρ20) + iβ23ρ34

˙ρ25 = (–γ2 + γ5)ρ25 + i(�20 – ηρ20)ρ05 + iβ25(ρ55 – ρ22)

+ iβ23ρ25 – (iβ35ρ23) + (iβ21ρ15)

˙ρ35 = –(γ3 + γ5)ρ35 + iβ23ρ25 + iβ35(ρ55 – ρ33) + (iβ30ρ05) + (iβ31ρ15) – (iβ25ρ32)

˙ρ43 = –(γ4 + γ3)ρ43 + iβ40ρ03 + (iβ41ρ13) – (iβ03ρ40) – (i�13ρ41) – iβ23ρ42

˙ρ50 = –(γ5 + γ0)ρ50 + iβ52ρ20 + (iβ53ρ30) – iT10ρ50 – i(�20 – ηρ20)ρ52 – (iβ30ρ53)

˙ρ51 = –(γ5 + γ1)ρ51 + iβ52ρ21 + (iβ53ρ31) – iT10ρ50 – (iβ21ρ52) – (i�13ρ53) (B.1)

The electron and hole occupation probabilities are ρii for the |i〉 state of the DQD, while
the density operator ρij defines the interaction between DQD states |i〉 and |j〉. βij = Aij

2 +
1
τt

, where Aij (=
μ2

ijω
2
ij

3π�εsc3 ) is the Einstein coefficient, τt is the dipole dephasing time, and
ωij is the transition frequency between the |i〉 and |j〉 states in the WL-DQD structure.
The momentum of the transitions between the WL-QD and QD-QD transitions is μij.
The momentum calculations are defined well in [16]. Based on the calculated momenta,
the normalized Rabi frequency is computed from Eq. (22a)–(22c). Then, βij is calculated
depending on the computed momenta values.
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