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Abstract
We address quantitatively the relationship between the nonlinearity of a mechanical
resonator and the nonclassicality of its ground state. In particular, we analyze the
nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a
paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how
to quantify the nonlinearity of this system and then show that the nonclassicality of
the ground state, as measured by the volume occupied by the negative part of the
Wigner function, monotonically increases with the nonlinearity in all the working
regimes addressed in our study. Our results show quantitatively that nonlinearity is a
resource to create nonclassical states in mechanical systems.
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1 Introduction
Mechanical systems are emerging as very well suited candidates for the study of quantum
behavior at the mesoscopic scale. Such a possibility is currently being explored in par-
ticular in the domain of quantum opto-/electro-mechanics [], where ground-breaking
experimental demonstration of quantum control of massive systems operating under
explicitly adverse conditions have been recently made []. Yet, despite the substantial
number of studies addressing the features of mechanical systems operating at the quan-
tum level, only partial attention has so far been given to the physics of nonlinear me-
chanical devices. Classically, it is known that many nonlinear systems exhibit very com-
plex behaviors of potentially interesting features [], and it is currently believed that
such features might be potentially useful in many areas of investigation, even beyond
physics.

In the context of mesoscopic quantum behaviors, Katz et al. have studied the quantum-
to-classical transition in the state of nonlinear nanoelectromechanical systems (NEMS)
[, ]. Their analysis considered both an isolated resonator and one open to the effects
of an environment, focusing on quantum signatures and on their disappearance toward
classicality, as the operating temperature of the oscillator was raised.

In this paper, we study the link between the enforcement of nonlinearity in a quantum
mechanical oscillator and the manifestation of evidently nonclassical features in its state.
Wondering about such a connection is indeed significant: the expectation values taken
by observables of linear systems follow the corresponding classical equations of motion,
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and a linear dynamics do not let phase-space nonclassicality emerge (even at low tem-
peratures). It is thus important, and relevant for applications, to understand which is the
interplay between the nonlinear character of the evolution of a given bosonic system and
the strength of the nonclassical features that we are able to correspondingly enforce. In-
deed, a qualitative connection between nonlinearity and nonclassicality is suggested by
the Hudson theorem which, for pure states, associates non-Gaussianity to negativity in
phase space [, ].

From a quantitative viewpoint, here we will make use of the negativity of the Wigner
function as a phase-space indicator of nonclassicality []. This is an established notion
of nonclassicality, with a close relationship with the non-local properties of the quantum
state [, ]. On the other hand, we will quantify the degree of nonlinearity of a given sys-
tem by means of recently introduced measures []. In order to complement the analysis
presented in [, ], we focus on the case of Duffing-type nonlinearity which, besides being
technologically relevant as inherent in some forms of NEMS [, ], has been the focus of
a few studies on the quantum effects that it entails in terms of nonclassicality [–] and
entanglement [–]. We show that a direct link exists between nonlinearity and the non-
classical character of the state of the oscillator. By focusing explicitly on the ground state
of the system, we show that the phase-space nonclassicality of such state depends almost
linearly on the degree of nonlinearity of the oscillator, thus suggesting a potential role of
the latter feature as a resource for the achievement of strong quantumness. Our conclu-
sions are valid for a driven and an undriven Duffing oscillator, thus covering a vast range
of physically relevant situations. We believe that our analysis and results embody a first
interesting step towards the establishment of a rigorous link between such fundamental
features in the dynamics of an oscillator.

The remainder of the paper is structured as follows. In Section  we discuss the specific
example of nonlinear oscillator, a Duffing oscillator, considered in this work. We focus on
the undriven configuration of such oscillator and introduce the relevant measures of non-
linearity and nonclassicality that will be used throughout the paper. We show that a direct
correspondence between degree of nonlinearity and nonclassicality can be established,
pointing at the relevance of former for the enforcement of the latter in the ground state
of an oscillator. Section  deals with the case of a driven Duffing oscillator, and reports
an analysis similar to the one presented in Section . We show that the relation between
measures of nonlinearity and nonclassicality is maintained in a dynamical situation as well,
thus highlighting the fundamental nature of the relationship that we find, which appears
to be unrelated to the details of the working conditions of the oscillator. Finally, Section 
closes the paper with some concluding remarks.

2 Nonlinearity of a Duffing oscillator: undriven case
We consider a Duffing oscillator, which is described by the Hamiltonian []

Ĥsys =


(
p̂ + x̂) +




εx̂ – x̂F cosωt, ()

where x̂ and p̂ are the dimensionless position- and momentum-like operators of the oscil-
lator (such that [x̂, p̂] = i), ε is the anharmonicity parameter, F is the amplitude of a possi-
ble force that drives the oscillator at frequency ω. Without loss of generality, throughout
the manuscript we will consider the case of a stiffening nonlinearity with ε > . Such model
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Figure 1 The Duffing potential. In the top panel we show
V(x) for ε = 0.2 (red), ε = 0.5 (green), ε = 0.8 (blue). In the
bottom panel we show the corresponding GS probability
densities, |ψ0|2(x).

is appropriate to describe the energy of a small-size doubly clamped mechanical resonator
such as a carbon nanotube, or a nanowire [, ]. The onset of nonlinear effects in such
systems decreases with decreasing diameter of the device, making either weak driving
forces or thermomechanical noise sufficient to drive the motion away from the linear ap-
proximation. In this section we will focus on the undriven case, thereby setting F = ,
deferring the treatment of a driven one to the next section.

It is instructive to gather an understanding of the form of the nonlinear potential energy
to which the oscillator is subjected. In the top panel of Figure  we show the function V (x) =
εx/ for different choices of the anharmonicity parameter, which shows that an increasing
value of ε results in more pronounced nonlinear effects at smaller displacements from the
equilibrium position x =  of the oscillator. The effects of the quartic potential on the
wave functions of the oscillator can be evaluated by using time-independent perturbation
theory. In such context, we use the notation Ĥsys = Ĥ () + V̂ (x̂) with

Ĥ () =


(
x̂ + p̂), V̂ (x̂) =




εx̂. ()

We thus evaluate the first-order corrections to the eigenstates {|n〉} of Ĥ () as

|ψn〉 ≈ |n〉 +
∑

k �=n

〈k|V̂ (x̂)|n〉
n – k

|k〉. ()

We will mostly focus on the ground state (GS) of the nonlinear oscillator, for which we aim
at finding an approximate form. While a fully numerical approach could be used to gather
the full form of the GS of the oscillator, the range of values that ε can take experimentally
well justifies a perturbative approach. The perturbing Hamiltonian only couples |〉 to |〉
and |〉, so that we have the normalised approximation of the GS

|ψ〉 = N
[
|〉 –

ε


√


|〉 –

√
ε


√


|〉

]
()
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Figure 2 State fidelity F(ε) between the ground state of the
undriven Duffing oscillator achieved through a
perturbative approach |ψ0〉 and that estimated numerically
by diagonalising the Hamiltonian model in Eq. (2) using the
first 51 number states.

with N = /
√

 + ε
 . The corresponding probability densities are plotted on the bottom

panel of Figure  for increasing values of ε, showing how the nonlinear term in the po-
tential tends to localize the wave function of the oscillator around its equilibrium posi-
tion.

In order to determine the range of values of ε within which the form of |ψ〉 given in
Eq. () holds, we have calculated numerically the GS |ψnum〉 of the Hamiltonian Ĥsys in
Eq. () using a truncated Hilbert space consisting of the first  number states and eval-
uated the state fidelity F(ε) = |〈ψ|ψnum〉|, whose behavior against the nonlinearity pa-
rameter ε is shown in Figure . Fidelity remains above % for ε ∈ [, .]. All the results
reported in the remainder of this paper have been gathered using this range of values. As
we show now, both the information on the modified potential energy and the GS wave
function are key for the analysis at the core of this paper.

We now pass to the introduction of the quantitative tools that we plan to adopt in order
to gather insight into the relation between nonlinearity and the onset of nonclassicality
in the Duffing oscillator at hand. We would like to stress that the figures of merit that we
introduce here go beyond the mere quantification of nonlinearity as given by the Hamil-
tonian parameters (e.g., as given by ε itself ). This has the twofold advantage of allowing
to encompass situations in which more than one Hamiltonian parameter is considered
(see next section) and of removing the dependence on the detailed form of the nonlinear
potential.

We first consider a measure of nonlinearity based on the features of the GS [] and built
by comparing |ψ〉 and its unperturbed counterpart |〉. Quantitatively, we determine the
distance between the two GSs using the Bures measure: Given a perturbing nonlinear po-
tential V̂ (x̂), we define the nonlinearity measure ηB[V ] as the suitably normalized Bures
distance DB between the GS of the oscillator under consideration and that of the corre-
sponding harmonic one. In our case, we have

ηB[V ] =
√


DB
[|ψ〉, |〉] =

√
 –

∣∣〈|ψ〉
∣∣, ()

where we have used the fact that the two states under scrutiny are pure. As it is apparent
from its very definition, this quantifier depends crucially upon the choice of a correspond-
ing reference harmonic potential. Such a dependence can be overcome by considering a
second way of quantifying nonlinearity: Given a potential V̂ (x̂) with associated GS |〉V ,
we define the measure of nonlinearity ηNG[V ]

ηNG[V ] = δNG
[|〉〈|V

]
, ()
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where δNG[�] is the degree of non-Gaussianity introduced in [, ]. This definition is
intuitive: as commented earlier, a nonlinear potential would induce deviations from Gaus-
sianity, which can in turn be used to quantify the strength of the nonlinear process itself.
The degree of non-Gaussianity is built on the quantum relative entropy of the state and a
reference Gaussian state. As the GSs under scrutiny are always pure, we have

ηNG[V ] = S[τ ] = h
(√

det[σ τ ]
)

()

with τ the reference Gaussian state, S[τ ] its Von Neumann entropy, σ τ its covariance ma-
trix, and h(x) = (x+ 

 ) ln(x+ 
 )–(x– 

 ) ln(x– 
 ). The crucial point here is that the definition

of ηNG requires the determination of a reference Gaussian state for the GS of V (x) rather
than a reference harmonic potential for V (x) itself. Both measures are zero for a harmonic
potential, whereas they may lead to different definitions of maximally nonlinear processes.

While  ≤ ηB[V ] ≤ , the upper bound being reached if and only if the external poten-
tial V̂ (x̂) gives rise to a GS orthogonal to that of the corresponding harmonic case, ηNG

is unbound from above, which complicates the quantitative comparison between the two
figures of merit. A suitable rescaling can be obtained at any fixed value of energy upon
normalizing ηNG to the degree of non-Gaussianity of the states that achieve maximal non-
Gaussian character at that value of the energy. This class includes number states and some
specific superposition of them (see [] for details). The maximum of this rescaled quan-
tity is thus achieved for a potential having a GS equal to a number state (n �= ) of the
harmonic oscillator or to some specific superpositions of them.

One would expect that the nonlinearity increases with ε. Indeed, as shown in Figure ,
this intuitive behaviour is captured by both measures, ηNG[V ] and ηB[V ], which grow
continuously and smoothly with ε. The two measure are also linked by a monotonic rela-
tionship. This is demonstrated in the inset of Figure , where we show a parametric plot of
ηB[V ] against ηNG[V ], the curvilinear abscissa in such plot being embodied by ε. Numer-
ically, for ε ∈ [, .], the relation between the two measures of nonlinearity is very well

Figure 3 Nonlinearity of the undriven Duffing
potential. Top: the nonlinearity measures ηB[V] (red
line) and ηNG[V] (blue line) for the undriven
oscillator as a function of ε. The inset is a parametric
plot of ηB as a function of ηNG , showing that the
two measures are monotone functions of each
other. The bottom panel shows the Wigner function
of the GS for ε = 0.1.
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approximated by the function

ηB[V ] = a + b
√

ηNG[V ] ()

with a 	 . × – and b 	 ..
A broadly used indicator of nonclassicality in the state of an oscillator is provided by

the volume occupied by its associated Wigner function in the negative region of the phase
space []. The Wigner function of the state ρ of a single oscillator system is defined as

Wρ(α) =

π

∫
eαξ∗–α∗ξχρ(ξ ) dξ , ()

where χρ(ξ ) = Tr[ρeξ â†–ξ∗â] is the Weyl characteristic function and ξ ,α ∈C. Unlike a true
probability distribution, the Wigner function can take on negative values [–], which is
a striking signature of nonclassicality. In the bottom panel of Figure  we show the Wigner
function of the GS of the Duffing oscillator, showing the presence of regions of negativity
that signal the nonclassical nature of the state of the system.

Notice that nonclassicality can also be defined in relation to the P-function and that,
in general, the latter notion and the one adopted here do not coincide (an example being
the set of Gaussian squeezed pure states). However, these two notions turn out to single
out the same set of nonclassical states in the cases we are considering here. In fact, given
the symmetric form of the harmonic part of the set of Hamiltonians () (i.e., the terms
in x and p have the same weight), their ground states will either be the vacuum of the
harmonic oscillator - hence a classical state accordingly to both notions - or they will be
non-Gaussian pure states - hence nonclassical according to both notions due to the neg-
ativity of their Wigner function []. In other words, the choice of Hamiltonian () allows
us to use an indicator of nonclassicality that encompasses both notions, thus yielding an
appropriate comparison between nonclassicality and nonlinearity.

In order to quantify such nonclassicality we use the measure

ν(ρ) =
ηρ

 + ηρ

()

with η(ρ) =
∫ ∞

–∞ |Wρ(α)|dα –  the negative volume of the Wigner function. The quan-
tity η(ρ), which is per se sufficient to characterize phase-space nonclassicality, has been
employed to study the quantum-to-classical transition in both linear and nonlinear oscil-
lators [, , ], as well as to characterize the performance of conditional schemes for the
preparation of nonclassical states of massive oscillators [, , ]. Here we consider its
rescaled version according to Eq. (), which provides a number ν(ρ) ∈ [, ] that is thus
amenable to a quantitative comparison with the proposed measures of nonlinearity.

Making use of Eq. () for the Wigner function of the GS of the Duffing resonator, we can
evaluate the measure of nonclassicality through a numerical integration. In Figure  we
show the plot of the NG-based nonlinearity measure ηNG against the normalized measure
of nonclassicality ν(ψ). A numerical nonlinear fit gives the functional relation

ηNG = . + .
√

ν(ψ) + .ν(ψ), ()
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Figure 4 We plot the nonlinearity measure
ηNG[V] against the normalized measure of ν(ψ0)
nonclassicality based on the negative parts of
the Wigner-function for the GS of the undriven
Duffing resonator. We show that the two measures
are monotone functions of each other. The squares
show the values of ηNG at set nonclassicality of the
ground state of the undriven Duffing oscillator. The
solid line represents the fit given by Eq. (11). After an
initial trait where ηNG grows as

√
ν(ψ0), the relation

between the two figures of merit becomes
approximately linear, showing the direct connection
between nonlinearity and nonclassical character of the state of the oscillator.

Figure 5 The driven Duffing potential. In the top panel we
show Vd(x, t) against time and position for F = 0.015, ε = 0.1
(red, opaque surface), and ε = 0.5 (blue, transparent surface).
In the bottom panel we show the corresponding GS
probability densities, |ψ0(x, t = 1)|2 for the same set of
parameters.

showing that after an initial trait, the link between the two quantities becomes linear, en-
suring the proportionality of the two figures of merit under scrutiny.

3 Nonlinearity of a Duffing oscillator: driven case
We shall now pass to the analysis of a driven Duffing resonator, which is an example of
nonlinear resonator often encountered in relevant experimental situations [, , –].
The dimensionless Hamiltonian of the system is thus Eq. () with the explicit inclusion of
the time-dependent driving term –x̂F cosωt. In what follows, we choose a working point
well within the region of bistability of the oscillator (which is ensured for F ∈ [., .]
and ω ∈ [., .]). The form of the driving potential V̂ d(x̂, t) = 

εx̂ – x̂F cosωt is illus-
trated in Figure , showing the deformation induced by the nonlinear and time-dependent
part of the perturbation.

In order to evaluate the form of the GS associated with the full model, we shall resort to
the use of time-dependent perturbation theory. We decompose the state of the system at
t = , when the perturbative potential is off, as

∣∣ψ()
〉

=
∑

n
cn()|n〉 (

cn(t) ∈ C
)

()
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and aim at finding a perturbative expansion c(q)
n (t > ) ∈ C at order q ∈ Z in the perturba-

tion, so that the state of the system at the corresponding order becomes

∣
∣ψ (q)(t)

〉 	
∑

n
c(q)

n (t)eiEnt|n〉, ()

where En is the eigenvalue of the unperturbed Hamiltonian corresponding to the eigen-
states |n〉. The first-order correction in both F and ε, which will be the highest order of
the perturbative expansion that we will consider here, is given by []

c()
n (t) = –i

∫ t


eiωn�t′V d

nl
(
t′)dt′, ()

with c()
n (t) = δnl , V d

nl(t) = 〈n|V̂ d(x̂, t)|l〉 and ei(En–El)t = eiωnlt . The explicit calculation of
|ψ(t)〉 up to the stated order of approximation and for |ψ()〉 = |〉 leads us to the GS
wavefunction

ψ(x, t) = M
{(

 –
itε


)
e–it/ψ(x) + F ( – eit[cosωt – iω sinωt])√

(ω – )
e–it/ψ(x)

+
ε



[

√


(
e–it/ – e–it/)ψ(x) +

(e– 
 it – e– i

 t)


ψ(x)
]}

being M the normalisation factor and ψn(x) ≡ 〈x|n〉 the wave function of state |n〉. A plot
of the spatial distribution |ψ(x, t)| at a set time t is shown in the bottom panel Figure .

Looking at the potential, one would expect that the nonlinearity increases with ε at any
fixed values of the given parameters. Indeed, this intuitive behavior is captured by both
measures, ηNG[V ] and ηB[V ], as they grow continuously. The two measures are monotonic
functions of each other, as illustrated in the top panel of Figure . In the bottom panel
we also show the Wigner function for t = , which shows negative regions and thus the

Figure 6 Nonlinearity of the driven Duffing
potential. Top: the nonlinearity measures ηB[V]
(red line) and ηNG[V] (blue line) for the driven
oscillator as a function of ε and for the choice of
parametersF = 0.015, t = 1 and ω = 1.018 which
ensures that the resonator is in the bistability
region. The inset is a parametric plot of ηB as a
function of ηNG , showing that the two measures
are monotone functions of each other. The bottom
panel shows the Wigner function for the same set
of parameters and ε = 0.1.
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Figure 7 A parametric plot of the normalized measure
of ν(ψ0) nonclassicality based on the negative parts of
the Wigner-function for the GS of the driven Duffing
resonator as a function of the nonlinearity measure
ηNG[V] (parameters ε = 0.01, t = 1, ω = 1.018, and
F = 0.015) appears to be roughly linear and
monotonically increasing.

signature of nonclassicality. When assessed against the chosen indicator of nonclassicality,
ηNG is again found to be in direct correspondence with the volume occupied by the Wigner
function corresponding to |ψ(t)〉 [cf. Figure ].

4 Conclusions
In this paper, upon using purpose-tailored quantitative figures of merit, we have addressed
in some details the relation between nonlinearity and nonclassicality in a class of nonlin-
ear oscillators that is relevant in many contexts, including experimental solid state physics.
By approximating the form of the ground state of the oscillator through a perturbative
approach (either stationary or time-dependent) we have been able to demonstrate that
the negativity of Wigner function, which is a well-acquired measure of nonclassicality in
continuous variable systems, is in monotonic relation with recently proposed measures
of nonlinearity, therefore reinforcing the idea of nonlinearity as a catalyst of quantum-
ness. Although our conclusions have been gathered by addressing the specific example of
a Duffing oscillator, our work paves the way to interesting extensions, primarily concerned
with the application of our tools to other forms of nonlinearities [].

A second interesting direction of investigation would deal with the inclusion of en-
vironmental effects, and with the possibility to shield the degree of nonclassicality en-
forced in the state of a quantum oscillator through a suitable degree of nonlinearity. This
might entail an interesting way of protecting quantumness, stemming from the direct,
non-demanding control of the Hamiltonian of the oscillator. In fact, while the harmonic
assumption is an approximation valid within many contexts (from nano-mechanical os-
cillators to ultracold atomic systems in external potential), switching to explicitly non-
harmonic situations is typically straightforward by the means of a strong driving. This is
generally more economic than time-gated external pulses (required in dome of the tech-
niques devised so far for the protection of quantum features) or the control of the prop-
erties of the environment, which is typically of not easy access. Work along these lines is
in progress and results will be presented elsewhere.
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