Skip to main content

Table 5 Phase parameters required to simulate the time evolution of horizontal hopping Hamiltonian, see Eq. (105)

From: Superconducting circuit architecture for digital-analog quantum computing

Horizontal Hopping

Operator

\(\tilde{\varphi }^{(j)}_{1}\)

\(\tilde{\varphi }^{(j)}_{2}\)

\(U_{3}^{x}U_{7}^{x}U_{11}^{x}\)

\(\tilde{\varphi }^{(3),(7),(11)}_{1}= 2\pi \)

\(\tilde{\varphi }^{(3),(7),(11)}_{2}=\pi \)

\(\operatorname{exp} (-{\frac{i\mathcal{A}}{2}(\sigma _{2}^{x}\sigma _{3}^{y}+\sigma _{6}^{x}\sigma _{7}^{y}+\sigma _{10}^{x}\sigma _{11}^{y})\frac{t}{n}} )\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}= {1}/{2}\pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}={3}/{2}\pi \)

\(U_{3}^{x^{\dagger }}U_{7}^{x^{\dagger }}U_{11}^{x^{\dagger }}\)

\(\tilde{\varphi }^{(3),(7),(11)}_{1}= \pi \)

\(\tilde{\varphi }^{(3),(7),(11)}_{2}=2\pi \)

\(U_{3}^{y^{\dagger }}U_{7}^{y^{\dagger }}U_{11}^{y^{\dagger }}\)

\(\tilde{\varphi }^{(3),(7),(11)}_{1}= \pi \)

\(\tilde{\varphi }^{(3),(7),(11)}_{2}=\pi \)

\(\operatorname{exp} ({\frac{-i\mathcal{A}}{2}(\sigma _{2}^{y}\sigma _{3}^{x}+\sigma _{6}^{y}\sigma _{7}^{x}+\sigma _{10}^{y}\sigma _{11}^{x})\frac{t}{n}} )\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}={3}/{2} \pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}={3}/{2}\pi \)

\(U_{3}^{y}U_{7}^{y}U_{11}^{y}\)

\(\tilde{\varphi }^{(3),(7),(11)}_{1}=2\pi \)

\(\tilde{\varphi }^{(3),(7),(11)}_{2}=2\pi \)

\(U_{2}^{x}U_{6}^{x}U_{10}^{x}\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}=2\pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}=\pi \)

\(\operatorname{exp} (-{\frac{i\mathcal{A}}{2}(\sigma _{1}^{x}\sigma _{2}^{y}+\sigma _{5}^{x}\sigma _{6}^{y}+\sigma _{9}^{x}\sigma _{10}^{y})\frac{t}{n}} )\)

\(\tilde{\varphi }^{(1),(5),(9)}_{1}=3/2\pi \)

\(\tilde{\varphi }^{(1),(5),(9)}_{2}=3/2\pi \)

\(U_{2}^{x^{\dagger }}U_{6}^{x^{\dagger }}U_{10}^{x^{\dagger }}\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}=\pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}=2\pi \)

\(U_{2}^{y^{\dagger }}U_{6}^{y^{\dagger }}U_{10}^{y^{\dagger }}\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}=\pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}=\pi \)

\(\operatorname{exp} ({-\frac{i\mathcal{A}}{2}(\sigma _{1}^{y}\sigma _{2}^{x}+\sigma _{5}^{y}\sigma _{6}^{x}+\sigma _{9}^{y}\sigma _{10}^{x})\frac{t}{n}} )\)

\(\tilde{\varphi }^{(1),(5),(9)}_{1}=1/2\pi \)

\(\tilde{\varphi }^{(1),(5),(9)}_{2}=3/2\pi \)

\(U_{2}^{y}U_{6}^{y}U_{10}^{y}\)

\(\tilde{\varphi }^{(2),(6),(10)}_{1}=2\pi \)

\(\tilde{\varphi }^{(2),(6),(10)}_{2}=2\pi \)