Skip to main content

Table 1 Table summarizing the results of the present analysis, consisting of some of the most common single-qubit noisy channels \(\mathcal{N}\), along with their inverse noise maps \(\mathcal{N}^{-1}\), defined as the map such that \((\mathcal{N}^{-1}\circ \mathcal{N})(\rho ) = \rho\) ρ. Clearly, all noise channels are CPTP maps, while the inverse channels are not, yet they admit an operator-sum representation. All the noise maps except for amplitude damping and 2-Kraus channel have trivial adjoint channels, so one must pay attention in using the adjoint channel inside the deconvolution formula (19)

From: Qubit noise deconvolution

 

Noise channel \(\mathcal{N}(\rho )\)

Inverse map \(\mathcal{N}^{-1}(O)\)

Bit-Flip

\((1-p)\rho + p\sigma _{x}\rho \sigma _{x}\)

\({\frac{1-p}{1-2p}O - \frac{p}{1-2p}\sigma _{x}O \sigma _{x}}\)

Phase-Flip (or dephasing)

\((1-p)\rho + p\sigma _{z}\rho \sigma _{z}\)

\({\frac{1-p}{1-2p}O - \frac{p}{1-2p}\sigma _{z}O \sigma _{z}}\)

Bit-Phase-Flip

\((1-p)\rho + p\sigma _{y}\rho \sigma _{y}\)

\({\frac{1-p}{1-2p}O - \frac{p}{1-2p}\sigma _{y}O \sigma _{y}}\)

Depolarizing

(1p)ρ+p 1 2

1 1 p (O p 2 Tr[O]1)

General Pauli Channel

\(p_{0} \rho + p_{x} \sigma _{x}\rho \sigma _{x}+ p_{y} \sigma _{y}\rho \sigma _{y}+ p_{z} \sigma _{z}\rho \sigma _{z}\)

\(\beta _{0} O + \beta _{1} \sigma _{x}O \sigma _{x}+ \beta _{2} \sigma _{y}O \sigma _{y}+ \beta _{3} \sigma _{z}O \sigma _{z}\) (see Eq. (41) for the coefficients)

Amplitude Damping

\(V_{0}\rho V_{0} + V_{1} \rho V_{1}^{\dagger}\)

\(K_{0} O K_{0} - K_{1} O K_{1}^{\dagger}\)

\(V_{0} = |0 \rangle \langle 0|+ \sqrt{1-\gamma} |1 \rangle \langle 1|\)

\(K_{0} = |0 \rangle \langle 0|+ \sqrt{\frac{1}{1-\gamma}} |1 \rangle \langle 1|\)

\(V_{1} = \sqrt{\gamma} |{0}\rangle \langle {1}|\)

\(K_{1} = \sqrt{\frac{\gamma}{1-\gamma}} |{0}\rangle \langle {1}|\)

2-Kraus Channel

\(A_{0}\rho A_{0} + A_{1} \rho A_{1}^{\dagger}\)

\(B_{1} O B_{1}^{\dagger }- B_{2} O B_{2}^{\dagger}\)

\(A_{0} = \cos \alpha |0 \rangle \langle 0|+ \cos \beta |1 \rangle \langle 1|\)

\(B_{0} = \frac{\sqrt{2}\cos \beta}{\sqrt{\cos 2\alpha +\cos 2\beta}} |0 \rangle \langle 0|+ \frac{\sqrt{2}\cos \alpha}{\sqrt{\cos 2\alpha +\cos 2\beta}} |1 \rangle \langle 1|\)

\(A_{1} = \sin \beta |{0}\rangle \langle {1}|+\sin \alpha |{1}\rangle \langle {0}|\)

\(B_{1} = \frac{\sqrt{2}\sin \beta}{\sqrt{\cos 2\alpha +\cos 2\beta}} |{0}\rangle \langle {1}|+\frac{\sqrt{2}\sin \alpha}{\sqrt{\cos 2\alpha +\cos 2\beta}} |{1}\rangle \langle {0}|\)