Skip to main content

Table 2 Local electron number for \(\mu _{\mathrm{global}} \approx +0.01\) (fragmentation in Fig. S1d) and \(\mu _{\mathrm{global}} \approx -0.01\) (fragmentation in Fig. 2b). The rightmost column corresponds to a sum over fragments (x represents a fragment label), for which the total number should sum to 222 and the total charge transfer (\(\langle \delta N\rangle \)) should sum to 0, hence we note an error in electron number of approximately ±0.01 due to lack to strict DMET cost optimisation

From: Modelling carbon capture on metal-organic frameworks with quantum computing

Fig. S1d fragmentation

\(\langle N_{\mathrm{CO}}\rangle \)

\(\langle N_{\mathrm{AlO}}\rangle \)

\(\langle N_{\mathrm{fum}'}\rangle \)

\(\sum_{x}\)

\(r = 2~\mathring{\mathrm{A}}\)

13.6972

20.1216

188.1694

221.9881

\(r = 10~\mathring{\mathrm{A}}\)

13.8514

20.0954

188.0411

221.9878

δN

−0.1542

0.0262

0.1283

0.0003

Fig. 2b fragmentation

\(\langle N_{\mathrm{CO}_{2}}\rangle \)

\(\langle N_{\mathrm{Al}}\rangle \)

\(\langle N_{\mathrm{fum}'}\rangle \)

\(\sum_{x}\)

\(r = 2~\mathring{\mathrm{A}}\)

21.8278

12.0487

188.1180

221.9944

\(r = 10~\mathring{\mathrm{A}}\)

22.0000

12.0215

187.9876

222.0091

δN

−0.172186

0.027151

0.13035

−0.0147