Skip to main content

Table 6 Phase parameters required to simulate the time evolution of the vertical hopping \(h_{5}\), see Eq. (108e)

From: Superconducting circuit architecture for digital-analog quantum computing

Vertical Hopping

Operator

\(\tilde{\varphi }_{1}\)

\(\tilde{\varphi }_{2}\)

\(U_{(6,8)}^{{y,y}^{\dagger }}\)

\(\tilde{\varphi }^{5,8}_{1}= \pi \)

\(\tilde{\varphi }^{5,8}_{2}=\pi \)

\(U_{7}^{x}\)

\(\tilde{\varphi }^{7}_{1}= 2\pi \)

\(\tilde{\varphi }^{7}_{2}=\pi \)

\(\operatorname{exp} (-\frac{i\mathcal{A}}{2}\sigma _{6}^{x}\sigma _{7}^{y}\frac{t}{n} )\)

\(\tilde{\varphi }^{6}_{1}= 1/2\pi \)

\(\tilde{\varphi }^{6}_{2}=3/2\pi \)

\(U_{7}^{x^{\dagger }}\)

\(\tilde{\varphi }^{7}_{1}= \pi \)

\(\tilde{\varphi }^{7}_{2}={2}\pi \)

\(U_{(6,8)}^{y,y}\)

\(\tilde{\varphi }^{5,8}_{1}={2} \pi \)

\(\tilde{\varphi }^{5,8}_{2}={2}\pi \)

\(U_{(6,8)}^{{x,x}^{\dagger }}\)

\(\tilde{\varphi }^{5,8}_{1}=\pi \)

\(\tilde{\varphi }^{5,8}_{2}=2\pi \)

\(U_{7}^{y^{\dagger }}\)

\(\tilde{\varphi }^{7}_{1}=\pi \)

\(\tilde{\varphi }^{7}_{2}=\pi \)

\(\operatorname{exp} (-\frac{i\mathcal{A}}{2}\sigma _{6}^{y}\sigma _{7}^{x}\frac{t}{n} )\)

\(\tilde{\varphi }^{6}_{1}=3/2\pi \)

\(\tilde{\varphi }^{6}_{2}=3/2\pi \)

\(U_{7}^{y}\)

\(\tilde{\varphi }^{7}_{1}=2\pi \)

\(\tilde{\varphi }^{7}_{2}=2\pi \)

\(U_{(6,8)}^{x,x}\)

\(\tilde{\varphi }^{5,8}_{1}=2\pi \)

\(\tilde{\varphi }^{5,8}_{2}=\pi \)