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Abstract
We derive the primitive quantum gate sets to simulate lattice quantum
chromodynamics (LQCD) in the strong-coupling limit with one flavor of massless
staggered quarks. This theory is of interest for studies at non-zero density as the sign
problem can be overcome using Monte Carlo methods. In this work, we use it as a
testing ground for quantum simulations. The key point is that no truncation of the
bosonic Hilbert space is necessary as the theory is formulated in terms of color-singlet
degrees of freedom (“baryons” and “mesons”). The baryons become static in the limit
of continuous time and decouple, whereas the dynamics of the mesonic theory
involves two qubits per lattice site. Lending dynamics also to the “baryons” simply
requires to use the derived gate set in its controlled version.
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1 Introduction
Recently, there has been considerable interest generated by proposals for quantum simu-
lations of gauge theories in high-energy physics. This interest has spread to lattice gauge
theory (LGT), and in particular, to lattice quantum chromodynamics (LQCD). This de-
velopment promises to allow direct access to real-time physics as well as to the physics of
dense nuclear matter from LQCD. Considerable progress has been made in the universal
gate-based approach both in the methods needed [1–4] as well as their applications to
theories with both discrete and continuous gauge groups to varying levels of approxima-
tion.1

Although from current estimates it seems that near-term, large-scale simulations of
LQCD on quantum computers are infeasible [6], one can still define physically interesting
problems which can be studied in the noisy intermediate-scale quantum (NISQ) era [7].
In the gate-based approach, one is of course forced to work in the Hamiltonian formu-
lation. In the case of LGT, the Hamiltonian formulation appeared quite early [8] but was
of secondary interest due to the success of Markov chain Monte Carlo methods which

1See [5] for a recent experimental proposal to realize non-Abelian LGTs using analog quantum simulations.
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rely on the Lagrangian formulation. Another pioneering study identified the mapping of
operators appearing in the Hamiltonian into spin operators for continuous gauge groups
assuming a cutoff in the infinite-dimensional Hilbert space of the gauge bosons [9]. This
line of analysis has also been extended to fermions [10]. In order to alleviate the system-
atic effects of Hilbert space truncation, one can attempt to improve the Kogut-Susskind
Hamiltonian by adding terms which reproduce the desired physics for a given cutoff. This
has very recently been done for the strong-coupling limit using a similarity renormaliza-
tion group approach [11].

The strong-coupling limit of lattice QCD has been a long-standing field of interest,
both in the Wilson and staggered formulations. Of particular interest are the reformu-
lation of the theory in color-singlet degrees of freedom and their first numerical simula-
tions [12, 13]. This work was mainly motivated by the possibility to either cure or alleviate
the sign problem, and hence study LGT systems at non-zero baryon density. Equipped
with new algorithms, these studies were revisited some years later, leading to a com-
plete mapping of the phase diagram for one staggered flavor in the strong coupling limit
(β = 0) [14] and beyond [15]. All of the above-mentioned studies start from the Lagrangian
formulation and thus, in principle, have little to say about real-time evolution of quantum
states. Recently, a continuous-time partition function has been formulated leading to the
construction of a Hamiltonian describing the physics of the strong-coupling limit with
Nf = 1 flavors of massless staggered fermions [16]. Further efforts were undertaken to ex-
tend this to the case of Nf = 2 [17, 18].

There exists then ample motivation to study the strong-coupling limit of lattice QCD
from the perspective of quantum simulations: For one, as the gauge degrees of freedom
can be integrated out exactly in any spatial dimension, Gauss’ law is fulfilled implicitly.
Secondly, the resulting variables form a discrete set of physical, color-singlet degrees of
freedom (mesons and baryons) governed by a local, sparse nearest-neighbor Hamiltonian.
Finally, due to the mildness of the sign problem in the Euclidean formulation, cross checks
between the formulations can be performed in the extended parameter space of finite μ,
T at continuous Euclidean time. We restrict ourselves to the case of massless quarks which
is conceptually simpler [19] and exhibits an exact remnant chiral symmetry. It therefore
seems natural to map the strong-coupling Hamiltonian onto the degrees of freedom rel-
evant for quantum simulations, starting with the one-flavor, β = 2Nc/g2 = 0 case which is
the subject of our current study.

2 Background
The Hamiltonian we study is derived from the continuous Euclidean time limit of strong-
coupling lattice QCD with staggered fermions. Strong-coupling lattice QCD can be for-
mulated in terms of dual variables in order to tackle the sign problem, with the full μB – T
phase diagram accessible through Monte Carlo simulations. The partition function of the
discrete system for one flavor of massless staggered fermions is given by

Z(γ , aτ , Nτ ) =
∫

DχDχ̄DU eSF , (1)
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where

SF =
∑

x

[
γ η0(x)

(
χ̄ (x)eaτ μq U0(x)χ (x + 0̂) – χ̄ (x + 0̂)e–aτ μq U†

0 (x)χ (x)
)

+
d∑

i=1

ηi(x)
(
χ̄ (x)Ui(x)χ (x + î) – χ̄ (x + î)U†

i (x)χ (x)
)]

(2)

is the staggered quark action SF on an anisotropic lattice of extent Nτ ×Ld . As the temper-
ature is given by T = (a(β)Nτ )–1 on an isotropic lattice, it requires anisotropic lattices to
continuously vary the temperature at fixed inverse gauge coupling. At strong coupling
β = 0, the lattice spacing a is maximally coarse, while the temporal lattice spacing aτ

will be sent to zero. The non-perturbative relation between the bare anisotropy γ , in-
troduced above as a prefactor to favor temporal over spatial fermion hops, and the phys-
ical anisotropy ξ ≡ a

aτ
, has been determined non-perturbatively for various Nτ and to-

wards the continuous time limit Nτ → ∞ [20]. The resulting temperature in lattice units
is aT = ξ (γ )

Nτ
, which simplifies in the continuous time limit to aT = κ

γ 2

Nτ
with κ = 0.7971(3).

This is close to the mean-field result where κ = 1.
Owing to the limit of infinite gauge coupling, the gauge link integration

∫
DU in Eq. (1)

can be done exactly [13], followed by the Grassmann integration. This results in the par-
tition function of a dimer model [16, 21]

Z(γ , aτμB, Nτ ) = N (γ )
∑
{k,	}

∏
x∈
M

(
δ∑

μ kμ(x),3
(3 – k0(x))!

k0(x)!

d∏
i=1

(3 – ki(x))!
ki(x)!

γ –2ki(x)

)

×
∏

	⊂
B

(
σ (	)

∏
(x,μ)∈	

exp
((

δμ̂,+0̂(	) – δμ̂,–0̂(	)
)

aτμB
) d∏

i=1

(
γ –3δμi(	))

)
, (3)

with the (3 + 1)-dim. lattice volume 
 decomposed into the disjoint union of mesonic
sites 
M and baryonic sites 
B. The integers kμ ∈ {0, . . . , 3} are dimers, the selfavoiding
loops 	 denote baryons worldlines. Note that the sign σ (	) ∈ {+1, –1} can be negative for
nontrivial baryon loops, but σ (	) = 1 for static baryons. The normalization N (γ ) can be
disregarded. The number of spatial meson hops depends on the temperature, but remains
finite at fixed aT as Nτ → ∞. This results in the suppression of spatial meson hops of
orders higher than γ –2 in units of at , simplifying Eq. (3) significantly:

Z(γ , aτμB, Nτ )

=
∑

{M ,B}

( GC∑
{k0∈{0,...,3}

ki∈{0,1} }
∣∣∣

M

∏
(�x,τ )∈

{x|ki(x)=1}

v(k–
0 |k+

0 )(�x,τ )v(k–
0 |k+

0 )(�x+î,τ )

γ 2

)(
2 cosh(μB/T)

)|B|, (4)

with M and B denoting the spatial mesonic and baryonic sublattices respectively, which
no longer depend on τ ∈ {0, . . . , Nτ – 1}. The mesonic contribution has non-trivial weights
whenever, at some time index τ , a meson hop between nearest neighbors 〈�x, �x + î〉 occurs.
Here v(�x,τ ) depends on the temporal dimers k±

0 just before/after the spatial dimer loca-
tion, and due to k–

0 + k+
0 + 1 = 3, the only possible transitions are vL ≡ v(0|2) = v(2|0) = 1,
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vT ≡ v(1|1) = 2/
√

3. In between spatial meson exchange, the temporal dimers at a given
site �x form states that can be identified as meson occupations, m = {0,π , 2π , 3π}, which
correspond to a conserved pion current. For the baryonic contribution, spatial hops are
suppressed and we have used μB/T = aτμBNτ for the baryon chemical potential μB = 3μq.

One finally takes the limit Nτ → ∞ of Eq. (4), by substituting γ 2 with aTNτ , such that
the pion exchange between nearest neighbors can be written as an exponential, and the
vertices can be expressed with matrices Ĵ± which raise or lower the meson occupation
number, resulting in the following partition function:

ZCT(aT , aμB) = TrHh

[
e(–Ĥ+N̂aμB)/aT]

(5)

with the Hamilton and number operators

Ĥ = –
1
2

∑
〈�x,�y〉

(
Ĵ+
�x Ĵ–

�y + Ĵ–
�x Ĵ+

�y
)
, N̂ =

∑
�x

ω̂x. (6)

The corresponding ladder operators Ĵ–
x = (Ĵ+

x )T are:

Ĵ+
x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
vL 0 0 0
0 vT 0 0
0 0 vL 0

0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ω̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0
0 –1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

The trace in Eq. (5) is over the Hilbert space Hh =
⊗

�x∈Hh�x, where the local Hilbert
space Hh�x is 6 dimensional, with states |h〉 = |m,b〉 ∈Hh�x and a basis |hi〉 of 6 hadronic
states per spatial lattice site,

|hi〉 ∈ {
0,π , 2π , 3π , B+, B–}

. (8)

The nature and dimensionality of these states can be explained by the fact that the gauge
integration in Eq. (1), carried out analytically in the limit of infinite gauge coupling (β = 0),
results in the reformulation of the theory of Eq. (2) in terms of color-singlet degrees of
freedom, “baryons” and “mesons”. The subsequent Grassmann integration and continuous
time limit constrains the site occupation to 0, . . . , Nc “pions”, Nc = 3, alternatively a site may
be occupied by a “baryon” or “anti-baryon”.2 By redefining the meson occupation numbers
as |s〉 = |m– 3/2〉, a particle-hole symmetry becomes evident, as the mesonic creation and
annihilation operators fulfill the following algebra:

[
Ĵ+, Ĵ–]

=

⎛
⎜⎜⎜⎝

–1 0 0 0
0 –1/3 0 0
0 0 1/3 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

2This should be contrasted to the local, infinite dimensional bosonic Hilbert space of pure LGT, when starting from the
Kogut-Susskind Hamiltonian e.g. in the representation basis [2] or group basis [1].
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Ĵ1 =
√

3
2

(
Ĵ+ + Ĵ–)

, Ĵ2 =
√

3
2i

(
Ĵ+ – Ĵ–)

,

Ĵ3 = i[Ĵ1, Ĵ2] =
3
2
[
Ĵ+, Ĵ–]

, Ĵ2 =
15
4
1. (9)

This corresponds to a 4-dim. representation of SU(2) with |j, m〉 ≡ |3/2, s〉. This construc-
tion can be extended to a Nf = 2 Hamiltonian [17, 18], resulting in:

ZCT(aT , aμB, aμI) = TrHh

[
e(–Ĥ+N̂BaμB+N̂I aμI )/aT]

, (10)

where the Hamiltonian is now composed of a sum of 4 contributions, one for each pion
π ∈ {π+,π–,πu,πd}:

Ĥ = –
1
2

∑
〈�x,�y〉

∑
Qi∈{π+,π–,πU ,πD}

(
Ĵ+
Qi ,�xĴ–

Qi ,�y + Ĵ–
Qi ,�xĴ+

Qi ,�y
)
. (11)

In addition to the baryon number operator N̂B, the Nf = 2 partition function also contains
an isospin number operator N̂I . The number of distinct hadronic states |h〉 is now 92, of
which 50 states are purely mesonic. It turns out that all the matrix elements in Ĵ±

Qi
are

positive, allowing one to study both non-zero baryon and isospin chemical potential.
Another possible extension of the Hamiltonian Eq. (6) is to perform the strong-coupling

expansion [22] before taking the continuous time limit, which results in only temporal
plaquettes contributing. Both the Nf = 2 formulation and the inclusion of the leading-
order gauge corrections to the Hamiltonian will be discussed in a forthcoming publication.

3 Implementation and results
The Hamiltonian Ĥ and the number operator N̂ , as defined in Eq. (6), have a block-
diagonal structure, with the states |h〉x of the local Hilbert space being a direct sum of
mesonic and baryonic occupational states, |h〉x = |m〉x ⊕ |b〉x. As a practical consequence,
this allows us to qubitize the Hamiltonian Eq. (6) in the mesonic sector and baryonic sector
independently. We begin with the former.

3.1 Mesonic gate sets
The four-dimensional local meson states |mi〉 ∈ {0,π , 2π , 3π} can be encoded with two
qubits. The Hamiltonian Ĥ represents a nearest-neighbor meson hopping term, seen
through the action of the raising and lowering operators, Ĵ+ and Ĵ–, respectively, on the
local Hilbert space. Such a local, low-dimensional Hamiltonian can be qubitized with stan-
dard methods [23] as we summarize below for the case of 1+1-dim. The method, of course,
is completely general and can be applied to higher dimensions.

We start by partitioning the lattice Hamiltonian into mutually commuting even and odd
parts

Ĥ =
∑

xe

Ĥxe +
∑

xo

Ĥxo , (12)

where Ĥxe/o both have the nearest-neighbor nn-form of Eq. (6), and the labels “even” and
“odd” refer to the bonds of the one-dimensional lattice. Using the Pauli decomposition
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Hxe/o =
∑

i ciPi into Pauli strings Pi ∈ {I, X, Y , Z}⊗4, the remaining tasks are that of par-
titioning the Pi into sets (“families”) of mutually commuting terms, which can then be
simultaneously diagonalized. The Pauli decomposition yields eighteen four-qubit terms
(two qubits for the neighboring sites x and y, respectively) which can easily be grouped
into four families.3 The partition of the operators into four families Famk takes the form

Fam1 = {(IX)x(YY )y, (IY )x(YX)y, x ↔ y terms},
Fam2 = {XXYY , XYYX, YYXX, YXXY },
Fam3 = {IXXX, IYXY , XXIX, XYIY },
Fam4 = {YYYY , YXYX, IXIX, IYIY , XXXX, XYXY },

(13)

where the big endian convention is used. The individual terms are multiplied by the coeffi-
cients c(k)

j which are listed in the Appendix (Eq. (17)). Each of the Famk can be diagonalized
simultaneously using the tableau formalism described in [25], yielding the sets

DiagFam1/2 = {IIZZ, IZZZ, ZIIZ, ZZIZ},
DiagFam3 = {IZZI, IZZZ, ZZII, ZZIZ},
DiagFam4 = {ZZZZ, ZIZZ, IIIZ, IZIZ, IIZZ, IZZZ}.

(14)

The transformations Vk which diagonalize the families of operators

exp

(
i
∑

j

c(k)
j P(k)

j

)
= Vk exp

(
i
∑

j

c̃(k)
j P̃(k)

j

)
V †

k (15)

are given below in gate form. The remaining step in the derivation of the primitive
gate sets for the He/o, is the optimization of the exponentiated sum of diagonal terms
exp (i

∑
j c̃(k)

j P̃(k)
j ). Here, optimization refers to the number of CNOT gates. Making use

of the identity Za ⊗ Zb = CNOTa,bIa ⊗ ZbCNOTa,b and taking into account mutual can-
cellations between neighboring CNOTs, we arrive at the gate set for each of the four ex-
ponentiated families. As an example, the relevant gates for the exponentiation of the first
family are displayed in Fig. 1, where the remaining sets are given in the Appendix, Fig. 6.
With the observation that the partitioning of the lattice Hamiltonian into mutually com-
muting sets of terms in nn-form (Eq. (12)) is easily generalized to higher dimensions, it
can readily be seen that the derivation Eqs. (13)-(15), leading to the gate sets Figs. 1 and
6, holds in any dimension. We restrict ourselves to hypercubic lattice geometries which
naturally arise in the context of staggered fermions [8].

3.2 Inclusion of baryons
Extending our theory from gauge group U(3) to SU(3) requires the extension of |h〉 = |m〉
to |h〉 = |m,b〉, as defined in Eq. (8). It is important to note that owing to the limit of infi-
nite gauge coupling and continuous time, baryons remain static in our toy theory. Given
an initial state |ψ0〉 = ⊗x|h〉x, the time evolution of bosonic and baryonic sites decouples

3We quote here the result of IBM Qiskit’s [24] group_commuting which uses a graph-coloring approach.



Fromm et al. EPJ Quantum Technology           (2024) 11:24 Page 7 of 14

Figure 1 (Top) Four qubit quantum gate corresponding to the Fam1 unitary in the mesonic Trotter step.
(Bottom) The diagonal gate diag_famI of the above unitary, decomposed into elementary operations

Figure 2 An example of the two-qubit controlled version of the
mesonic Trotter gate where the qubits (q0q1q2) and (q3q4q5) have
been arranged for readability

Table 1 Gate depth and CNOT count of a single mesonic Trotter gate acting on a pair of qubit
registers, as displayed in Fig. 2

Circuit depth #CNOT

Fam1 16 10
Fam2 18 14
Fam3 12 10
Fam4 21 16
Total 67 50

as [H,N ] = 0, with baryons evolving trivially, only leaving an imprint on the surrounding
“pion bath” through a fixed excluded volume. From the practical side of quantum simula-
tions this implies that the gate set identified so far is sufficient to capture the dynamics of
the theory with gauge group SU(3) in the zero-temperature limit.

At non-zero chemical potential or temperature, μB, T > 0 we will need to extend our reg-
ister to three qubits per site x to represent all six classical states |hi〉 ∈ {0,π , 2π , 3π , B+, B–},
with two states being redundant. As Ĥxe/o and N̂x act on this Hilbert space through a di-
rect sum, we can use the three qubits in the register (q0q1q2) and encode the hadronic
sector (meson or baryon) of hx in, say, q0, thus having it act as control bit. A mesonic Trot-
ter step thus consists of the gates derived in the last section, Fig. 1 and Fig. 6, but in their
controlled version (e.g. on “0”), with one control bit per site. The unitary exp (–iδtĤxe/o )
acting on pairwise sets of qubits encoding |h〉x and |h〉y of nn-pairs 〈x, y〉, respectively, is
hence represented by the symbolic circuit Fig. 2, where the gate depth and CNOT count
are given in Table 1.

The baryon evolution is governed by a single operator in diagonal form (i.e. Z-term in
the Hamiltonian) locally at a given site x through the term exp (–it

∑
x ω̂x) and hence does

not need to be Trotterized. We thus only have to take into account the local control bit
denoted by q0 (e.g. on “1”), which encodes the hadronic sector. Furthermore, in order to
restrict the action of exp (–itωx) to the (B+, B–)T part of |h〉x (encoded on q2), we can add



Fromm et al. EPJ Quantum Technology           (2024) 11:24 Page 8 of 14

Figure 3 Baryonic evolution gate for a single site. The local control bits q0 and
q1 encode the hadronic sector and redundant state space, respectively

a control by q1. This excludes the two redundant states of the 23 = 8 possible classical
states. This is depicted in Fig. 3, where one can see the only baryonic gate used in the time
evolution of the full (SU(3)) theory.

3.3 Trotterized time evolution in d = 1 + 1
Approximating the time evolution by a first order product formula, the Trotterized time-
evolution operator of our theory is as follows

ÛTrott(t) =
(
e–iδt

∑
xe Ĥxe e–iδt

∑
xo Ĥxo

)N e+itN̂aμB , (16)

with a systematic error of order O(δt2) for every Trotter step δt with δt = t/N . The sym-
bolic circuit corresponding to the staggered layers of mesonic Trotter gates, followed by a
baryonic evolution for a lattice of dimension d = 1 + 1 with linear extent L = 4 is depicted
in Fig. 4. Here we have used open boundary conditions for illustrative purposes and chose
the initial state |ψ0〉 = ⊗L–1

i=0 (|+〉|0〉|+〉), where at each lattice site one has the following state
in the hadron occupation basis |h〉x = 1

2 (1, 1, 0, 0, 1, 1)T , i.e. a superposition of states with
non-zero mesonic and baryonic occupation numbers. The two layers of a single mesonic
Trotter step result from the nn-decomposition of our lattice Hamiltonian (Eq. (12)). In-
creasing the dimensionality will add two layers per space dimension, corresponding to the
increase in coordination number of our hypercubic lattice. The gate depth of a mesonic
Trotter step hence grows linearly with increasing lattice dimension and is unaffected by
the lattice volume N (cf. Table 1 for a single mesonic gate), whereas the number of qubits
grows linearly, nq = 3N . From the point of view of computational complexity this resource
requirement can be compared to the qubit count of LGT in the local multiplet basis [2] at
lowest truncation order 
p = 1 where we have nq ≈ 2N log2(
p + 1) for pure Yang-Mills
theory, i.e. without matter.

To verify the correctness of our gate decomposition summarized in Fig. 4, we show in
Fig. 5 a comparison of exact and Trotterized observables as a function of time t, with
the initial state |ψ0〉 on a lattice of L = 4 sites (nq = 12 qubits) with periodic boundary
conditions. The displayed results correspond to a noise-free classical simulation, assum-
ing infinite shot statistics. Using these time-evolved states, we have computed the time-
dependent expectation values of the mesonic observables Ĵ1/2 (left), defined in Eq. (9) as
well as the overlap |〈ψ0|ψ(t)〉|2 (right) for several values of the baryon chemical potential
aμB. We observe good agreement with the exact results.

3.4 Scalability
It is instructive to compare our implementation proposal for quantum simulations of lat-
tice QCD in the strong coupling limit to existing benchmarks at scale, s.a. the recently
published study of lattice QED in d = 1 + 1 (i.e. the Schwinger model) with more than
100 qubits [26] on an IBM Heron processor. There, using a second order Trotter formula
to implement the time evolution of the system, 14 Trotter steps were reached with total
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Figure 4 A symbolic circuit for two mesonic Trotter steps (yellow), followed by a baryonic evolution (blue) for
the state |ψ0〉 = (|+〉|0〉|+〉)⊗L with linear extent L = 4 and open boundary conditions. Each of the mesonic
Trotter steps corresponds to a sequential application of the gates defined in Fig. 1 and Fig. 6, where the
two-qubit control is visible in the first layer

Figure 5 (Left) Comparison of the classically simulated Trotterized expectation value of the mesonic
observables Ĵ1/2 for Trotter step size δt = 0.4 (diamonds) and the exact results (dashed lines).(Right) The wave
function overlap |〈ψ0|ψ (t)〉|2 for several values of the baryon chemical potential aμB for Trotter step size
δt = 0.2. We used a system of linear extent L = 4 and periodic boundary conditions for the initial state
|ψ0〉 = (|+〉|0〉|+〉)⊗L

CNOT-depth of 370. If we restrict ourselves to the case of a purely mesonic theory (thus
using the gauge group U(3) instead of SU(3)) and take our resource requirements given in
Table 1 at face value, time evolution of our d = 1 + 1 dimensional theory with a layering as
given in Fig. 4 will require a CNOT-depth of 88 per first order Trotter step, thus already



Fromm et al. EPJ Quantum Technology           (2024) 11:24 Page 10 of 14

permitting 4-5 (depending on transpilation) Trotter steps on current hardware with com-
parable quantum volume as the mesonic theory requires 2 qubits per staggered lattice site.
While this may seem less favorable, we emphasize that going to larger spatial dimension
in our theory will only result in a linear increase in CNOT-depth without modification of
the proposed gate set.

Turning to the full theory (gauge group SU(3)), the pertinent question is the hardware
realization of multi-qubit-controlled gates, in view of the 2-qubit controlled version of
the mesonic and baryonic gates, Figs. 2 and 3. Commonly, a decomposition is used [27]
which for 2-qubit control would essentially triple the CNOT-depth per Trotter step. More
promising would be the use of multi-qubit gates [28] on trapped-ion quantum comput-
ers which were demonstrated for the case of 3-qubit and 4-qubit gates with promising
fidelity [29].

For actual quantum simulations our circuits displayed in Fig. 1 and Fig. 6 clearly will re-
quire the use of error mitigation techniques [30] s.a. zero noise extrapolation (ZEN) [31]
and probabilistic error cancellation (PEC) [32] to counter the effect of noise in the form of
decoherence and limited gate fidelities, in particular those of the 2-qubit entangling gates.
To convert the a priori unknown noise channel into Pauli noise channels, Pauli-twirling
can be applied [33]. An additional hardware limitation, for a given spatial dimension, is
the required qubit connectivity introduced by the dimensionality of the Hilbert space re-
quiring 3 qubits per site to be coupled to the qubits of neighboring sites.

4 Conclusion and outlook
In summary, we have mapped the Hamiltonian for strong-coupling lattice QCD with one
flavor of staggered quarks to qubit degrees of freedom by writing down the complete gate
set to simulate its dynamics on a quantum computer. This formulation serves as a prepara-
tory step to actual studies of the model on quantum hardware, where it is evident that
this will not only allow one to study the dynamics of the model but also its thermal and
finite-density properties, using e.g. thermal pure quantum states [34, 35] or the variational
methods described in [36] and [37]. Strong-coupling lattice QCD is studied on classical
computers via the Worm algorithm, introduced in [38] and first applied to SU(3) in [14],
which is based on the high-temperature expansion of the partition function. It is very effi-
cient at high and intermediate temperatures, but not at low temperatures. Here, quantum
simulations might be expected to outperform classical algorithms relying on importance
sampling.

Repeating this exercise for Nf > 1 is another avenue to pursue. Considering the state
multiplicity diagram given in [18] for Nf = 2, one sees that the purely bosonic sector of
the theory (B = 0) will require the use of six qubits per lattice site and in the case a baryon
is present (|B| = 1) will require five qubits. As the mesonic ladder operators Ĵ± remain
block-diagonal and commute with the number operator, the mesonic trotter steps will not
change the baryon number. While the gate set for the Nf = 1 Hamiltonian is well suited for
superconducting quantum computers as the scalability analysis has shown, the quantum
gate sets for Nf = 2 may requires a different strategy: It may be advantageous to map the
system to an effective theory or to make use of a qudit as a multi-level computational
unit [39], suggesting that a quantum hardware based on trapped ions may be preferable.
It should also be mentioned that our approach has limitations: the dual formulation for
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staggered fermions requires an unimproved fermion action, and as it does not involve a
fermion determinant, we cannot implement rooting.

The most physically relevant extension of the current work would be the inclusion of
gauge corrections to the Hamiltonian formulation. This would allow one to make contact
to other effective theories in the strong-coupling limit [11], and in the longer term, ap-
proach the continuum limit a → 0. The dimension of the Nf = 1 Hilbert space at finite
β becomes 16-dimensional. Higher order corrections will mainly contribute to the ma-
trix elements of the ladder operators, resulting in a larger number of mutually commuting
families. While the leading order gauge correction may still be suited for superconducting
qubits, higher orders may result in a CNOT depth, for which other computational devices
are beneficial. It should be stressed that both extensions of our Hamiltonian formulation
still result in finite-dimensional Hilbert spaces, given Nf and a fixed order in the strong
coupling expansion, with no further truncations required.

Appendix: Full gate sets
The coefficients ci of the Pauli string decomposition Hxe/o =

∑
i ciPi are given by ci =

1
24 tr(PiHe/o). After partitioning the entire set of Pauli strings into families of mutually
commuting operators, we obtain the following result for the coefficients for the various
families
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(17)

The diagonalization of the various families may change the sign of the coefficients, yield-
ing
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Figure 6 The four-qubit quantum gates corresponding to the unitary operators Fam2/3/4 in the mesonic
Trotter step along with the respective decomposition of the diagonal gates diag_famII/III/IV
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