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Abstract
Recent advances in quantum technology have demonstrated the potential use of
negatively charged nitrogen-vacancy (NV–) centers in diamond for temperature and
magnetic sensing at sub-cellular levels. Fluorescent nanodiamonds (FNDs) containing
high-density ensembles of NV– centers are appealing for such applications because
they are inherently biocompatible and non-toxic. Here, we show that FNDs
conjugated with gold nanorods (GNRs) are useful as a combined nanoheater and
nanothermometer for highly localized hyperthermia treatment using near-infrared
(NIR) lasers as the heating source. A temperature rise of ∼10 K can be readily achieved
at a NIR laser power of 0.4 mW in cells. The technique is compatible with the presence
of static magnetic fields and allows for simultaneous temperature and magnetic
sensing with nanometric spatial resolution. To elucidate the nanoscale heating
process, numerical simulations are conducted with finite element analysis, providing
an important guideline for the use of this new tool for active and high-precision
control of temperature under diverse environmental conditions.
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1 Introduction
The negatively charged nitrogen-vacancy (NV–) centers in diamond have recently been
shown to be a powerful tool for quantum optics, spintronics, magnetic sensing, nanoscale
thermometry, and bioimaging applications [, ]. It is a -electron system with two un-
paired spins in the ground state (a triplet) []. This color center is bright and photostable,
and their spin levels can be optically detected by magnetic resonance (ODMR) at room
temperature down to single molecule level []. These remarkable photophysical proper-
ties, together with the inherent biocompatibility of diamond, have attracted considerable
attention for their use as quantum sensors at the interface of physics and biology. No-
table examples include the application of NV– arrays in bulk diamond for magnetic spin
imaging under ambient conditions with sub-cellular resolution [] and the development of
fluorescent nanodiamonds (FNDs) containing NV– ensembles into nanoscale thermome-
ters in living cells []. A sensitivity as high as  mK/Hz/ has been achieved with a single
defect center acting as a luminescent thermometer [].

To enhance the potential of NV– for temperature sensing [–], we have developed
methods to conjugate FNDs with other nanoparticles such as gold nanorods (GNRs) to
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form multi-functional nanohybrids []. The NV-based quantum sensors consist of FNDs
of ∼ nm in diameter and their surfaces are carboxylated by strong oxidative acid
washes []. The GNRs are ∼ nm in diameter and ∼ nm in length with a charac-
teristic surface plasmon resonance (SPR) band at  nm []. They are excellent thermal
transducers converting photon energy into heat and are well suited for hyperthermia ap-
plications [, ]. We prepare the hybrid nanoparticles by covalent conjugation of poly-
L-arginine with the carboxylated FNDs through amide linkages [], followed by physical
adsorption of bare GNRs onto the amine-grafted FNDs through electrostatic forces. More
than one GNR can be attached to the FND, making the nanohybrid an effective energy ab-
sorber and thus an efficient laser-activated nanoheater.

The development of the dual-functional GNR-FND hybrids enabled us to achieve highly
localized heating of the samples of interest and simultaneously probe their temperature
in situ at the nanoscale with the ODMR technique. We applied the nanohybrids in liv-
ing cells both as a nanoscale heater as well as a nanoscale thermometer by using near-
infrared (NIR) and green lasers for remote heating and probing, respectively. In addition,
we demonstrated their utility for orientation tracking of the nanohybrids with or with-
out laser heating in the presence of a magnetic field on a glass slide or in cells. Finally,
to provide a better understanding of the nanoscale heating process, we conducted nu-
merical simulations by solving steady-state heat conduction equations and illustrated the
three-dimensional temperature profiles of the gold/diamond nanohybrids in aqueous me-
dia with a volume-equivalent sphere approximation for both GNR and FND.

2 Experimental section
2.1 Materials and chemicals
Synthetic type Ib diamond powders (Micron+) with a medium size of  nm were
obtained from Element Six, GNRs surface-coated with the surfactant cetyltrimethy-
lammonium bromide (CTAB) were from Nanopartz, Dulbecco’s modified Eagle’s
medium (DMEM) was from Gibco-Invitrogen, LysoTracker Green was from
Invitrogen, N-(-dimethylaminopropyl)-N ′-ethylcarbodiimide hydrochloride (EDC), N-
hydroxysuccinimide (NHS), poly-L-arginine hydrochloride (PLA), bovine serum albumin
(BSA), and all other chemicals were from Sigma-Aldrich and used without further purifi-
cation.

2.2 FND production and surface modification
FNDs were produced by radiation-damage of synthetic diamond powders with a -keV
He+ beam, followed by annealing at °C for  h and air oxidation at °C for  h
[]. The particles were then surface-functionalized with carboxyl groups in concentrated
HSO-HNO (:, v/v) at °C for  h in a microwave reactor (Discover BenchMate,
CEM). The carboxylated FNDs were finally separated by centrifugation and rinsed exten-
sively with distilled deionized water (DDW).

FNDs were surface-coated with PLA by using water-soluble carbodiimide crosslink-
ers through amide bond formation [], as illustrated in Figure (a). Briefly, carboxylated
FNDs ( mg) were thoroughly dispersed in DDW by sonication for  min. EDC ( mg)
and NHS ( mg) were then added to the mixture for  min. After separation by centrifu-
gation and cleaning with DDW, the FNDs were mixed with PLA ( mg) for  h and washed
with DDW to remove unbound PLA.
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Figure 1 Synthesis and characterization of GNR-FND nanohybrids. (a) Covalent conjugation of PLA with
carboxylated FNDs through carboxyl-to-amine crosslinking by carbodiimide chemistry for physical adsorption
of bare GNRs. (b) TEM image of PLA-coated FNDs decorated with 10-nm × 41-nm GNRs. (c) Comparison
between the absorption spectra of 10-nm × 41-nm GNRs and the emission spectrum of 100-nm FNDs in
water. Two vertical black bars indicate the sites of laser excitation at 532 and 808 nm.

2.3 GNR-FND preparation
CTAB-coated GNRs were briefly washed with DDW to reduce the amount of surface-
bound CTAB for exposure of their negatively charged surfaces. After the water wash, GNR
(. mg/ml,  ml) and PLA-FND ( mg/ml, . ml) were mixed together by gentle shak-
ing for  min, followed by differential centrifugation and collection of the pellets. Size
distribution of the particles before and after conjugation was measured by a particle size
and zeta potential analyzer (Delsa Nano C, Beckman-Coulter). Size, shape, and configu-
ration of both GNRs and FNDs in the nanohybrids were visualized with a transmission
electron microscope (H-, Hitachi).

2.4 Cell culture and GNR-FND labeling
HeLa cells were seeded at a density of  ×  cells per -mm dish in DMEM and incu-
bated overnight at °C with % CO for cell attachment. Prior to cell labeling, the GNR-
FND hybrids ( mg) were first coated with BSA ( mg) by physical adsorption through gen-
tle vortex mixing of the reagents at room temperature for  h to prevent agglomeration
of the particles in cell medium []. The BSA-coated GNR-FNDs were then suspended
in serum-free DMEM at a concentration of  μg/ml. After sonication for  min, the
BSA-coated GNR-FND suspension ( ml) was added to the cell-containing dish for cellu-
lar uptake of the particles in an inverted configuration for  h []. The FND-labeled cells
were then trypsinized, thoroughly washed with warm DMEM to remove free GNR-FNDs
in solution, and re-cultured in fresh culture medium on glass coverslips overnight before
being mounted on a microscope for fluorescence imaging.

2.5 Colocalization studies
GNR-FND-labeled HeLa cells incubated in phosphate-buffered saline (PBS) were stained
with Hoechst  and LysoTracker Green, following manufacturer’s instructions. After
being washed with PBS, the cells were imaged by using a confocal laser scanning micro-
scope (SP, Leica) equipped with a white-light continuum laser. Wavelengths of the laser
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were selected with a prism for the excitation of Hoechst , LysoTracker Green, and
FND at , , and  nm, respectively. Their corresponding fluorescence emissions
were collected at /, /, and > nm.

2.6 ODMR spectroscopy
The experimental setup for temperature and magnetic field sensing consisted of a mi-
croscope (IX-, Olympus) coupled with a diode-pumped solid-state laser (DPSS, Co-
herent) and a Ti-sapphire laser (S, Newport) operating at  nm and  nm, re-
spectively, as detailed in []. The  nm light was first reflected by a long-pass dichroic
mirror (dcxr, Chroma) and then combined with the  nm light at the second short-
pass dichroic mirror (dcspxr, Chroma). They were then focused onto the samples on
a glass coverslip via a × oil-immersion objective, which also served to collect FND
fluorescence for detection. A three-dimensional confocal fluorescence tracking technique
was implemented to ensure long-term observation of the same particle under investiga-
tion. To obtain the ODMR spectra, samples were excited with microwaves delivered via
a thin gold wire ( μm in diameter) connected to a microwave amplifier (, Ophir)
and then a frequency synthesizer (PTS , Programmed Test Sources). The wire was
situated in close proximity to the glass coverslip, on which the specimen was prepared
in a microchannel (∼ mm height, ∼ mm width, and ∼ mm length) constructed with
two glass bars, an adhesive frame, and high vacuum silicone grease. Both the microwave
and the  nm probe laser were run in continuous-wave (CW) mode, and the fluores-
cence photons ( ±  nm) were detected at each scanning microwave frequency by an
avalanche photodiode (SPCM-AQR-, Perkin Elmer). Two additional  nm laser notch
filters were used to reduce the background noise level when collecting FND fluorescence
in the presence of the NIR light. The spatial overlap between the heating and detection
laser beams at the samples was examined with an electron multiplying charge-coupled
device (IXON, Andor) for their scattered light images. A Gaussmeter (GM-, AlphaLab)
measured the strength of the magnetic field applied to the samples.

3 Results and discussion
3.1 Characterization of GNR-FNDs
CTAB is a commonly used surfactant to coat the surface of GNRs for morphological stabi-
lization []. However, it is known that CTAB-encapsulated GNRs are cytotoxic and the
toxicity is mainly caused by CTAB on the particles’ surface []. Repeated water wash
effectively removes the CTAB coating but often results in agglomeration of the parti-
cles in suspension []. Being a carbon-based nanomaterial, FND can be easily surface-
grafted with cationic polymers (such as PLA) to bind with bare GNRs, which are negatively
charged, through electrostatic interactions after removal of the surfactant layer. This al-
lows integration of the heating and temperature sensing functions into one unit by forming
stable GNR-FND hybrids, although aggregation of GNRs on the surface of FNDs might
occur. Figure (b) displays a typical transmission electron microscopy (TEM) image of the
hybrid nanoparticles. Each FND can carry one or multiple GNRs with random orienta-
tion. As the absorption of light by the GNR at  nm is .-fold weaker than that at 
nm (Figure (c)), heating of the nanohybrids by the green laser excitation alone with an
incident power of < μW is negligible. Moreover, quenching of the fluorescence by the
adsorbate is insignificant due to the poor spectral overlap between the GNR absorption
and the FND emission.
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Figure 2 Laser heating and temperature sensing of a GNR-FND on a glass substrate. (a) Typical ODMR
spectra of a spin-coated GNR-FND before and after heating by a CW 808 nm laser. The ODMR peak shifted to
the lower frequency as the NIR laser power was increased from 0 to 1.8 mW. Dimensions of the GNRs are
10 nm × 41 nm. (b) Temperature rise of FND in the GNR-FND as a function of the 808 nm laser power. The
temperature rise gradually leveled off as the laser power exceeded 0.8 mW, an indication of shape
deformation of the GNR. Inset: A typical fluorescence image of the spin-coated particle (denoted by the
yellow arrow) used to obtain the ODMR spectra. The image size is 10 × 10 μm2.

We first carried out ODMR measurements for the GNR-FND hybrids spin-coated on
a glass coverslip at room temperature. A dip corresponding to the crystal field splitting
(D) of the triplet ground state of NV– appeared at ,. MHz (Figure (a)). The two
transitions, ms =  → ms = ±, observed in the spectrum are non-degenerate due to the
presence of local crystallographic strains. When irradiated by a CW  nm laser in over-
lap with the  nm laser, the GNR-FNDs exhibited a distinct shift of the ODMR peaks
toward lower frequencies, an indication of laser heating. Apart from the frequency red-
shift, the ODMR peaks also exhibited a reduction in height. The peak heights of both
transitions decreased steadily with the increase of the  nm laser power. The observa-
tion is in line with a previous study using , nm light for fast optical modulation of NV–

fluorescence []. It is noted that with the simple physical adsorption method described
above, about % of the FND particles could be successfully conjugated with GNRs. To
reach % efficiency, more elaborate covalent conjugation methods should be applied.

Based on the thermal shift of the ODMR peak, �D/�T = –. MHz/K [], we plot-
ted the temperature rise (�TFND) of the FND particle against the NIR laser power (PNIR)
in Figure (b). As noted, the �TFND did not go linearly with PNIR but gradually leveled
off at the laser power greater than . mW. To understand this nonlinear behavior, we
allowed the temperature returning to the ambient value and then redid the heating exper-
iments on the same nanohybrids under the same irradiation conditions. The levels of the
temperature changes were found to be much reduced, indicating that it is not a result of
excitation saturation which is a reversible effect. We thus concluded that this nonlinear
behavior is most likely due to shape deformation of the -nm × -nm GNRs, which is
known to occur at ∼°C and blue-shift the SPR bands [, ]. Such photothermally in-
duced reshaping has been previously observed for GNR ensembles in aqueous media []
and organic films [] as well as for single GNRs embedded in between two membrane
phases [].

We may compare the presently developed NV-based thermometric method with the
state-of-the-art temperature measurement using quantum dots (QDs) and gold nanopar-
ticles [, ]. As luminescent nanothermometers, the highest spatial resolutions of FNDs
and QDs are comparable, both limited by the diffraction of light. Although the detection
of ODMR signals is very technically challenging, the ultimate sensitivity of the NV-based
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nanothermometry is about  orders of magnitude more sensitive, as recently reported
by Kucsko et al. []. Other advantages of FNDs include that diamond is chemically inert
and the internal NV– centers are well protected from surface imperfections and pertur-
bations from the environment. As such, FNDs are more biocompatible and even more
photostable than QDs. In addition to that, the dynamical range of the temperature sens-
ing with NV– is much higher than that of QDs, and temperature measurements above
 K have been successfully conducted for both bulk [] and nanoscale [] diamonds.
Most recently, time-resolved nanothermometry with a temporal resolution of better than
 μs has been achieved with -nm FNDs [], which adds a new dimension to the use
of NV– for temperature sensing applications.

3.2 GNR-FNDs for nanoscale heating and temperature sensing
The availability of GNR-FNDs with both heating and sensing functionalities enables active
nanoscale thermometric measurement in cells and tissues by optical means. More impor-
tantly, it opens an opportunity to address questions concerning the optimization of the
intensity and duration of heat shock in hyperthermia therapy []. To prove the concept,
we introduced the dual-functional nanoparticles into HeLa cells through endocytosis, fol-
lowing standard protocols [, ]. Colocalization studies with confocal fluorescence mi-
croscopy and acidotropic probes (such as LysoTracker Green) confirmed that these parti-
cles were predominantly trapped in the lysosomes of the living cells (Figure (a)-(d)) [].
Illumination of the hybrid nanoparticles with the  nm laser resulted in highly local-
ized heating. A significant temperature rise was observed at PNIR = . mW and it scaled
nearly linearly with the laser power to �TFND ∼  K at PNIR = . mW (Figure (e)). This

Figure 3 Nanoheating and in-situ temperature sensing of GNR-FNDs in cells. (a-c) Colocalization
studies of internalized GNR-FNDs with lysosomes in HeLa cells by confocal fluorescence microscopy. The cells
were fluorescently labeled with Hoechst 33342 (a), LysoTracker Green (b), and FND (c) markers. (d) Merged
bright-field and fluorescence images of the cells. Yellow-coloured spots correspond to the colocalization of
FNDs (red) with lysosomes (green). (e) Power-dependent temperature rises of two GNR-FND particles
irradiated by an 808 nm laser with its power increasing from 0 to 0.8 mW in a HeLa cell.
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Figure 4 Numerical simulations of heat conduction. (a) Simulated three-dimensional temperature profile
of a heated GNR-FND nanohybrid in water. The simulation was conducted with COMSOL based on a
volume-equivalent sphere approximation for both FND and GNR with σ I = 7 μW. (b) Simulated distance
dependence of the temperature rises along the symmetry axis (z-coordinate) of the heated GNR-FND
nanohybrid with n = 1. (c) Simulated distance dependence of the temperature rises along the symmetry axes
of the heated GNR-FND nanohybrids with n = 1-10 (bottom to top curves). Inset: Three-dimensional
temperature profile of two GNR spheres anchored on the north and south poles of a FND sphere. Only a
quarter of the temperature profile is shown. (d) Simulated temperature rises, �TGNR and �TFND , and their
ratios as a function of the number of GNRs attached to the FND.

temperature rise is more than sufficient for photothermal therapy applications and fine
tuning of the temperature setting can be easily realized by adjusting the NIR laser power
when needed.

A question may arise: are the temperatures of the GNRs and FNDs in the nanohybrids
the same or they markedly differ since only the GNRs are laser-heated? To address this is-
sue, numerical simulations for the temperature profiles of a single GNR or multiple GNRs
attached to a FND in water (or any physiological medium) have been performed using the
heat conduction equation and a volume-equivalent sphere approximation for both GNR
[] and FND (Figure (a)). A finite element software (COMSOL, Multiphysics) numer-
ically solves the partial differential equations (PDEs) describing the temperature profiles
in three dimensions. For simplicity, the model takes only the laser-induced heat source
and the conduction dissipation into consideration, assuming that there is no significant
fluid dynamic flow. The steady state PDE solved for the individual medium (water, gold,
or diamond) in the system is

∇ · [κ(x, y, z)∇T(x, y, z)
]

+ Q̇(x, y, z) = , ()

where T and κ are the temperature and thermal conductivity of the medium and

Q̇(x, y, z) =

⎧
⎨

⎩
σ I/V gold location,

 elsewhere,
()
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where σ and V are the absorption cross section and volume of GNR, respectively, and I
is the laser intensity at the focus where the nanohydrid is irradiated. The domain used in
this simulation model is a sphere of  μm radius and the domain boundary temperature
is set to the heat bath temperature, T. At the boundary between any two media (A and B),
the COMSOL heat module automatically imposes the following interface boundary con-
ditions to ensure the continuity of both temperature and heat flux,

TA(x) = TB(x), ()

–κA
∂TA(x)

∂x
= –κB

∂TB(x)
∂x

, ()

where x is the outward unit normal vector. It should be noted that the solution of these
PDEs is not unique and any arbitrary shift of T(x, y, z) is also a solution. In fact, by choos-
ing the heat bath temperature T to be , one can easily show that the value of the solution
T(x, y, z) at any point is linearly proportional to σ (or I). The immediate consequence fol-
lowing is that the temperature ratio at any two points T(x, y, z)/T(x, y, z) is a constant,
regardless of the value of σ (or I) used in the calculations as long as σ > . This is an impor-
tant finding considering that the exact value of σ is not exactly known in experiments due
to the lack of knowledge of the GNR orientation and particle number (n) on each FND. For
the simplest case with a single GNR attached to a FND, the simulation predicts that the
temperature rises of these two particles in the complex roughly differ by a factor of two
or, more precisely, �TGNR/�TFND = . (Figure (b)). There is virtually no temperature
gradient within both the GNR and FND particles owing to the large thermal conductivity
of the gold and diamond nanomaterials with κG ∼  W/m · K and κD ∼ , W/m · K,
respectively.

In cases where there is more than one GNR attached to the FND, we assume that the
GNRs are evenly spaced at the equator of the FND sphere (inset in Figure (c)) to sim-
plify the simulations. This assumption is justified by the fact that diamond has an excep-
tionally large thermal conductivity and no matter where the GNRs are attached to the
FND surface, they all experience the same diamond temperature. With the nanohybrids
irradiated under the same conditions as before (i.e. identical σ and I), we find that the
temperature rise ratio decreases to �TGNR/�TFND = . as the number of the GNRs in-
creases to n =  (Figure (c)). Interestingly, this ratio gradually decreases and approaches
to �TGNR/�TFND ∼  at a large n (Figure (d)), where the temperature becomes nearly
uniform over the entire hybrid nanoparticle. Since our synthesized nanohybrids often con-
tain multiple GNRs as shown in Figure (b), the simulation leads us to conclude that the
temperature rises of the GNRs and FND in each nanohybrid should not differ by more
than a factor of  when they are immersed in water or trapped in cells. The determination
of this upper bound on the GNR temperature serves as an important reference for the use
of these hybrid nanoparticles in forefront applications.

3.3 GNR-FNDs for magnetic sensing and orientation tracking
The present temperature measurement with single GNR-FNDs is fully compatible with
the presence of a static magnetic field. At high field strength, the ODMR peaks of the
NV– ensembles in FNDs are expected to split into eight components since the tetrahedral
structure of diamond dictates four possible orientations of the spin quantization axes in a
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Figure 5 ODMR spectroscopy for simultaneous
temperature and magnetic field sensing.
(a) Measurement of the ODMR spectra of a GNR-FND
in the absence and presence of a static magnetic
field with B = 6 mT. (b) Thermal shifts of the peak at
2,701.7 MHz with the NIR laser power increasing
from 0 to 1.8 mW under B = 6 mT.

single-crystal lattice [–]. Although the Zeeman splitting has an undesirable effect of
reducing the ODMR contrast by about a factor of , the linewidth of each component is
decreased by half compared with that of the major peak in the field-free region. These two
effects combined give rise to similar sensitivity on the temperature measurements with or
without the magnetic field. Figure (a) presents the result obtained for a GNR-FND spin-
coated on a glass coverslip when exposed to a magnetic field derived from a permanent
magnet ( mm in length and  mm in diameter) situated ∼ mm above the sample. Six
resolved peaks appeared in the ODMR spectrum and each of them showed a significant
thermal shift when the nanohybrid was exposed to the NIR light. Choosing one of the
peaks with the largest contrast (i.e. the peak at ,. or ,. MHz), a measurement
of its frequency shift at PNIR = -. mW revealed a nonlinear temperature rise with the
increasing laser power (Figure (b)). Again, the temperature started to level off at the laser
power exceeding  mW, in accord with the previous finding (Figure (b)).

The observation of the regular Zeeman splitting pattern (Figure (a)) similar to that
of single crystal diamonds [] reflects that the FNDs making up the nanohybrids are
monocrystalline, despite that they are only of  nm in diameter. This characteristic al-
lows us to employ the ODMR peak positions to deduce the angles between the magnetic
field and the NV axes as well as to determine the magnetic field strength at the nanoscale
with high precision. According to Doherty et al. [], the ODMR spectrum of a single NV–

center in the presence of a magnetic field of B � D/γe is split into two components with
the frequencies as

f± = D +
γ 

e B

D
sin θB ± γeB cos θB

√

 +
γ 

e B

D tan θB sin θB, ()
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where D is the crystal field splitting, θB is the angle between the magnetic field and the cen-
ter’s major symmetry axis, and γe = geμB/h = . MHz/mT with ge ∼ ., μB being
the Bohr magneton, and h being the Planck constant. Using D = ,. MHz and the six
frequencies given in Figure (a), we determined B = .±. mT, which can be compared
with B ∼ . mT measured by a Gaussmeter at the sample position. The angle between
the applied B field and the symmetry axis of the NV– center that yields the resonances
at f+ = ,. MHz and f– = ,. MHz is θB = .°. This angle did not change signifi-
cantly with time (�θB < °) even under continuous NIR laser irradiation at PNIR = . mW,
suggesting that the GNR-FND particle was firmly attached to the glass surface.

Finally, we have also made an attempt to apply this new tool for orientation tracking
of the GNR-FND particles in HeLa cells. Again, the change in angle is small (�θB < °)
under the same NIR laser irradiation over  min. The result matches well with a previous
study using single NV centers in -nm diamonds, showing a variation of the particle’s
orientation by only ° over  h in living cells []. The resistance to rotation is in line with
our observation in Figure (d) that the particles are entrapped in the endocytic vehicles of
the cells and become essentially immobile []. In future experiments, we will apply the
technique to living organisms such as Caenorhabditis elegans, for which recent studies
have shown that the FND particles can migrate between cells [] and rotate quite freely
[] in the intestine of the worms.

4 Conclusion
We have developed FND and GNR into a two-in-one optical heating and sensing nanoplat-
form with simple surface chemistry. Our results suggest that the GNR-FND nanohybrids
are useful for simultaneous temperature and magnetic sensing in biological platforms
where the nanohybrids may find practical applications. Further improvement of the per-
formance of the nanoscale sensors is possible by covalent conjugation of the surface-
modified GNRs with FNDs through amide or other linkages, such as the azide-alkyne
coupling by click chemistry []. GNR particles of different aspect ratios (and thus differ-
ent SPR band shifts) can also be conjugated with the FNDs using similar strategies. These
dual-functional GNR-FND nanoparticles are convenient and appealing for applications in
nanoscale hyperthermia where highly localized and controlled heating for safer and more
effective therapy of cancer is desired. On occasions where no knowledge of temperature
is needed, the FNDs in the nanohybrids are still useful as a photostable beacon to guide
researchers to achieve target-specific optical transfection [] or light-activated therapies
[] with the constituting GNR nanoheaters.
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