Skip to main content

Advertisement

Table 1 System parameters for simulation and experimental validation of the simulator.

From: Improved mirror position estimation using resonant quantum smoothing

Parameter Simulation Experiment Description
h(ω) \(\frac{c_{1}s + c_{2}\omega_{m}}{s^{2} + \beta s + \omega_{m}^{2}} e^{-s\tau}\) \(\frac{c_{1}s + c_{2}\omega_{m}}{s^{2} + \beta s + \omega_{m}^{2}}e^{-s\tau}\) Plant transfer function
\(S_{f}(\omega)\) \(\frac{Q}{2}[\frac{1}{(\omega-\omega_{i})^{2} + \gamma ^{2}} + \frac{1}{(\omega+\omega_{i})^{2} + \gamma^{2}}]\) \(\frac{Q}{2}[\frac{1}{(\omega-\omega_{i})^{2} + \gamma^{2}} + \frac {1}{(\omega +\omega_{i})^{2} + \gamma^{2}}]\) Forcing function PSD
R 7.7 × 10−11 7.7 × 10−11 Measurement noise magnitude term where \(R\delta(t-t') = \sigma(\eta(t),\eta(t))\), η(t) is white Gaussian noise
Q 7.4 × 10−2 7.4 × 10−2 Forcing function magnitude term where \(Q\delta(t-t') = \sigma(\xi(t),\xi(t))\), ξ(t) is white Gaussian noise
γ 1,333 1,333 Forcing function damping factor
\(\omega_{m}\) 2π7,930 2π7,930 Frequency of PZT resonance
\(\omega_{i}\) 2π7,930 2π7,930 Frequency of forcing function resonance
\(c_{1}\) 131 131 Constant
\(c_{2}\) 196 196 Constant
β 2,494 2,494 PZT resonance damping factor
τ 0 and 18.5 × 10−6 system Time delay
F 250 kS/s 250 kS/s Sample rate
N 215 216 Number of samples
Averages 21 5 Number of data sets averaged