Skip to main content

Advertisement

TableĀ 5 The set \(\pmb{\mathcal{P}_{\mathrm{swapping}}^{0}}\) of two-qubit connections between qubits in unit cell 0 of FigureĀ  7 and the remaining qubits of the lattice, following the plaquette swapping method of Ref. [ 28 ]

From: Methodology for bus layout for topological quantum error correcting codes

Qubit q in unit cell 0 Qubits to which q couples
\(i_{0,1}\) \(\alpha_{0,7}\), \(i_{0,6}\), \(\alpha_{0,8}\), \(\alpha _{0,9}\), \(i_{1,5}\), \(\alpha_{1,4}\), \(i_{1,6}\), \(\alpha_{1,9}\), \(\alpha _{2,7}\), \(i_{2,5}\), \(\alpha_{2,5}\), \(i_{2,6}\), \(\alpha_{2,9}\), \(i_{6,6}\), \(\alpha_{6,9}\)
\(i_{0,5}\) \(\alpha_{0,7}\), \(\alpha_{0,5}\), \(\alpha_{0,4}\), \(i_{0,6}\), \(\alpha _{0,9}\), \(\alpha_{4,7}\), \(i_{4,1}\), \(i_{4,6}\), \(\alpha_{4,7}\), \(\alpha _{4,9}\), \(i_{5,1}\), \(i_{5,6}\), \(\alpha_{5,9}\), \(i_{6,6}\), \(\alpha_{6,9}\)
\(i_{0,6}\) \(\alpha_{0,7}\), \(i_{0,1}\), \(i_{0,5}\), \(\alpha_{0,8}\), \(\alpha _{0,9}\), \(i_{1,5}\), \(\alpha_{2,7}\), \(i_{2,5}\), \(\alpha_{3,7}\), \(i_{3,1}\), \(i_{3,5}\), \(\alpha _{4,7}\), \(i_{4,1}\), \(i_{5,1}\)
\(\alpha_{0,0}\) \(\alpha_{0,9}\)
\(\alpha_{0,4}\) \(i_{0,5}\), \(\alpha_{4,7}\), \(i_{4,1}\)
\(\alpha_{0,5}\) \(\alpha_{0,7}\), \(i_{0,5}\), \(i_{5,1}\)
\(\alpha_{0,7}\) \(i_{0,1}\), \(i_{0,5}\), \(\alpha_{0,5}\), \(i_{0,6}\), \(\alpha _{0,8}\), \(\alpha_{0,9}\), \(i_{1,5}\), \(\alpha_{1,4}\), \(i_{1,6}\), \(\alpha _{1,9}\), \(i_{5,1}\), \(i_{5,6}\), \(\alpha_{5,9}\), \(i_{6,6}\), \(\alpha_{6,9}\)
\(\alpha_{0,8}\) \(\alpha_{0,7}\), \(i_{0,1}\), \(i_{0,6}\), \(\alpha_{0,9}\), \(i_{1,5}\),
\(\alpha_{0,9}\) \(\alpha_{0,7}\), \(i_{0,1}\), \(i_{0,5}\), \(\alpha _{0,0}\), \(i_{0,6}\), \(\alpha_{0,8}\), \(i_{1,5}\), \(\alpha_{2,7}\), \(i_{2,5}\), \(\alpha _{3,7}\), \(i_{3,1}\), \(i_{3,5}\), \(\alpha_{4,7}\), \(i_{4,1}\), \(i_{5,1}\)
4 \(\alpha_{0,7}\), \(i_{0,1}\), \(\alpha_{0,8}\), \(\alpha_{1,4}\)
3 \(i_{0,5}\), \(\alpha_{0,5}\), \(\alpha_{0,4}\)