Table 4 The optimal TLR scheme obtained by solving the binary linear program for the measurement of the plaquette operator$$\pmb{B_{p}}$$and the six vertex operators$$\pmb{Q_{v}}$$of Figure  5 , following the plaquette swapping method of Ref. 

Length of the TLR wire Qubits contained inside the TLR wire
2.52 a.u. $$\alpha_{9}$$, $$\alpha_{8}$$, $$i_{6}$$, $$\alpha_{0}$$, $$a_{6}$$
2.84 $$a_{1}$$, $$i_{1}$$, $$\alpha_{7}$$, $$\alpha_{8}$$, $$\alpha_{9}$$
4.04 $$\alpha_{7}$$, $$\alpha_{9}$$, $$i_{4}$$, $$i_{3}$$, $$a_{3}$$
4.30 $$\alpha_{9}$$, $$\alpha_{7}$$, $$a_{5}$$, $$i_{5}$$, $$a_{4}$$
2.44 $$i_{1}$$, $$\alpha_{7}$$, $$\alpha_{6}$$, $$i_{6}$$, $$a_{6}$$
2.15 $$i_{2}$$, $$\alpha_{1}$$, $$i_{1}$$, $$a_{1}$$
2.15 $$i_{3}$$, $$\alpha_{2}$$, $$i_{2}$$, $$a_{2}$$
3.04 $$\alpha_{7}$$, $$\alpha_{9}$$, $$i_{2}$$, $$a_{2}$$
2.15 $$i_{5}$$, $$\alpha_{4}$$, $$i_{4}$$, $$a_{4}$$
1.63 $$i_{5}$$, $$\alpha_{5}$$, $$i_{6}$$, $$a_{5}$$
1.15 $$i_{4}$$, $$\alpha_{3}$$, $$a_{3}$$
0.58 $$i_{3}$$, $$\alpha_{3}$$
1. In particular, all the two-qubit couplings of $$\mathcal{P}_{\mathrm{swapping}}$$ in Table 3 are realized: there are no more than five TQs in each TLR, and each TQ couples to maximally four TLRs.