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Abstract
A Superconducting QUantum Interference Device (SQUID) modulated by a fast
oscillating magnetic flux can be used as a parametric amplifier, providing gain with
very little added noise. Here, we develop linearized models to describe the
parametrically flux-pumped SQUID in terms of an impedance. An unpumped SQUID
acts as an inductance, the Josephson inductance, whereas a flux-pumped SQUID
develops an additional, parallel element which we have coined the “pumpistor.”
Parametric gain can be understood as a result of a negative resistance of the
pumpistor. In the degenerate case, the gain is sensitive to the relative phase between
the pump and signal. In the nondegenerate case, gain is independent of this phase.
We develop our models first for degenerate parametric pumping in the three-wave

and four-wave cases, where the pump frequency is either twice or equal to the signal
frequency, respectively. We then derive expressions for the nondegenerate case
where the pump frequency is not a multiple of the signal frequency, for which it
becomes necessary to consider idler tones that occur. For the nondegenerate
three-wave case, we present an intuitive picture for a parametric amplifier containing
a flux-pumped SQUID where current at the signal frequency depends upon the load
impedance at an idler frequency. This understanding provides insight and readily
testable predictions of circuits containing flux-pumped SQUIDs.

Keywords: parametric amplifiers; SQUIDs; Josephson devices

1 Introduction
Parametric amplifiers are attractive in that they can in principle amplify a signal while
only adding a minimum of noise []. From this point of view, parametric amplifiers may
be divided into two groups; phase sensitive amplifierswhich amplify only one of the incom-
ing quadratures, and phase insensitive amplifiers which amplify both quadratures, thereby
preserving the phase of the signal. A phase sensitive amplifier can in principle amplify the
signal without adding any noise. The minimum noise added by a phase insensitive ampli-
fier corresponds to half a quantum of the amplified frequency, �ω/.
In a parametric amplifier, some parameter of the system must be varied in time. By

pumping the system, i.e. modulating that parameter at one frequency, it is possible to
amplify a signal at a different frequency. Power is transferred from the pump frequency to
the signal frequency.
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Parametric amplifiers can be realized in a large number of systems, both in optics and in
electronics. A typical example in optics is a fiber-based amplifierwhere the refractive index
of the fiber material is modulated by the pump. In other systems utilizing varactor diodes,
it is the nonlinear diode capacitance which is modulated. Varactor diodes are typically
used at frequencies ranging from radio to THz frequencies.
Superconducting circuits can also be used to build parametric amplifiers in the mi-

crowave domain. The use of parametric amplifiers with Josephson junctions was pio-
neered by several researchers in the s [–], as well as Bernard Yurke in the s
[, ]. Josephson junctions are used as parametric inductances, and may be pumped ei-
ther by a time varying current through the junction [–], or in a SQUID geometry by a
time-varying magnetic flux [–]. Alternatively the kinetic inductance of a thin super-
conductor can be used as the parametric component [, ].
Parametric amplifiers based on superconducting devices have recently regained interest

because of the need for better amplifiers for qubit readout and microwave quantum op-
tics. The utility of these amplifiers have been demonstrated in a number of experiments
showing single shot qubit readout [], quantum feedback [], vacuum squeezing [],
and in determining the statistics of nonclassical photon states []. There are two major
advantages of superconducting parametric amplifiers: (i) they have very low dissipation,
and (ii) they have well characterized and engineer-able properties. This makes it possi-
ble to design well functioning parametric amplifiers with good gain and little added noise
[, ].
To understand and implement a parametric amplifier, one often needs to solve a system

of coupled equations where it may be difficult to fully appreciate the amplifier’s overall
properties. Along with the resurgent use of parametric amplifiers as applied to quantum
systems, a quantum optics formalism is also typically adopted to explain the amplifier.
By contrast, we recently presented [] a linearized impedancemodel for a flux-pumped

SQUID following the engineering formalism [–] developed for (classical) varactor
diodes in the s and s. While a similar formalism had also been utilized for early
treatments of Josephson junction parametric amplifiers [], this had not been applied to
the flux-pumped SQUID. The flux-pumped SQUID can be represented as a parallel com-
bination of a Josephson inductance and an additional circuit element which we named
the “pumpistor.” The pumpistor has the frequency dependence of an inductance, but it is
an inductance which is complex. The phase of this complex inductance (or impedance)
depends on the phase angle of the pump relative to the signal. By properly adjusting the
pump, the pumpistor can act as a negative resistance. Thus, it can provide gain in the cir-
cuit. In this recent paper, we treated only the three-wave degenerate case, i.e. where the
pump is applied at exactly twice the signal frequency.
In this work, we extend this pumpistormodel.We revisit the three-wave degenerate case

to include higher-order saturation effects. We also explore the four-wave degenerate case,
which couples to the pump at higher order. Perhaps most importantly, we also treat the
nondegenerate case, where the pump frequency is not a multiple of the signal frequency.
Here a matrix formalism provides for the exploration of many types of nondegenerate
frequency mixing, which, in addition to gain as a negative resistance, also describes up-
and down-conversion of a signal.
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2 The current response of a simple dc SQUID
In this section, we briefly review the relations between external magnetic flux, effective
junction phase, and series current in a dc SQUID. In this work, we refer to a dc SQUID
simply as a “SQUID,” and we consider it free of parasitic internal impedances. To begin,
we first consider a single Josephson junction in order to introduce the Josephson relations
due to the dc and ac Josephson effects [].

2.1 Current and voltage in a simple Josephson junction
In a Josephson junction, the dc Josephson effect denotes the relation between the phase
difference φJ , i.e., the difference in phase between the superconducting order parameters
on either side of the junction, and the current I which flows through the junction. This is
given by

I = Ic sin(φ) ()

Here, Ic is the critical current for this single Josephson junction, which is its maximum
allowed super-current. The ac Josephson effect relates the time derivative of the phase dif-
ference to the voltage, V , across the junction.

V =
(

�

π

)
dφ

dt
()

where, � ≡ h/(e) is the superconducting flux quantum. By taking the time derivative
of Eq. () and combining it with Eq. (), we see that the Josephson junction acts like an
inductor, dI/dt = V /LJ , with the Josephson inductance

LJ =
�

πIc cosφ
()

2.2 Extending the Josephson relations to a SQUID
Placing two Josephson junctions (“” and “”) in parallel, we form a SQUID, where the
currents combine as a sum. We adopt the sign conventions suggested in Ref. [].

I = Ic sin(φ) – Ic sin(φ) ()

Going around the loop and returning to the same point, the phase can only subtendmulti-
ples of π . We therefore find a quantization condition for the superconducting loop flux.
We regard the phase differences to occur only at the two Josephson junctions, i.e., neglect-
ing the inductance of the loop. Furthermore we assume that the two junctions are equal,
Ic = Ic = Ic/, and we define the SQUID phase to be φ = (φ –φ)/. Then we arrive at the
SQUID current,

I = Ic cos
(

π
�ext

�

)
sin(φ) ()

We see that the SQUID acts just like a Josephson junction, but with a critical current tun-
able by the external magnetic flux �ext. Note that our choice of sign convention following
Ref. [] eliminates the need for taking the absolute value of the quantity cos(π�ext/�)
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in Eq. (). This is not the case in the definition commonly used in other very good and
popular references (e.g., [, ]). In any case, for this work we consider only the situa-
tion where |�ext/�| < |/|. Here, the quantity corresponding to cos(π�ext/�) is always
positive regardless of convention.
Thus, we recover a device phenomenology similar to the single Josephson junction de-

picted in Eqs. () and (). Specifically, the SQUID acts as a tunable inductance such that

LJ =
�

πIc cos(π �ext
�

) cosφ
()

In this section, we have defined the system of a SQUID by current and voltage relations
similar to a single Josephson junction.We found the SQUID to be tunable by an externally
applied magnetic flux. Using this framework, in the next section we examine the SQUID
circuit response to a magnetic flux, applied dynamically.

3 The signal impedance of a SQUID, subject to a dynamically pumped external
magnetic flux

We investigate how a SQUID responds as an impedance due to the presence of a periodic
perturbation of the external magnetic flux. To this end, we assume the external flux is of
the following form.

�ext = �dc + δ� ()

Here�dc is a static (“quiescent”)magnetic flux, andwe use a time-dependent perturbation
of the form δ� = �ac cos(ωt + θ).
For convenience of notation, we define these following normalized flux amplitudes.

F = π
�dc

�
()

δf = π
�ac

�
()

3.1 An aside regarding labels and conventions
For clarity, we take the opportunity to introduce a handful of electromagnetic disturbances
necessary to understand our system. These small-signal disturbances occur at different
frequencies. We follow the nomenclature for frequency terms as presented by Blackwell
and Kotzebue [].
Regarding frequencies and how we label them, in this work we consider at most six fre-

quencies due to possible mixing effects. Foremost, we consider a “signal” which exists at
a frequency assigned to index . For a parametric amplifier, the signal frequency serves
as the frequency of both the input and output of the device. In this case, we determine
both the small-signal current and voltage components at this same signal frequency. This
gives us a “signal impedance” uponwhich we base our subsequent reasoning. Some driven
“pump” disturbance occurs at a frequency of index . This pump frequency corresponds
to the frequency at which the SQUID is driven externally. The pumping of the SQUID
provides for a nonlinear interaction to occur. Another frequency we consider is the “idler”
frequency. An idler response comes about due to the nonlinear mixing between signal
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Table 1 Our convention for the frequencies involved in mixing effects

(Angular) frequency Designation Relation

ω1 “signal” ω1

ω2 “idler” (three-wave difference) ω3 –ω1

ω3 “pump” ω3

ω4 “idler” (three-wave sum) ω3 +ω1

ω5 “idler” (four-wave difference) 2ω3 –ω1

ω6 “idler” (four-wave sum) 2ω3 +ω1

Figure 1 This figure depicts the mixing terms we consider pertinent. The signal frequency is at (angular)
frequency ω1, and the pump frequency is ω3. The amplitudes are arbitrary.

and pump. In the general case, we need to provide for the possibility for the idler response
to exist, even if it remains as an internal state variable (serving neither as an externally
accessible input or output to the circuit). Among the various topologies which allow fre-
quency mixing, an idler tone occurs at a frequency that is some linear combination of the
signal and pump frequencies. In this work we delineate an idler as either a sum or a dif-
ference between signal and pump frequencies, for either the three-wave or four-wave case.
An underlying principle of the parametric amplifier is that (some portion of) the power
absorbed at the pump frequency is transferred to signal and idler frequencies, allowing
for an amplified response.
We list all considered mixing frequencies in Table , and provide a depiction in Figure .

3.2 Small-signal disturbances and the modulated SQUID current
We consider different types of electromagnetic disturbances in the SQUID. Generally, we
may account for voltage, current, junction phase, and magnetic flux. We have accounted
for magnetic flux by Eq. (). Consider also a general, small-signal response of the voltage,
current, and junction phase at any of the six frequencies of Table . We assume ideal,
sinusoidal tones.

vn(t) =


Vnejωnt +



V ∗
n e

–jωnt n ∈ {, , . . . , } ()

in(t) =


Inejωnt +



I∗ne

–jωnt n ∈ {, , . . . , } ()

φn(t) =


φ̃nejωnt +



φ̃∗
ne

–jωnt n ∈ {, , . . . , } ()

The amplitudes Vn, In, and φ̃n are complex. Eqs. ()-() also demonstrate that we have
adopted the electrical engineering convention for complex number, j, rather than the
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physics convention, i, leading to a sign convention opposite of what one would find in
the quantum optics literature.
The SQUID current is directly related to the junction phase by the dc Josephson effect

as in Eq. (). Note that we specify the current as two multiplicative terms; the “flux” term,
and the “phase” term.

i(t) = Ic cos
(
π�ext(t)/�

)︸ ︷︷ ︸
“flux” term

sin
(
φ(t)

)︸ ︷︷ ︸
“phase” term

()

When treating these dynamics involving sinusoids, a common approximation is to im-
plement Fourier-Bessel expansions []. However, a simple Taylor expansion recovers the
same result as a Fourier-Bessel expansion when approximating Bessel functions in their
small-signal limit.
We take separate series expansions of the two multiplied terms of Eq. (). First, we

expand the “flux” term. We use the flux-perturbation variable (δ�) of Eq. (), which was
specified to be driven at the pump frequency (ω). To first order, we find the following.

Ic cos
(
π�ext(t)/�

) ≈ Ic
[
cos(F) – sin(F)δf cos(ωt + θ)

]
()

In some cases, such as when we consider saturation effects due to large flux amplitudes,
we will expand this term to higher order.
Next, we expand the “phase” term of Eq. (). We use simply sin[φ(t)] ≈ φ(t), although

we also include the cubic term in cases where we consider saturation effects due to junc-
tion phase. In the linear limit we consider the “phase” term to be the superposition of con-
tributions from the six considered frequencies, φ(t) =

∑
n= φn(t), with φn(t) taken from

Eq. ().
The total SQUID current can now be approximated as the following.

i(t) ≈ {
Ic

[
cos(F) – sin(F)δf cos(ωt + θ)

]}︸ ︷︷ ︸
“flux” term

( ∑
n=

φn(t)

)
︸ ︷︷ ︸
“phase” term

()

Equation () is central to this work. It informs us how the SQUID currentmixesmagnetic
flux and junction phase, allowing for gain and dissipation effects at and between different
frequencies. In what follows, we treat the response of the SQUID under various, specific
pumping conditions. We begin by studying the three-wave degenerate case.

4 The three-wave degenerate case
The three-wave degenerate case was treated at length in our previous work []. In a three-
wave parametric amplifier or converter, a pump acts as a source of power to both a signal
tone and an idler tone via a nonlinear coupling (e.g., a SQUID). We therefore consider
tones at the signal (ω), pump (ω), and idler (ω = ω – ω) frequencies. Energy conser-
vation in this three-wave case gives ω + ω = ω. As we consider this condition to be
degenerate, the signal and idler frequencies coincide (i.e., ω = ω).
The three-wave degenerate case:

ω = ω = (ω –ω) = ω/ ()

http://www.epjquantumtechnology.com/content/1/1/6


Sundqvist and Delsing EPJ Quantum Technology 2014, 1:6 Page 7 of 21
http://www.epjquantumtechnology.com/content/1/1/6

Weuse Eq. () to determine the response of the SQUID. Since the signal and idler tones
are no longer distinct for degenerate conditions, the “phase” term of Eq. () simplifies to
the following.

sin
[
φ(t)

] ≈ φ(t) = φ̃ cos(ωt + θ) ()

=


φ̃ejθpejωt +



φ̃∗
 e

–jθpe–jωt (degenerate case) ()

In this section, we depart slightly from the form of Eq. () in that we have assumed a
cosine dependence with an explicit phase angle. The amplitude φ̃ is therefore now real
and equal to its complex conjugate φ̃∗

 , although we retain the use of conjugate notation
for generality.
We did not consider including φ(t), which is the junction phase contribution at the

pump frequency (ω). This is because we are interested in the signal response. For fre-
quencymixing to occur, components at different frequencies must bemultiplied. As long
as the approximation sin[φ(t)]≈ φ(t) is valid, φ(t) does not contribute to the SQUID cur-
rent at the signal frequency.
We apply the degenerate condition of Eq. () and the “phase” term of Eq. () to Eq. ().

From the resulting expression, we find the terms proportionate to the frequency compo-
nent at ejωt . We consider the signal current to be of the form of Eq. (),

i(t) =


Iejωt︸ ︷︷ ︸
i(t)+

+


I∗ e

–jωt︸ ︷︷ ︸
i(t)–

()

such that we can match its ejωt component, i(t)+, to the following form.

i(t)+ =


Iejωt ()

=


Icφ̃

[
ejθ cos(F) –

δf

sin(F)ej(θ–θ)

]
ejωt ()

Now considering a voltage based on the ac Josephson relation applied to the phase re-
sponse, we find the following component which is also proportionate to ejωt .

v(t)+ =


Vejωt =

�

π
d
dt

[


φ̃ejθejωt

]

=



[
�φ̃ω

π
(
jejθ

)]
ejωt ()

By dividing Eq. () by Eq. (), we can define a signal admittance, Y (ω).

Y (ω) =
i(t)+
v(t)+

()

= (jωLd,)– + (jωLd,)– ()

Above, we have defined the following identities.

http://www.epjquantumtechnology.com/content/1/1/6
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Figure 2 Onemay solve for the admittance of a flux-modulated SQUID using series expansions for
the super-current. The resulting circuit model appears as the Josephson inductance in parallel to a flux- (and
phase-) dependent, inductance-like impedance.

Three-wave degenerate amplifier:

Ld, = LJ

Ld, = –LJ


tan(F)

(

δf

)
e+j�θd

�θd = θ – θ

()

The subscript “d” denotes the three-wave degenerate case. We identify the Josephson
inductance, LJ , from Eq. () for the unperturbed flux (�ext = �dc) and small phase (φ ≈ )
conditions. We therefore consider LJ = �/[πIc cos(F)] for the remainder of this work.
From these definitions, Eq. () shows that the admittance appears as the parallel combi-
nation of the Josephson inductance and a perturbation inductance with an ac-flux depen-
dence (i.e., “the pumpistor” []).
Note that this extra inductance, Ld,, has a dependence on the effective pump phase,

�θd. Depending on the value of �θd, the inductance Ld, has both real and imaginary
contributions, which may be either positive or negative. Our amplifier topology will be
able to supply signal gain when Ld, has a substantial negative and real impedance. This
depicts the mechanism which allows the SQUID to inject power back into the external
circuit at the signal frequency. A diagram of this equivalent circuit is demonstrated in
Figure .
Here we have treated the degenerate case to first order both in pump flux and in signal

phase. We recover the Josephson inductance in combination with a component repre-
senting the perturbation to the signal response. This extra impedance, as defined by its
frequency dependence, is an inductor. However, its phase dependence allows it to take on
complex amplitudes.
It is important to point out that, mathematically, this relation only holds at precisely the

frequency ω = ω/. When this condition is not met, we need to resort to the general
form of the nondegenerate case, which we shall treat in Sections  and .
Now, we consider some saturation arguments for this three-wave degenerate case.

4.1 Saturation of the pump flux for the three-wave degenerate case
As in the theory of mixers [] and other nonlinear devices, the nonlinear properties of
the driven SQUID lead also to saturation effects. These effects include the amplitude-
dependent modifications of the Josephson inductance, as well as the gain compression of
the incremental response.
If we extend the degenerate treatment as in Eq. (), we can find higher-order par-

allel inductance terms by expanding the “flux” term of Eq. () to higher orders in

http://www.epjquantumtechnology.com/content/1/1/6
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ac flux. Taking the series expansion to third-order, we find the following extension to
Eq. ().

Ld, = LJ ()

Ld, = –LJ


tan(F)

(

δf

)
e+j�θd ()

Ld, = –LJ
(


δf

)

()

Ld, = LJ


tan(F)

(

δf

)

e+j�θd ()

�θd = θ – θ ()

We find that the terms corresponding to the even powers of ac flux contribute to
modifying the standard Josephson inductance. Meanwhile, the odd powers modify the
phase-dependent term. Knowing that Ld, is responsible for gain, we can compare it to its
higher-order correction, Ld,. So by equating |Ld,| to |Ld,| we can estimate the pump ac-
flux amplitude “intercept point.” This is only a rough estimate of saturation, and the effects
of gain compressionwould start to become apparent at ac-fluxes considerably smaller than
this. To ensure that operation is far from this condition, we would say that the following
should always be true.

�ac

�
� 

√


π
≈ . ()

This is not a particularly useful constraint, as we already knew that we wish to keep the
total external flux below �/. However, we could say that this constraint reinforces the
notion that, for properly linearized behavior,�ac should bemaintained at some small frac-
tion of �.

4.2 Saturation in the signal phase (or voltage) for the three-wave degenerate
case

If we now substitute the phase term of Eq. () with an expansion to higher order, we
can estimate nonlinear effects due to the magnitude of the signal phase. Here, we assume
sin(φ) ≈ φ – 

φ, with φ = φ(t) from Eq. (). If we again combine the terms which occur
at ejωt , we find the rd-order correction to the �ac-independent term, Ld,, to be the
following.

/Ld, → /LJ
(
 –

φ̃



)
()

We also find a rd-order correction to the Ld, inductance term, which was the term in-
versely proportionate to δf .

/Ld, → /Ld,
[
 + φ̃



(



ej�θd –



)]
()

To estimate an “intercept point” due to saturation of the phase amplitude, we can take the
maximum of the corrected /Ld, of Eq. (), at �θd = π/. It is straightforward to see
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Figure 3 The admittance expansion to higher
order, both in external flux and in junction phase,
gives a more complete model for the three-wave
degenerate case. The even harmonics in the flux
expansion serve to only modify the net inductance
value. The odd harmonics modify the potential gain
and phase-sensitivity. This allows for estimation of
the saturation effects. As it is in the theory of mixers,
we see in the ac-flux expansion that the third-order
term compresses the gain-providing first-order term.

that the contribution of φ̃
 should be negligible when the following is true.

|φ̃| �
√
 ()

As in the previous consideration of the nonlinearity due to �ac/�, this is not particu-
larly a remarkable constraint. The phase amplitude

√
 is obviously already a large fraction

of π . It only reinforces the point that |φ̃| should be quite small compared to this value.
Perhaps, though, it is worthwhile to point out this limit also corresponds directly to a limit
on the junction voltage, by way of the ac Josephson effect.

|V| = φ̃

(
�ω

π

)
�

√


π
�ω ()

Concluding discussion of saturation effects due to flux and to signal phase, we turn to
Figure . Here, we combine the effects of gain compression into a common model. As in
the theory of mixers, we see that the odd terms in the expansion account for both gain and
its saturation.

5 The four-wave degenerate case
Next, we take interest in the SQUID with zero dc flux. When the dc flux is zero, the first
derivative of inductance as a function of flux is also zero. We notice from Eq. () that
Ld, becomes infinite (an “open”) and no longer contributes to the circuit. In fact, all of
the odd powers of �ac will disappear from the “flux” term of Eq. (). The reason for this
can be attributed to the symmetric behavior of the unbiased device. Yet it is still possible to
achieve parametric amplification among the even harmonics of the admittance expansion
in flux, in a degenerate case without an idler tone distinct from a signal (ω = ω). In this
case one must use four-wave degeneratemixing, where we can consider this as two pump
photons interacting with a signal photon and an idler photon (i.e., ω +ω = ω).
The four-wave degenerate case:

ω = ω = (ω –ω) = ω ()

As in the three-wave degenerate case, both idler and signal tones occur at identically the
same frequency and we consider only the disturbance of their combined response. Again,
we treat this degenerate tone as the signal (ω) response.
When the externalmagnetic flux is comprised of solely the ac component, wementioned

that the device behaves symmetrically around zero flux. To find the relevant dynamical
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response, we need to expand the “flux” term of Eq. () to nd-order for this zero flux-bias
case.

Ic cos(πδ�/�) ≈ Ic – Ic
π

�

(δ�)

= Ic –
Ic

(δf )

[
cos(ωt + θ)

] ()

As in Eq. (), we find the total current at the signal frequency by multiplying our “flux”
approximation by the “phase” term approximation. We use the approximation for the sig-
nal phase as in Eq. (). The resulting signal current, analogous to Eq. () but withω = ω,
becomes

i(t)+ =


Icφ̃

[
 –



(δf )

]
ejθejωt –




Icφ̃∗
 (δf )

ejθ–jθejωt ()

Considering the small-signal voltage of Eq. (), we find the signal admittance in the
four-wave degenerate case to be

Yd(ω) =
Icπ
jω�

–
Icπ

jω�
(δf ) –

Icπ
jω�

(δf )ejθ–jθ ()

= (jωLd,)– + (jωLd,a)– + (jωLd,b)– ()

In this case, we have defined the following.
Four-wave degenerate amplifier:

Ld, = LJ

Ld,a = –LJ
(


δf

)

Ld,b = –LJ
(


δf

)

ej�θd

�θd = (θ – θ)

()

Sowe find that the admittancewhich is proportionate to (δf ) has both phase-insensitive
and phase-sensitive terms. Note also the dependence on the pump phase in �θd is differ-
ent by  compared to the phase angle �θd of Eq. (). Also in this four-wave degenerate
case, we can produce a negative resistance, and consequently gain, from the Ld,b term by
adjusting �θd accordingly.
In the next sections, we turn to themore general case of nondegenerate operation. There,

the idler response must now be considered separately from the signal response.

6 General conditions for nondegenerate parametric effects using the
small-signal admittancematrix

We now consider specifically nondegenerate mixing conditions. Here, “nondegenerate”
asserts its standard meaning that all frequency terms under consideration are unique, i.e.,
ωi 	= ωj for all j 	= i. Where any of our six considered mixing frequencies (Table ) may
contribute to a flux-pumped SQUID circuit, we work within our typical small-signal limit
using a linearized system of equations. From this, we will develop an equivalent admit-
tance matrix.
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As before, the SQUID current is directly related to the junction phase by the dc Joseph-
son effect as in Eq. (). However, we include a nd-order expansion of the “flux” term
of Eq. (), which also includes dc flux. In this case, expanding the “flux” term to nd-
order ensures nontrivial couplings to most frequency components. We wish to find the
contributions of the current at different frequencies, given by the form i(t) =

∑
n= in(t) as

in Eq. (). For a single frequency component of the junction phase, we find the current
amplitudes at all considered frequencies.
Although we could present a matrix of frequency couplings by what we have just de-

scribed, we wish to find an admittance matrix relating current and voltage amplitudes.
We therefore translate junction phase amplitudes into voltage amplitudes by way of the ac
Josephson effect. Starting from Eq. (), we find the following.

φn(t) =
π
�

∫
vn(t)dt = –j

π

�ωn
Vnejωnt + j

π

�ωn
V ∗
n e

–jωnt ()

Taking into consideration how frequency components of the voltage couple to both con-
jugate and non-conjugate terms of the current, we arrive at our desired small-signal ad-
mittance matrix. Rather than a basis set of physical ports as in a multi-terminal device,
here the admittance matrix “ports” (indices) represent the frequencies from Table .

⎛
⎜⎜⎜⎜⎜⎜⎝

I
I∗
I
I∗
I

⎞
⎟⎟⎟⎟⎟⎟⎠ =


jLJ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε
ω

– ε∗


ω
ε
ω

– ε∗


ω
ε
ω

ε
ω

– ε
ω

ε
ω

– ε∗


ω


ε∗


ω
– ε∗


ω

ε
ω

 ε
ω

ε
ω

– ε
ω

 – ε
ω


ε∗


ω
 ε∗


ω

 ε
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

V

V ∗


V

V ∗


V

⎞
⎟⎟⎟⎟⎟⎟⎠ ()

We do not list in this matrix the pump current amplitude, I, as it couples to none of the
other six frequencies but its own (ω).
This admittance matrix holds true as long as the pump frequency is larger than the sig-

nal frequency (ω > ω) so that the “three-wave difference idler” frequency remains posi-
tive (ω > ). In the case of ω < ω, some matrix elements appear instead with conjugate
quantities. Similar redefinitions are also necessary if frequency ω = ω – ω were also
to become negative. We consider the conditions (ω > ) and (ω > ) to be the standard
situation.
We find again the quiescent Josephson inductance, LJ = �

π Ic cos(F) . Some new, flux-
dependent terms ε, ε, and ε also appear, which are not indexed by frequency. Rather,
their indices indicate the order of the series expansion in flux for which they first become
nontrivial. Their expressions are the following.

ε =  –



δf  ()

ε =
δf

tan(F)e–jθ ()

ε =
δf 


e–jθ ()

To note, for vanishing δf = π�ac
�

, the limit of ε is unity, while ε and ε tend to zero.
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The importance of the matrix equation (Eq. ()) should be emphasized. This tells us
the response of a flux-pumped SQUID between all relevant frequency components, but
yet it can be used in the same form as any other n-port admittance matrix from circuit
theory. So for this very general degenerate case, we may now consider a large number
of three-wave and four-wave mixing devices, both as negative-resistance amplifiers and
as frequency converters. It further allows us to describe a number of next-order effects
which also occur in these devices.
The elements of the admittance matrix (Eq. ()), are specifically the short-circuit ad-

mittance parameters []. This is defined as the following,

Ykl =
Ik
Vl

∣∣∣∣
Vm=,m	=l

()

where Vm =  withm 	= l is a condition met by shorting all ports,m other than the port of
interest, l.
In the next section, we begin by considering a special case of Eq. () where the de-

sired harmonics form a subset of the admittance matrix. The unwanted components are
assumed to be zero (i.e., shorted). We will then find necessary corrections for when un-
wanted harmonics are instead open-circuited.

7 The three-wave nondegenerate negative-resistance parametric amplifier
When the signal frequency under consideration is not degenerate relative to the pump
frequency, the findings of Sections  and  break down. We now return to considerations
of three-wave mixing, but for the nondegenerate case where ω 	= ω/. In this case, it is
necessary to provide for the presence of an idler junction phase (voltage) at ω. The idler
comes about due to the nonlinear frequency coupling between the signal and pump terms.
A response at the idler frequency need not be induced at the input, nor measured as an
output variable, for it to play an important role as an internal state variable.
In this section, we consider the following conditions on the signal and idler frequencies.
The three-wave nondegenerate case:

ω = (ω –ω) 	= ω ()

We consider the matrix subset of Eq. () corresponding to a signal at ω and the idler
at ω. The circuit at all other harmonics is assumed to be shorted.

(
I
I∗

)
=


jLJ

(
ε
ω

– ε∗


ω
ε
ω

– ε
ω

)(
V

V ∗


)
()

This provides the current and voltage relations directly across the SQUID at the signal
and idler frequencies. Next, we generalize the circuit such that we take into account the
possible effects of other generator and load admittances.

7.1 Understanding this three-wave nondegenerate model as a circuit topology
To conceptualize the system we have just described, consider the flux-pumped SQUID
as the primary element of a multi-frequency circuit. This is depicted in Figure (a). We
assume this circuit to be sourced by a signal current is(t) of the form of Eq. (), such that
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Figure 4 Considerations of the external circuit
for the three-wave nondegenerate case. (a) This
figure depicts the physical, general circuit
considered in this section, containing a flux-pumped
SQUID. This circuit accounts for an external source
current, is , as well as external (Yext) and local shunt
(Ysh) admittances. (b) It is possible to represent the
general circuit in an equivalent way that separates
the external loading effects of the circuit at the
“signal” (ω1) and “idler” (ω2) frequencies. This is done
by introducing hypothetical, ideal bandpass filters at
ω1 and ω2. These filters act open-circuited at their
respective frequency, but short-circuited for all other
frequencies. In this representation, the external
admittance, Yext , is represented at different
frequencies by Y1 and Y2. The input admittance
(YSQ) is then based on the signal voltage response to
current i1, which depends upon the idler in a way
that may allow for gain.

its amplitude is Is and its frequency isω. This external current sourcemay be loaded by an
external admittance, Yext. The currents i(t) and i(t), with amplitudes I and I, continue
to indicate the currents directly into the SQUID at frequencies ω and ω, respectively.
We account for either parasitic or intentional admittances directly across the SQUID by
the term Ysh(ω), which may be frequency dependent. We make a distinction between Yext

and Ysh(ω) since the definition of available power from the external source involves only
Re[Yext].
In Figure (b), we depict how we can think of the effects of the external load at different

frequencies by recasting this circuit in an equivalent representation. In this case, we sepa-
rate Yext into distinct impedances Y at frequencyω and Y at frequencyω.We introduce
hypothetical bandpass filters which isolate Y and Y to their respective frequencies out-
side of the pumped SQUID. These ideal filters work by providing a high-impedance (open)
at their intended frequencies, while at all other frequencies they serve as a perfect short.
This topology ensures that all unwanted frequencies short the SQUID, preventing any
voltage at those frequencies to accumulate. Thus, we are able to reduce the general admit-
tance matrix of Eq. () to the much simpler matrix of Eq. (). While we do not actively
source the idler current, we will find that the external admittance at the idler frequency,
Y, effects response of the SQUID at the signal frequency in an important way.

7.2 The voltage and current ratios of the three-wave nondegenerate parametric
amplifier

We are not quite ready to understand how gain appears in this system. This nondegen-
erate case is complicated by the appearance of an idler response distinct from the signal.
For instance, the idler-to-signal voltage ratio V∗


V

will become important. To find a rela-
tion for V ∗

 , we examine the second line of the matrix equation (). While it is clear that
we need to solve for V ∗

 , what is I∗ ? Unlike the signal response, we are not sourcing or
measuring an idler current. The idler current is the result of voltage disturbances at the
idler frequency, coupled to the external circuit of the surrounding electrical system. Con-
sequently, we must specify how the circuit is loaded at the idler frequency. This is why
specifying some external (conjugate) idler admittance, Y ∗

 , was necessary in the previous
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section. In what follows, we complete an analysis of our generalized circuit to solve for the
idler voltage and current in terms of the signal.
Regarding the general circuit as depicted in Figure , we use Kirchhoff’s node equations

for both the signal and idler.

Is –VY ′
 – I =  ()

–V ∗
 Y

′∗
 – I∗ =  ()

Above, we defined the grouped admittances Y ′
 = Y + Ysh(ω) and Y ′

 = Y + Ysh(ω). To
go further, the coupled subsystem of Eq. () allows us to eliminate I and I∗ , giving the
following.

Is = V

(
Y ′
 +

ε

jωLJ

)
–
V ∗
 ε∗


jωLJ

()

 =
Vε

jωLJ
+V ∗



(
Y ′∗
 –

ε

jωLJ

)
()

Equations () and () now represent the current and voltage response of the generalized
circuit depicted in Figure . Since the signal current is sourced in thismodel, what remains
to be solved are the voltage disturbances V and V ∗

 . We define the impedances ZL =
jωLJ/ε and ZL = jωLJ/ε. The voltage amplitudes are then found to be

V = LJ ZLωω
(
Y ′∗
 ZL – 

)( Is
�

)
()

V ∗
 = jLJZLZLεω

(
Is
�

)
()

where the denominator term,�, is proportionate to the determinant formed by thematrix
of Eqs. () and ().

� = LJ ωω(YZL + )
(
Y ′∗
 ZL – 

)
– ZLZL|ε| ()

When we consider the voltage ratio between the idler and signal, the cumbersome de-
nominator cancels, providing the more simple relation

V ∗


V
=

ωε

ωε


 + Z∗

LY ′∗


()

Here Z∗
LY ′∗

 � , we see Eq. () go to the limit

lim
Z∗
LY

′∗
 →

(
V ∗


V

)
=

ωε

ωε
=

ω

ω

δf
 – 

δf 
tan(F)e–jθ ()

On the other hand, when this quantity becomes large such that Z∗
LY ′∗

 � , we see

lim
Z∗
LY

′∗
 →∞

(
V ∗


V

)
=  ()
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So the voltage of the idler response is of course a function of how well the external circuit
is being kept “open” at the idler frequency, ω.
We can also find the idler-to-signal current ratio. For this we revisit the system repre-

sented by Eq. (), and divide its second equation by its first. We substitute the signal and
idler voltage amplitudes found in Eqs. () and (). This gives the following.

I∗
I

=
ε

ε


 + 

Z∗
LY

′∗

+ |ε|

ε

ω
ωZLY ′∗



()

We can look at the admittance limits of the current ratio as well. When the external ad-
mittance is small, we see

lim
Z∗
LY

′∗
 →

(
I∗
I

)
=  ()

Conversely, when external admittance is large, we see

lim
Z∗
LY

′∗
 →∞

(
I∗
I

)
=

ε

ε
=



δf
 – 

δf 
tan(F)e–jθ ()

These limits are intuitive.We can see the idler currentwill be inhibitedwhen the external
circuit is comparatively more “open,” representing a small external admittance. Note the
similar behavior indicated between Eqs. () and (), as well as between Eqs. () and
().
These quantities depict the response of the circuit at the idler frequency, ω, relative to

the circuit behavior at the signal frequency, ω. We will now utilize this understanding in
the next section to find how this system acts as a negative-resistance amplifier.

7.3 The input impedance of the nondegenerate three-wave parametric amplifier
To understand how this system works as an amplifier, we must find how it provides a neg-
ative resistance at the signal frequency. To this end, we seek to find the input admittance
as seen at ω.
The input admittance as seen into the device at the signal frequency we can say is YSQ =

IV, giving

YSQ =
I
V

=

ZL

–
V ∗


V

ε∗


ε


ZL

()

Recall that ε ≈  to first order. To interpret Eq. () as an impedance, this is the Josephson
inductance again in parallel to some other term. To find this other term, which is repre-
sented (as an admittance) by the second term on the right-hand side of Eq. (), we must
incorporate the ratio V∗


V

from Eq. (). Substituting this term into Eq. (), we arrive at

YSQ =

ZL

–
|ε|
ε


ZL


 + Z∗

LY ′∗


()

= (jωLn,)– + (jωLn,)– ()

We have therefore represented the input admittance again as inductive terms. We deter-
mined a parallel inductancemodel before, in the degenerate case, but here the dependence
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Figure 5 This figure depicts the equivalent signal impedance of the flux-pumped SQUID in the
three-wave nondegenerate case. The constituent inductances are given by Eq. (66). In the limit that the
ac-flux is small such that γ0 ≈ 1, the inductance Ln,0 is simply the quiescent Josephson inductance and
Ln,2 ∝ �2

ac . The Ln,2 acquires an imaginary component due to the external (real) admittance at the idler
frequency. A positive, imaginary inductance is a negative, real impedance, which may therefore provide gain.

on the pump phase is no longer present. This nondegenerate amplifier, therefore, is phase
insensitive. The following terms for inductances are used.
Three-wave nondegenerate amplifier:

Ln, = LJ/ε

Ln, = –
LJ

|ε|
(
ε – jωLJY ′∗


) ()

Above, the “Ln,” inductance is once again simply the Josephson inductance in the small-
signal limit. The “Ln,” inductance, in parallel to Ln,, contains two terms which are both
proportionate to |ε|–. The first term is negative and simply modifies the net inductance
by a small correction, making the net inductance appear bigger as the ac flux increases.
The second term of Ln, depends on Y ′∗

 in an important way, providing the possibility for
gain in this scenario. If Y ′∗

 has a real and positive component, this allows the impedance
represented by Ln, to acquire a negative and real component. Therefore the Y ′∗

 term of
Ln, acts as an active impedance converter, allowing the impedance external to the SQUID
at the idler frequency to appear, transformed, at the signal frequency.Wemay think of the
input admittance (or input impedance ZSQ = /YSQ) directly into the three-wave nonde-
generate pumped SQUID as depicted in Figure .
We comment on the frequency dependence of Ln,. If we subscribe to axiomatic circuit

theory [–], our linearized inductances should have a dependence strictly proportional
to jω. The second term in Ln,, which is the same term thatmay act as a negative resistance,
also contains an extra factor, jω = j(ω – ω). This gives a maximum of the product ωω

at ω/, which for this reason is why ω/ is the frequency of maximum parametric am-
plification (or nearly so) in a three-wave nondegenerate amplifier. Between an uncommon
frequency dependence and negative-resistance behavior, it may be logical to consider this
second term of Ln, as relating to something other than an inductance. Yet we choose keep
the terminology of an inductance only for consistency.
To conclude this section, we repeat that we have found the negative resistance that pro-

vides gain in this three-wave nondegenerate amplifier. This appears in the imaginary com-
ponent of the term Ln, from Eq. (). Although the frequency mixing between the idler
and signal is provided for by the pump, the negative resistance occurs as an effect of map-
ping the idler’s external (real) load admittance back onto the signal as a negative resistance.
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7.4 The three-wave nondegenerate amplifier: transducer gain
The common readout implementation for a parametric amplifier (e.g., a flux-pumped
SQUID) is as a reflection device coupled to a circulator and a nd-stage amplifier (e.g.,
a high electron mobility transistor (HEMT)) [, , , –]. It is therefore important
that the first-stage gain of a parametrically flux-pumped SQUID be adequate to overcome
the noise of subsequent gain stages. An insightful quantity in this context (in addition, say,
to other quantities such as a noise figure) is the transducer gain of the device. It is straight-
forward to specify the transducer gain, considering the simplified circuit we have so far
described in this section.
The transducer gain is the ratio of the output power to the available input power. We

consider the source admittance as Y. For the (rms) available input power at the signal
frequency, we find

Pa, =
Is

Re[Y]
()

We consider the output signal to be reflected back onto the input admittance, such that
we say the (rms) output power is

Po, =
V 



Re[Y] ()

The transducer gain is then

GT =
Po,

Pa,
=
V 

 (Re[Y])

Is
= 

(Re[Y])

|Y ′
 + YSQ| ()

This can be expressed as

GT =
Re[Y]

( 
ωLn,

+ Re[Ln,]
ω|Ln,| – Im[Y ′

]) + ( Im[Ln,]
ω|Ln,| –Re[Y ′

])
()

where Ln, and Ln, are from Eq. ().

7.5 Adding open-circuited terms
As an admittance model, as opposed to an impedance model, the ideal case is for all
non-intentional harmonics to be subject to an infinite admittance external to the pumped
SQUID (e.g., to have a shorted external load at frequencies other than the signal and idler).
This prevents voltages at these other frequencies from accumulating across the SQUID,
thereby removing their influence from the admittancematrix and the resultingmixed cur-
rents. Conversely, when the external impedance is nontrivial at other frequencies, other
harmonics will modify the description we have just presented.
Here, we treat the case opposite from before, where we now consider frequencies other

than ω and ω to be open-circuited. Therefore, we consider the last three rows of the ad-
mittance matrix of Eq. () to represent no current flow, setting currents I, I∗ , and I to
zero. We solve for the voltage amplitudes of these harmonics, which are now nontrivial.
We substitute these voltage amplitudes into the expressions for current at the signal (ω)
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Figure 6 This figure demonstrates the parametric interaction of the open-circuited SQUID at the
signal and idler frequencies. As opposed to Section 7.1, these series bandpass filters are now zero
impedance at bandpass and blocking at all other frequencies. This works in such a way that frequencies other
than ω1 and ω2 now present an open circuit to the pumped SQUID. Therefore the voltage across the SQUID is
not necessarily zero at these other frequencies. These additional mixing effects can be mapped onto a
modified subsystem between signal and idler, which is the 2× 2 matrix of Eq. (71).

and idler (ω) frequencies. To reach a manageable solution, we assume the limiting condi-
tions ε ≈  and ε ≈  for currents at ω, ω, and ω. If we keep terms up to δf , we find
the signal-idler subset matrix has the simple form,

(
I
I∗

)
=


jLJ

⎛
⎝ ε

ω
[ – |ε|

ε
] – ε∗


ω

ε
ω

– ε
ω
[ – |ε|

ε
]

⎞
⎠(

V

V ∗


)
()

We find this system identical to that of Eq. (), except for the multiplicative correction
factor in square brackets, [ – |ε|

ε
], appearing in the two matrix elements of the main

diagonal. This correction factor may become significant even for reasonably small δf as
the dc flux, F , approaches π/. This is the notable difference between this open-circuited
case and the short-circuited case we treated in Section ..
We illustrate the open-circuited case as an equivalent circuit in Figure . We depict

signal and idler circuits now directly in parallel to the pumped SQUID. As opposed to the
short-circuited case depicted in Figure (b), here the ideal filters are accomplished in series
such that only the permitted frequency is allowed to pass, while all other frequencies see
an open-circuit.
In this section, we have determined the response of the three-wave nondegenerate am-

plifier as an impedance model. This is analogous to the “pumpistor” models we found for
the three-wave and four-wave degenerate cases treated in Sections  and . A notable dif-
ference in this nondegenerate case is that the external admittance at the idler frequency
now determines the negative resistance. As can be seen by Eq. (), for a negative re-
sistance to occur at the signal frequency, it is necessary that the circuit external to the
SQUID at the idler frequency appear as a positive and real admittance. By treating both
a “short-circuited” and an “open-circuited” model, we found that a finite external admit-
tance at harmonics other than the signal and idler frequencies may also affect amplifier
performance.

8 Conclusions
In conclusion, we have substantially extended the equivalent impedance models of a flux-
pumped SQUID which we first put forth for the three-wave degenerate case []. For all
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general classes of parametric driving, a flux-pumped SQUID can be described at the sig-
nal frequency as a Josephson inductance in parallel to an effective, flux-dependent circuit
element, “the pumpistor.” Parametric amplification can be intuitively understood within
this framework, as the pumpistor impedance manifests in whole or in part as a negative
resistance.
We reviewed three-wave degenerate pumping, which explains why gain in this case

should be phase sensitive between the signal and pump. For this case, we also extended
our impedance approximation to demonstrate how the SQUID saturates both by pump
flux and by junction phase (or voltage). We also depicted the four-wave degenerate case
which is appropriate when the device is biased with zero-flux. Here, the pumpistor ele-
ment is inversely proportionate to the square of the ac flux. We found this case also to be
phase sensitive, but with a slightly different signal-to-pump difference than in the three-
wave degenerate case.
We also depicted nondegenerate pumping in a very general sense, using a matrix equa-

tion formalism. This formalism accounts for the presence of one or up to four “idler” fre-
quencies which occur as mixing tones between the pump and the signal response. Many
three- and four-wave nondegenerate parametric phenomena can be interpreted from this
matrix, including effects such as frequency up- and down-conversion. Using a subset of
these matrix equations, we treated the three-wave nondegenerate amplifier, where the
signal and single idler are considered. By solving for an idler distinct from the signal, we
found that the pumpistor impedance was now phase insensitive. We found the negative
resistance responsible for gain was now dependent on the external circuit admittance at
the idler frequency. With regards to the other, higher harmonics, we treated the three-
wave nondegenerate amplifier in both the “short-circuited” and “open-circuited” approxi-
mations. While all of these models operate under a classical, circuit-theoretic framework
rather than a quantum optics framework, they should be of great benefit for future designs
of experiments using superconducting circuits for quantum information purposes.
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