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Abstract

We develop a quantum learning scheme for binary discrimination of coherent states
of light. This is a problem of technological relevance for the reading of information
stored in a digital memory. In our setting, a coherent light source is used to illuminate
a memory cell and retrieve its encoded bit by determining the quantum state of the
reflected signal. We consider a situation where the amplitude of the states produced
by the source is not fully known, but instead this information is encoded in a large
training set comprising many copies of the same coherent state. We show that an
optimal global measurement, performed jointly over the signal and the training set,
provides higher successful identification rates than any learning strategy based on
first estimating the unknown amplitude by means of Gaussian measurements on the
training set, followed by an adaptive discrimination procedure on the signal. By
considering a simplified variant of the problem, we argue that this is the case even for
non-Gaussian estimation measurements. Our results show that, even in absence of
entanglement, collective quantum measurements yield an enhancement in the
readout of classical information, which is particularly relevant in the operating regime
of low-energy signals.

Keywords: quantum state discrimination; statistical learning theory; coherent states

1 Introduction

Programmable processors are expected to automate information processing tasks, lessen-
ing human intervention by adapting their functioning according to some input program.
This adjustment, that is, the process of extraction and assimilation of relevant informa-
tion to perform efficiently some task, is often called learning, borrowing a word most nat-
urally linked to living beings. Machine learning is a well-established and interdisciplinary
research field, broadly fitting within the umbrella of Cybernetics, that seeks to endow ma-
chines with this sort of ability, rendering them able to ‘learn’ from past experiences, per-
form pattern recognition and identification in scrambled data, and ultimately self-regulate
[1, 2]. Algorithms featuring learning capabilities have numerous practical applications, in-
cluding speech and text recognition, image analysis, and data mining.

Whereas conventional machine learning theory implicitly assumes the training set to
be made of classical data, a more recent variation, which can be referred to as quantum
machine learning, focuses on the exploration and optimisation of training with funda-
mentally quantum objects. Quantum learning [3], as an area of strong foundational and
technological interest, has recently raised great attention. Particularly, the use of pro-
grammable quantum processors has been investigated to address machine learning tasks
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such as pattern matching [4], binary classification [5-8], feedback-adaptive quantum mea-
surements [9], learning of unitary transformations [10], ‘probably approximately correct’
learning [11], and unsupervised clustering [12]. Quantum learning algorithms provide not
only performance improvements over some classical learning problems, but they natu-
rally have also a wider range of applicability. Quantum learning has also strong links with
quantum control theory [13], and is thus becoming an increasingly significant element of
the theoretical and experimental quantum information processing toolbox.

In this paper, we investigate a quantum learning scheme for the task of discriminating
between two coherent states. Coherent states stand out for their relevance in quantum op-
tical communication theory [14-16], quantum information processing implementations
with light, atomic ensembles, and interfaces thereof [17, 18], and quantum optical pro-
cess tomography [19]. Lasers are widely used in current telecommunication systems, and
the transmission of information can be theoretically modelled in terms of bits encoded
in the amplitude or phase modulation of a laser beam. The basic task of distinguishing
two coherent states in an optimal way is thus of great importance, since lower chances of
misidentification translate into higher transfer rates between the sender and the receiver.

The discrimination of coherent states has been considered, so far, within two main ap-
proaches, namely minimum-error and unambiguous discrimination, although the former
is more developed. Generally, a logical bit can be encoded in two possible coherent states
|a) and | — ), via a phase shift, or in the states |0) and |2«), via amplitude modulation.
Both encoding schemes are equivalent, since one can move from one to the other by apply-
ing Weyl’s displacement operator D(c) to both states.? In the minimum-error approach,
the theoretical minimum for the probability of error is given by the Helstrom formula for
discriminating two pure states [20]. A variety of implementations have been devised to
achieve this task, e.g., the Kennedy receiver [21], based on photon counting; the Dolinar
receiver [22], a modification of the Kennedy receiver with real-time quantum feedback;
and the homodyne receiver.” Concerning the unambiguous approach to the discrimina-
tion problem, results include the unambiguous discrimination between two known co-
herent states [24, 25], and its programmable version, i.e., when the information about the
amplitude o enters the discrimination device in a quantum form [26-28].

The goal of this paper is to explore the fundamental task of discriminating between two
coherent states with minimum error, when the available information about their ampli-
tudes is incomplete. The simplest instance of such problem is a partial knowledge situa-
tion: the discrimination between the (known) vacuum state, |0), and some coherent state,
|a), where the value of « is not provided beforehand in the classical sense, but instead
encoded in a number # of auxiliary modes in the state |«)®”. Such discrimination scheme
can be cast as a learning protocol with two steps: a first training stage where the auxil-
iary modes (the training set) are measured to obtain an estimate of «, followed by a dis-
crimination measurement based on this estimate. We then investigate whether this two-
step learning procedure matches the performance of the most general quantum protocol,
namely a global discrimination measurement that acts jointly over the auxiliary modes
and the state to be identified.

Before proceeding with the derivation of our results and in order to motivate further the
problem investigated in this paper, let us define the specifics of the setting in the context

of a quantum-enhanced readout of classically-stored information.
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Figure 1 A quantum reading scheme that uses a Register
coherent signal |a), produced by a transmitter,
to illuminate a cell of a register that stores a bit - ? D
of information. A receiver extracts this bit by S N
distinguishing between the two possible states of
the reflected signal, |0) and |&), assisted by n
auxiliary modes sent directly by the transmitter.

Reader

i Transmitter Receiver

Imagine a classical memory register modelled by an array of cells, where each cell con-
tains a reflective medium with two possible reflectivities ry and r;. To read the information
stored in the register, one shines light into one of the cells and analyses its reflection. The
task essentially consists in discriminating the two possible states of the reflected signal,
which depend on the reflectivity of the medium and thus encode the logical bit stored
in the cell. In a seminal paper on quantum reading [29], the author takes advantage of
ancillary modes to prepare an initial entangled state between those and the signal. The
reflected signal is sent together with the ancillae to a detector, where a joint discrimi-
nation measurement is performed. A purely quantum resource - entanglement - is thus
introduced, enhancing the probability of a successful identification of the encoded bit.
This model has been later extended to the use of error correcting codes, thus defining the
notion of quantum reading capacity [30] also studied in the presence of various optical
limitations [31]. The idea of using nonclassical light to improve the performance of clas-
sical information tasks can be traced back to precursory works on quantum illumination
[32, 33], where the presence of a low-reflectivity object in a bright thermal-noise bath is
detected with higher accuracy when entangled light is sent to illuminate the target region.
For more recent theoretical and experimental developments in optical quantum imaging,
illumination and reading, including studies on the role of nonclassical correlations beyond
entanglement, refer e.g. to Refs. [34—44].

In this paper we consider a reading scenario with an imperfect coherent light source and
no initial entanglement involved. The proposed scheme is as follows (see Figure 1). We
model an ideal classical memory by a register made of cells that contain either a transpar-
ent medium (ry = 0) or a highly reflective one (r; = 1). A reader, comprised by a transmitter
and a receiver, extracts the information of each cell. The transmitter is a source that pro-
duces coherent states of a certain amplitude . The value of & is not known with certainty
due, for instance, to imperfections in the source, but it can be statistically localised in a
Gaussian distribution around some (known) . A signal state |«) is sent towards a cell of
the register and, if it contains the transparent medium, it goes through; if it hits the highly
reflective medium, it is reflected back to the receiver in an unperturbed form. This means
that we have two possibilities at the entrance of the receiver upon arrival of the signal:
either nothing arrives - and we represent this situation as the vacuum state |0) - or the
reflected signal bounces back - which we denote by the same signal state |«). To aid in the
discrimination of the signal, we alleviate the effects of the uncertainty in & by considering
that # auxiliary modes are produced by the transmitter in the global state |«)®” and sent
directly to the receiver. The receiver then performs measurements over the signal and the
auxiliary modes and outputs a binary result, corresponding with some probability to the
bit stored in the irradiated cell.
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We set ourselves to answer the following questions: (i) which is the optimal (unre-
stricted) measurement, in terms of the error probability, that the receiver can perform?
and (ii) is a joint measurement, performed over the signal together with the auxiliary
modes, necessary to achieve optimality? To accomplish the set task, we first obtain the op-
timal minimum-error probability considering collective measurements (Section 2). Then,
we contrast the result with that of the standard estimate-and-discriminate (E&D) strategy,
consisting in first estimating « by measuring the auxiliary modes, and then using the ac-
quired information to determine the signal state by a discrimination measurement tuned
to distinguish the vacuum state |0) from a coherent state with the estimated amplitude
(Section 3). In order to compare the performance of the two strategies, we focus on the
asymptotic limit of large #. The natural figure of merit is the excess risk, defined as the ex-
cess asymptotic average error per discrimination when « is perfectly known. We show that
a collective measurement provides a lower excess risk than any Gaussian E&D strategy,
and we conjecture (and provide strong evidence) that this is the case for all local strategies
(Section 4). We conclude with a summary and discussion of our results (Section 5), while
some technical derivations and proofs are deferred to the Appendices.

2 Collective strategy

The global state that arrives at the receiver can be expressed as either [«]®” ® [0] or
[@]®” ® [a], where the shorthand notation [-] = |-){:| will be used throughout the paper.
For simplicity, we take equal a priori probabilities of occurrence of each state. We will
always consider the signal state to be that of the last mode, and all the previous modes
will be the auxiliary ones. First of all, note that the information carried by the auxiliary
modes can be conveniently ‘concentrated’ into a single mode by means of a sequence of
unbalanced beam splitters.? The action of a beam splitter over a pair of coherent states
@) ® |) yields

o) ® |8) —> |VTa + VRB) ® | - VR + VTB), Q)

where T is the transmissivity of the beam splitter, R is its reflectivity, and 7'+ R = 1. A bal-
anced beam splitter (7 = R = 1/2) acting on the first two auxiliary modes thus returns
lo) ® o) —> |+/20t) ® |0). Since the beam splitter preserves the tensor product structure
of the two modes, one can treat separately the first output mode and use it as input in a
second beam splitter, together with the next auxiliary mode. By choosing appropriately
the values of T and R, the transformation |+/2a) ® |a) —> |+/3a) ® |0) can be achieved.
Applying this process sequentially over the » auxiliary modes, we perform the transfor-

mation
)" — |V/nat) @ [0)". 2)

Note that this is a deterministic process, and that no information is lost, for it is con-
tained completely in the complex parameter «. This operation allows us to effectively deal
with only two modes. The two possible global states entering the receiver hence become
[Vna] ® [0] and [/na] @ [o].

The parameter « is not known with certainty. Adopting a Bayesian viewpoint, we em-
bed this lack of information into the analysis by considering averaged global states over
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the possible values of o, where the choice of the prior probability distribution accounts for
the prior knowledge that we might already have. One readily sees though that a flat prior
probability distribution for ¢, representing a limiting situation of complete ignorance, is
not reasonable in this particular setting. On the one hand, such prior would yield diver-
gent average states of infinite energy, since the phase space is infinite. On the other hand,
in a practical situation it is not realistic to assume that a// amplitudes « are equally proba-
ble. A way to overcome this apparent difficulty and assign a reasonable prior probability
distribution to « is to sacrifice a small number of auxiliary modes (e.g., such that we are
left with 72 = n'~ modes) and use them to construct a rough estimator of «, by means of
some isotropic quantum tomography procedure. Then, it can be shown that « belongs to

a neighbourhood of size n~1/2+

centred at a fixed amplitude o, with probability converg-
ing to one (this is shown, though in a classical statistical context, in [47]). Therefore, the
asymptotic behaviour of any statistical inference problem that uses this model is deter-
mined by the structure of a local (Gaussian) quantum model around a fixed coherent state
lao).f In our case, we consider this ‘localisation’ of the prior probability distribution as an
innocuous preparatory process in both the collective and the E&D strategies, in the sense
that the comparison between their asymptotic discrimination power will not be affected.

Under these considerations, the initial prior for o will be a Gaussian probability distribu-
tion centred at orp, whose width goes as ~ 1//n. That is, we can express the true amplitude

o as
a~ay+ulvn ueC, (3)

where the parameter u follows the Gaussian distribution

Glu) = — e, (4)
TR
To avoid divergences, we have introduced the free parameter i as a temporal energy cut-
off that defines the width of G(u). After obtaining expressions for the excess risks in the
asymptotic regime of large #, we will remove the cut-off dependence by taking the limit
i —> 00,
Exploiting the prior information acquired through the rough estimation, that is using
Egs. (3) and (4), we compute the average global states arriving at the receiver

o1 = / G(u)[Vnag + u] @ [0] d*u, (5)
Oy = / G(u)[Vnag + u] ® [ag + ul/n] d*u. (6)

The optimal measurement to determine the state of the signal is the Helstrom measure-
ment for the discrimination of the states o7 and o, [20], that yields the average minimum-
error probability8

1 1
PP (n) = 3 (1 ~3 lloy - 02||1>; (7)

where | M|, = tr +/ MM denotes the trace norm of the operator M. The technical difficulty
in computing PP t(n) resides in the fact that o7 — 0y is an infinite-dimensional full-rank
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matrix, hence its trace norm does not have a computable analytic expression for arbitrary
finite n. Despite this, one can still resort to analytical methods in the asymptotic regime
n — oo by treating the states perturbatively.

To ease this calculation, we first apply the displacement operator

D(ao) = Di(~+/nag) ® Day(~ag) (8)

to the states o7 and o, where D; (D,) acts on the first (second) mode, and we obtain the
displaced global states

61 = Dlao)onD' () = / Gl) 4] ® [~cto] Pt 9)
&, = D(atg)o2 D (eg) = / GW)[u] ® [ul/n) d*u. (10)

Since both states have been displaced by the same amount, the trace norm does not
change, i.e., |log — 011 = |60 — 6111- Eq. (9) directly yields

51= Y alkl® [-al, (11)
k=0

where ¢ = 1?¥/[(1? +1)¥*1] and {|k)} is the Fock basis. Note that, as a result of the average,
the first mode in Eq. (11) corresponds to a thermal state with average photon number 2.
Note also that the n-dependence is entirely in 5. In the limit # — oo, we can expand the
second mode of 65 as

S k
/) = *‘Z—Z ”/‘/—) (12)
T k

Then, up to order 1/n its asymptotic expansion gives

[u//n] ~ |0) 0|+%(u|l)(0|+u 10)(1])

. %{|u|2(|1><1| — 10)(0]) + %[bﬂm (0] + (u*)*10) <2|]}. 13)

Inserting Eq. (13) into Eq. (10) and computing the corresponding averages of each term in
the expansion, we obtain a state of the form

1 1
~5"+ —aV+ =5, (14)

Jn n

We can now use Egs. (11) and (14) to compute the trace norm ||67 — &2 ||; in the asymptotic

SI

regime of large #, up to order 1/n, by applying perturbation theory. The explicit form of the
terms in Eq. (14), as well as the details of the computation of the trace norm, are given in
Appendix 1. Here we just show the result: the average minimum-error probability P¢™ (1),
defined in Eq. (7), can be written in the asymptotic limit as

1 1
PP = PP (n— 00) [1 ~V1-elolf - —(A® - A@))], (15)

2n
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where A(j) is given by Eq. (60).

2.1 Excess risk

The figure of merit that we use to assess the performance of our protocol is the excess risk,
that we have defined as the difference between the asymptotic average error probability
P and the average error probability for the optimal strategy when « is perfectly known.
As we said at the beginning of the section, the true value of « is ag + u/+/# for a particular
realisation, thus knowing u equates knowing «. The minimum-error probability for the
discrimination between the known states |0) and |ag + u/+/n), P¥(u, n), averaged over the
Gaussian distribution G(u), takes the form

Pj(n):/G(u)P:(u,n)dzu

. / G(u)%(l—\/l— |(Olato + utv/m)|?) du. (16)

To compute this integral we do a series expansion of the overlap in the limit # — co and
integrate the resulting terms (see Appendix 4). After some algebra we obtain

1 1
P =Pi(n— o0) 5(1 —V1-—elwol 4 —A*), (17)
n

where

_ M2[2(67‘“°‘2 —1) + |2 (2 - ef\ao\z)]

A* 18
4(el@ol? —1)3/1 = e-leol® 18)

The excess risk is then given by Egs. (15) and (17) as
RP* = n(PP - PY). (19)

Finally, we remove the cut-off imposed at the beginning by taking the limit 4 — co and

we obtain

2 2
g 21072 (2¢l0l” 1)
Rt = lim R°P'=

U 00 1z 16(@‘“0‘2 _1)3/2 (20)

Note that the excess risk only depends on the module of «y, i.e., on the average distance
between |«) and |0). The excess risk is thus phase-invariant, as it should.

Eq. (20) is the first piece of information we need to address the main question posed
at the beginning, namely whether the optimal performance of the collective strategy is
achievable by an estimate-and-discriminate (E&D) strategy. We now move on towards
the second piece.

3 Estimate & Discriminate strategy
An alternative - and more restrictive - strategy to determine the state of the signal consists
in the natural combination of two fundamental tasks: state estimation, and state discrim-

ination of known states. In such an E&D strategy, all auxiliary modes are used to estimate
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the unknown amplitude «. Then, the obtained information is used to tune a discrimi-
nation measurement over the signal that distinguishes the vacuum state from a coherent
state with the estimated amplitude. In this section we find the optimal E&D strategy based
on Gaussian measurements and compute its excess risk RE4P, Then, we compare the result
with that of the optimal collective strategy RPt.

The most general Gaussian measurement that one can use to estimate the state of the
auxiliary mode | /na) is a generalised heterodyne measurement, represented by a positive
operator-valued measure (POVM) with elements

Ej = %[B,mp], (21)

i.e., projectors onto pure Gaussian states with amplitude 8 and squeezing r along the di-
rection ¢. The outcome of such heterodyne measurement 8 = \/nf produces an estimate
for \/na, hence B stands for an estimate of &." Upon obtaining , the prior information
that we have about « gets updated according to Bayes’ rule, so that now the signal state
can be either [0] or some state p(8). The form of this second hypothesis is given by

p(8) = / palB)lal da, 22)

where p(«|B) encodes the posterior information that we have acquired via the heterodyne
measurement. It represents the conditional probability of the state of the auxiliary mode
being | /na), given that we obtained the outcome f. Bayes’ rule dictates

_p(Bla)p(a)
pla|B) = B (23)

where p(B|a) is given by (see Appendix 2)

p(ﬂ|a) = ;ef‘ﬁ“*BIZ—Re[(\/ﬁ‘X*B)Ze‘iW]lanhr, o)
7 coshr

p(w) is the prior information of « before the heterodyne measurement, and

(B - / p@)p(Bla) da (25)

is the total probability of giving the estimate S.
The error probability of the E&D strategy, averaged over all possible estimates 8, is then

PESD () %(1 - / 28 [0] —p(ﬂ)Hldzﬂ). (26)

Note that the estimate B depends ultimately on the number # of auxiliary modes, hence
the explicit dependence in the left-hand side of Eq. (26).

We are interested in the asymptotic expression of Eq. (26), so let us now focus on the
n — oo scenario. Recall that an initial rough estimation of o permits the localisation of
the prior p(a) around a central point oy, such that & ~ «ag + u/+/n, where u is distributed
according to G(u), defined in Eq. (4). Consequently, the estimate 8 will also be localised
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around the same point, i.e., B8 &~ ap + v/ /1, v € C. As a result, we can effectively shift
from amplitudes o and B to a local Gaussian model around «, parameterised by u and v.
According to this new model, we make the following transformations:

pla) — G(u), 27)
p(Bla) = p(vlu) = ¢~ lu=vI?Rel(u=)?} tanh s 28)
g coshr
p(B) = p0) = / (V1) Glu)
— 1 1
" wcoshr 1 9 02
tH (2 + coshzr)
[vI2(1 + CO’;?ZV) + Re[v?] tanhr
X CXP( M4 tanh 7 — (MZ + 1)2 >’ (29)
G
p(alﬂ)—>p(MIV)=lM, (30)
pv)

where, for simplicity, we have assumed « to be real. Note that this can be done without
loss of generality. Note also that, by the symmetry of the problem, this assumption implies

¢ =0.

The shifting to the local model transforms the trace norm in Eq. (26) as

[[01-p(B)], = |[[-20] - p(v)

(31

1’

where
o) = [ plulut /ol (32)

To compute the explicit expression of p(v) we proceed as in the collective strategy. That
is, we expand [u/+/n] in the limit # — oo up to order 1/#, as in Eq. (13), and we compute
the trace norm using perturbation theory (see Appendix 3 for details). The result allows
us to express the asymptotic average error probability of the E&D strategy as

1 1
PP = PP (n — o00) E(l—\/l—e‘“g + —AE&D), (33)

n

where AE&P

is given by Eq. (66).
3.1 Excess risk

The excess risk associated to the E&D strategy is generally expressed as

R¥P(r) = n lim (PE*P - PY), (34)

JL—>00

where P! is the error probability for known «, given in Eq. (17), and PE4P is the result
from the previous section, i.e., Eq. (33). The full analytical expression for RE¢P(r) is given

in Eq. (67). Note that we have to take the limit © — oo in the excess risk, as we did for
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the collective case. Note also that all the expressions calculated so far explicitly depend on
the squeezing parameter r (apart from ). This parameter stands for the squeezing of the
generalised heterodyne measurement in Eq. (21), which we have left unfixed on purpose.
As aresult, we now define, through the squeezing r, the optimal heterodyne measurement

over the auxiliary mode to be that which yields the lowest excess risk (34), i.e.,
RE4D = min RE&P (7). (35)

To find the optimal r, we look at the parameter estimation theory of Gaussian models
(see, e.g., [51]). In a generic two-dimensional Gaussian shift model, the optimal measure-
ment for the estimation of a parameter 6 = (g, p) is a generalised heterodyne measurement!
of the type (21). Such measurement yields a quadratic risk of the form

R; - / p0)((6 -G - 0)) %, (36)

where p(0) is some probability distribution, 6 is an estimator of #, and G is a two-
dimensional matrix. One can always switch to the coordinates system in which G is di-
agonal, G = diag(g;, g,), to write

Ri=g f POV G- d + g, / P(O)p - p) . (37)

It can be shown [51] that the optimal squeezing of the estimation measurement, i.e., that
for which the quadratic risk R, is minimal, is given by

(&
r= ) ln<gp>. (38)

We can then simply compare Eq. (37) with Eq. (34) to deduce the values of g, and g, for
our case. By doing so, we obtain that the optimal squeezing reads

1 (flao) + a3
T 1“(/(%) - aé)’ )

where

flag) = 2e% (e"‘(z) - 1) (\/ e - 1) + (x(z) (1 — 2% V1- e""‘%).

Eq. (39) tells us that the optimal squeezing r is a function of ¢ that takes negative values,
and asymptotically approaches zero when «y is large (see Figure 2). This means that the
optimal estimation measurement over the auxiliary mode is comprised by projectors onto
coherent states, antisqueezed along the line between « and the origin (which represents
the vacuum) in phase space. In other words, the estimation is tailored to have better res-
olution along that axis because of the subsequent discrimination of the signal state. This
makes sense: since the error probability in the discrimination depends primarily on the
distance between the hypotheses, it is more important to estimate this distance more ac-
curately rather than along the orthogonal direction. For large amplitudes, the estimation
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Figure 2 Optimal squeezing r for the generalised
heterodyne measurement in a E&D strategy, as a 0.0

function of . 02

-04r
-0.61

-0.81

-1.0
0.0

Figure 3 Excess risk for the collective strategy, 0.7¢
R°Pt, and for the E&D strategy, RE&P, as a 0.6F
function of a.

converges to a (standard) heterodyne measurement with no squeezing. As oo approaches 0
the states of the signal become more and more indistinguishable, and the projectors of the
heterodyne measurement approach infinitely squeezed coherent states, thus converging
to a homodyne measurement.

RE&D 35 a function of

Inserting Eq. (39) into Eq. (35) we finally obtain the expression of
ag, which we can now compare with the excess risk for the collective strategy R°P, given
in Eq. (20). We plot both functions in Figure 3. For small amplitudes, say in the range
0.3 < ap < 1.5, there is a noticeable difference in the performance of the two strategies,
reaching more than a factor two at some points. We also observe that the gap closes for
large amplitudes oy — 00; this behaviour is expected, since the problem becomes essen-
tially classical when the energy of the signal is sufficiently large. Interestingly, very weak

amplitudes «p — 0 also render the two strategies almost equivalent.

4 General estimation measurements

We have showed that a local strategy based on the estimation of the auxiliary state via
a generalised heterodyne measurement, followed by the corresponding discrimination
measurement on the signal mode, performs worse than the most general (collective) strat-
egy. However, the considered E&D procedure does not encompass all local strategies. The
heterodyne measurement, although with some nonzero squeezing, still detects the phase
space around g in a Gaussian way, i.e., up to second moments. In principle, one might
expect that a more general measurement that produces a non-Gaussian probability dis-
tribution for the estimate f might perform better in terms of the excess risk, and even
possibly match the optimal performance, closing the gap between the curves in Figure 3.
Here we show that the observed difference in performance between the collective and the
local strategy is not due to lack of generality of the latter. We do so by considering a sim-
plified although nontrivial version of the problem that allows us to obtain a fully general
solution.
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The intuitive reason why one could think, at first, that a non-Gaussian probability distri-
bution for 8 might give an advantage is the following. Imagine that « is further restricted
to be on the positive real axis. Then, the true « is either to the left of ¢ or to the right,
depending on the sign of the local parameter «. In the former case, « is closer to the vac-
uum, so the error in discriminating between them two is larger than for the states on the
other side. One would then expect that an ideal strategy should better estimate the neg-
ative values of the parameter u, compared to the positive ones. Gaussian measurements
like the heterodyne detection do not contemplate this situation, as they are translationally
invariant, and that might be the reason behind the gap in Figure 3.

To test this, we design the following simple example. Since the required methods are a
straightforward extension of the ones used in the previous sections, we only sketch the
procedure without showing any explicit calculation. Imagine now that the true value of
« is not Gaussian distributed around «g, but it can only take the two values o = o9 =
1/4/n, representing the states that are closer to the vacuum and further away. Having only
two possibilities for « allows us to solve analytically the most general local strategy, since
estimating the auxiliary state becomes a discrimination problem between the coherent
states |/nag +1) and |/nap —1). The measurement that distinguishes the two possibilities
is a two-outcome POVM & = {[e, ], [e_]}] We use the displacement operator (8) to shift to
the local model around «, such that the possible coherent states of the auxiliary mode
are now [1) and |-1). Note that, without loss of generality, one can confine the POVM
vectors to the (Bloch) plane spanned by |1) and | — 1), so that |e,) and |e_) are real linear
combinations of these. Indeed, any component orthogonal to this plane would give no
aid to distinguish the hypotheses. This allows us to express the probabilities of correctly
identifying each state as

pi=lte ] = (40)
po=|te |- =1 (ex -Vi-V1- 1), (41)

where x = (1|-1) = e72, and the overlap ¢ completely parametrises the measurement &. If
the optimal estimation measurement is indeed asymmetric, it should happen that p, < p_,
i.e., that the probability of a correct identification is greater for the state | — 1) than for [1).

From now on we proceed as for the Gaussian E&D strategy. We first compute the pos-
terior state of the signal mode according to Bayes’ rule. Then, we compute the optimal
error probability in the discrimination of [~«] and the posterior state, which is a com-
bination of [1/4/n] and [-1/4/n], weighted by the corresponding posterior probabilities.
The c-dependence is carried by these probabilities. Going to the asymptotic limit # — oo,
applying perturbation theory to compute the trace norm, and averaging the result over
the two possible outcomes in the discrimination of the signal state, we finally obtain the
asymptotic average error probability for the local strategy as a function of c¢. The asymp-
totic average error probability for the optimal collective strategy in this simple case is ob-
tained exactly along the same lines as shown in Section 2, and the one for known states is
given by the asymptotic expansion of Eq. (16), substituting the average over G(u) appro-
priately.

Now we can compute the excess risk for the local and collective strategy, and optimise
the local one over c. As already advanced at the beginning, the optimal solution yields
c* = (JT+ x + /1= x)/2, and therefore p, = p_. That is, the POVM €& is symmetric with
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respect to the vectors |1) and |-1), hence both hypotheses receive the same treatment by
the measurement in charge of determining the state of the auxiliary mode. Moreover, the
gap between the excess risk of both strategies remains. This result leads us to conjecture

that the optimal collective strategy performs better than any local strategy.

5 Discussion

In this paper we have proposed a learning scheme for coherent states of light. We have
presented it in the context of a quantum-enhanced readout of classically-stored binary
information, following a recent research line initiated in [29]. The reading of information,
encoded in the state of a signal that comes reflected by a memory cell, is achieved by mea-
suring the signal and deciding its state to be either the vacuum state or some coherent
state of unknown amplitude. The effect of this uncertainty is palliated by supplying a large
number of auxiliary modes in the same coherent state. We have presented two strate-
gies that make different uses of this (quantum) side information to determine the state
of the signal: a collective strategy, consisting in measuring all modes at once and making
the binary decision, and a local (E&D) strategy, based on first estimating - learning - the
unknown amplitude, then using the acquired knowledge to tune a discrimination mea-
surement over the signal. We have showed that the former outperforms any E&D strategy
that uses a Gaussian estimation measurement over the auxiliary modes. Furthermore, we
conjecture that this is indeed the case for any (even possibly non-Gaussian) local strategy,
based on evidence obtained within a simplified version of the original setting that allowed
us to consider completely general measurements.

Previous works on quantum reading rely on the use of specific preparations of nonclas-
sical - namely, entangled - states of light to improve the reading performance of a classical
memory [29, 34-36]. Our results indicate that, when there exists some uncertainty in the
states produced by the source (and, consequently, the possibility of preparing a specific
entangled signal state is highly diminished), alternative quantum resources - namely, col-
lective measurements - still enhance the reading of classical information using uncorre-
lated, classical coherent light. It is worth mentioning that there are precedents of quantum
phenomena of this sort providing enhancements for statistical problems involving coher-
ent states. As an example, in the context of estimation of product coherent states, the
optimal measure-and-prepare strategy on identical copies of |«) can be achieved by local
operations and classical communication (according to the fidelity criterion), but bipartite
product states |o)|o*) require entangled measurements [52].

On a final note, the quantum enhancement found here is relevant in the regime of low-
energy signals® (small coherent amplitudes). This is in accordance to the advantage regime
provided by nonclassical light sources, as discussed in other works [29, 35, 37]. A low en-
ergy readout of memories is, in fact, of very practical interest. While, mathematically, the
success probability of any readout protocol could be arbitrarily increased by sending sig-
nals with diverging energy, there are many situations where this is highly discouraged. For
instance, the readout of photosensitive organic memories requires a high level of control
over the amount of energy irradiated per cell. In those situations, the use of signals with
very low energy benefits from quantum-enhanced performance, whereas highly energetic

classical light could easily damage the memory.
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Appendix 1: Trace norm for the collective strategy
The global states that need to be discriminated in the collective strategy are 1 and 6,. As

shown in the main text, the first can be expressed as [cf. Eq. (11)]

1=y alkl ® [-aq], (42)

whereas the second admits an asymptotic expansion [cf. Eq. (14)]

1 1
Gy~ —50 4 ;52(2), (43)

N

as the result of taking the limit # — oo up to order 1/x in Eq. (10). Computing the arising

averages (see Appendix 4), the terms in Eq. (43) take the explicit form

O =" exlk) k| @ [0) (0, (44)
k=0

53" = Y dien k) tk+ 1] @ [1)(0] + dia ) (k — 1] @ [0)/(11, (45)
k=0

;" = Y elk) (k| ® (11){1] - 10)(0])

k=0

+ firalk) (k + 2] ® [2)(0] + fioa k) (k — 2] ® [0) (2], (46)
where

A1 = vk +1, di1 = avk,

er = ¢ (k +1),

ckm/(k +2)(k+1),  fia= Lck\/k(k ~1).

fk+2 = «/E

V2

We now apply perturbation theory to compute the trace norm |07 — 62 ||; in the asymp-
totic limit # — oo, up to order 1/#, using Egs. (42) and (43). We start by expressing the
trace norm as

161 = G2l = | A+ Blv/n+Cln=Tli =Y _ |yl (47)
j

where 4 =6, - 63", B= -5, C = -5?, and ¥; is the jth eigenvalue of I, which admits
an expansion of the type y; = yj(o) + )//(1)/ i+ )/j(Z)/n. The matrix I" belongs to the Hilbert
space Hoo ® Hs, ie., the first mode is described by the infinite dimensional space gen-
erated by the Fock basis, and the second mode by the three-dimensional space spanned
by the linearly independent vectors {| — «o), |0), 1)} (we will see that the contribution of
|2) vanishes, hence it is not necessary to consider a fourth dimension). Writing the eigen-

value equation associated to y; and separating the expansion orders, we obtain the set of
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equations
0 0)_, (0
ij( ) _ V/( )I//j( ), (48)
1 0 0), (1 1,0
ij( ) +BW,'( ) _ V/‘( )Wj( ) " 7/]‘( )W/( ), (49)
2 1 0 0)_, (2 D, 1 2) ., (0

where v; is the eigenvector associated to y;, which also admits the expansion ; = 1//j(o) +

W;l)/«/z + 1//].(2)/71. Equation (48) tells us that yj(o) is an eigenvalue of A with associated
eigenvector I//}-(O). We multiply (49) and (50) by (1//}-(0)| to obtain

y" = (v |Blv;") (5
(v @By )2
1’1(2) _ (‘ﬁ;(o) |C|W,(o)) + Z /(0) o (52)
YT

Note that Eq. (52) assumes that there is no degeneracy in the spectrum of I at zero order
(as we will see, this is indeed the case). From the structure of A we can deduce that the
form of its eigenvector wj(o) is

D) = 1) @ [ve), (53)

where we have replaced the index j by the pair of indices i, €. The index i represents the
Fock state |i) in the first mode, and the vectors |v,) are eigenvectors of [-a(] — [0] and
form a basis of H3 in the second mode. Every eigenvalue of I is now labelled by the pair
of indices i, &, where i = 0,...,00 and ¢ = +,—,0: the second mode in A has a positive,
a negative, and a zero eigenvalue, to which we associate eigenvectors |v,), |v_) and |vp),
respectively. It is straightforward to see that the first two are

ve) =3 * (54)

_1<|—Oéo)+|0) |—a0)—|0)>
N, N_ ’

where Ny = +/1 4 e"1®0*/2, The zero-order eigenvalues of I with & = £ are
YD = +ei/1-elool, (55)

The third eigenvector |vp) is orthogonal to the subspace spanned by | — «p) and |0), and
corresponds to the eigenvalue yifg) = 0. This eigenvector only plays a role through the
overlap (1]vg), which arises in Eqgs. (51) and (52). We thus do not need its explicit form,
but it will suffice to express (1|vy) in terms of known overlaps.

From Egs. (51) and (53) we readily see that yig) = 0. Using Eqs. (45), (46), (52) and (53)

2
Wwe can express yifs) as

2 2 0L P> d211va)2{0]ve)?
vt =ei(|(0lva)]” = (v ) + Y = oot o
e Vit = Vile Vit ~Vitle (56)

2
Vifo) =0,
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where we have used that, by definition, (0|vo) = (ag|vo) = 0. The overlaps in (56) are

1
[Ova)[* = S (QLF VI eeoP), (57)
2 Jaol? 1+ 1 - el
|(lve)| = > , (58)
2 e‘UfO‘ -1
) |(1]-ato)]? |atg | %10l
1 =1- =1- . 59
| 1vo)| T R (59)

Now that we have computed the eigenvalues of I', we are finally in condition to evaluate
the sum in the right-hand side of Eq. (47). Incorporating the relevant eigenvalues, given
by Egs. (55) and (56), it reads

Tl =Y [y + v @ m|

ie

> 1 1
0) (2) 0) (2)
= § 0: Vie T ;VH VY-~ ;Vz',—
i=

o0
AP =Yy = 1 el

(recall that Y77 ¢; =1), and

2 2

® .0 prerlwol ©+1 Jagl*(2el*0" 1)

AP =Yy =+ 1- — : . (60)
= 2V elwol? _ 1 2ut+1  elwl® -1

Appendix 2: Conditional probability p(8|a), Eq. (24)

Given two arbitrary Gaussian states p4, pg, the trace of their product is

2 eftsT(VA+VB)_1§’ (61)

tr(papp) = VD)

where V4 and Vj are their covariance matrices and § is the difference of their displacement
vectors. For the states p4 = [+/na] and pp = Eg, we have

10 e 0
Vy = ,  Vp=R RT,
R c?sqb —sing ,
sing cos¢

S = (\/Zﬂl - 51, \/;laZ - BZ),
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where o = aj + iay, B = by + iby, r is the squeezing parameter, and ¢ indicates the direction

of squeezing in the phase space. In terms of @ and 8, Eq. (61) reads

212 2\2 ,—i2
tr(papp) = o~ IVna—pI>—Rel(/no—p)*e 2% tanhr
w coshr

Appendix 3: Trace norm for the E&D strategy

For assessing the performance of the E&D strategy, we want to obtain the error probability
in discriminating the state [0] and the posterior state p(B), resulting from a heterodyne
estimation of the state of the auxiliary mode that provides the estimate 8. Under a local
Gaussian model around o parametrised by the complex variables & and v, these states
transform into [-a] and p(v), respectively, where the second is given by

p(v) = / ()] du,

and where p(u|v) is given by Eq. (30). The error probability is determined by the trace
norm ||[-ao] — p(V) |1 [cf. Eq. (31)]. To compute it, we first series expand p(v) in the limit
n — 00, up to order 1/n. We name the appearing integrals of u, u*, |u|?, u?, and (u*)? over
the probability distribution p(u|v) as I, I, I», I3, and I3, respectively. This allows us to

write the trace norm as

[—a0l = p0), = |A" + BIv+ Cin= o], = 3 Il

K

where

A= = ao)(~aol = [0)(0],

B' = -L|1)(0| - I;]0)(1],

/ 1 .
C' = -L(11){1] - 0)(0]) - E(Isﬂ)(ol +1310)(2]),

and A, is the «th eigenvalue of ®, which admits the perturbative expansion A, = A +
AV//m+ 2@ [n, just as its associated eigenvector ¢, = {9 + W/ /n + 9P /n. Up to order
1/n, the matrix ® has effective dimension 4 since it belongs to the space spanned by the
set of linearly independent vectors {| — ag), |0), 1), |2)}. Hence the index « has in this case
four possible values, i.e., k = +,—,3,4. The zero-order eigenvalues )L,(f’) , which correspond

to the eigenvalues of the rank-2 matrix A’, are

AW otyi-ewt, 29200 -0

(recall that g € R). Their associated eigenvectors are |(p,((°)) = |v,), where |v.) is given by
Eq. (54), and, by definition, (v, |-ag) = (v,|0) = 0 for ¥ = 3,4. From analogous expressions

to Egs. (51) and (52) we can write the first and second-order eigenvalues as

AD = L 1) (0ve) = I} (v |0) (1w, ),
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1
= |y *) - E(Ig<w|2><0|vk> + I (v10) (21v,))

+ Z(W | Ve 1) 171V 0)1” + (Ve |0) 2 (vie[1)1°

A2 =1 (|(v|0)

£ b =2
1 (vel1) (v 1) (01,) (Ol ) + (1;‘)2<1|vs><1|vx><vK|0><v;|0>)
+ .
50 }L((%O)

The needed overlaps for computing 1Y and A?) are given by Egs. (57), (58), and

1
(v[0) = S (N, FN-),

1 L1
R
|<]-|_0l0)|2
1 2:1_ ,
[(vsI1)] 1= [(0]—aro) 2 — [(2]=ato) |2
[(val)[? |(L]-ao) 121 (2] ~oto) |?

" (1= (0l =cto) P)(L — [{O]=cto) > = [(2l~exo)[»)°
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(62)

(63)

The expressions for the overlaps (62) and (63) actually depend on the dimension of the

space that we are considering (four in this case), and they are not unique: there are in-

finitely many possible orientations of the orthogonal pair of vectors {|vs), [v4)} such that

both of them are orthogonal to the plane formed by {| — «o),|0)}, which is the only re-

quirement we have. However, one can verify that this choice does not affect the trace

norm ||®||;, thus we are free to choose the particular orientation that, in addition, ver-

ifies (v3|2) = 0, yielding the simple expressions (62) and (63).

Finally, we write down the trace norm as

@l =Y |1 + AP/ m + 22 n|
Kk

_500 50 L(Aa) oY)
+

T n

Ry CIL)

(64)

which we use now to obtain the asymptotic expression for the average error probability,
defined in Eq. (26). Recall Eq. (29) and note that we have to average Eq. (64) over the

probability distribution p(v). Regarding this average, it is worth taking into account the

following considerations. First, the v-dependence of the eigenvalues comes from 13, I, I3,

and its complex conjugates. The integrals needed are given in the last part of Appendix 4.

Second, the integration yields »)) = 0 and hence the order 1//7 term vanishes, as it should.

And third, the second-order eigenvalues Ag) and kf) are v-independent and positive, so

we can ignore the absolute values in Eq. (64). Putting all together, we can express the

asymptotic average error probability of the E&D strategy as

1 1
PE&D = pEED (7 o0) o~ 5 (1 V1% 4~ AE&D>,

n

(65)



Sentis et al. EPJ Quantum Technology (2015) 2:17 Page 19 of 22

where
1
AE&Dz_z[/\g + 22 f P (A2 <_2>)dv]. (66)

Making use of Egs. (65) and (17) we can readily compute the excess risk of the E&D
strategy:

E&D : E&D
REP(r) = nJLn;O(Pe - P})

e {[4¢°3 (1 - €%8) (/1 - e — 1)

16V1 — e % (% — 1)

+al (43‘)‘% V1-ed - 2)] cosh® r + g sinh(2r)}. (67)

Appendix 4: Gaussian integrals

At many points in this paper, we integrate complex-valued functions over the complex
plane, weighted by the bidimensional Gaussian probability distribution G(«). This section
gathers the integrals that we need. Recall that G(u) is defined as

1
G(u) = —Ze"‘“‘z/“z, ueC.
T

Expressing u either in polar or Cartesian coordinates in the complex plane, i.e., u = re? =

U1 + iuy, one can readily check that G(u) is normalised:

00 2T
/G(u)dzu:/ / %e"z/“zrdrdQ:L
T
f G(u) d*u / f —e( -1 gy duay = 1.

The average of a coherent state [u] over the probability distribution G(u) can be computed
by expressing |u) in the Fock basis {|k)}. It gives

MZk
Z Ck [k Ci = T)k*'l .

Note that the result of averaging a coherent state over G(u) is nothing else than a thermal
state with average photon number 2.
Variations of the previous integral with different complex functions that we use are

/G(u)u[u] d*u= ch+1vk+1|k)(k+1|,
k=0
f Gu)u*[u)d ch«/_|k Yk 1],

[ cwirraa w="conlk + DI KL,

k=0
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/G(u)u [uld ch+2x/k+ 2k + 1k (k + 2],
/G(u)( )1l dPu chfv 11k) (k - 2],

and
/ ) (1 + ") Pu =0,
/ G (u + w*)” dPu =202,
/G(u)|u|2d2u =pu’

For the computations in Appendix 3 we also need to perform Gaussian integrals, this
time over the probability distribution p(v), defined in Eq. (29). We make use of

/P(V)Il d*v = fp(v)lf d*v=0,

/p(v)lg d*v = /p(v)l; d’v=0,
/P(V)Iz d*v =’

/p(v)]f d*v = /p(v)(]f)2
~ w* sinh(2r)
T (2u2 +1)cosh(2r) + 2u2(u? +1) +1

2 2 p*(cosh(2r) +2p* +1)
/ Oy = G DY cosh(2) + 2122 + D) + 1
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Endnotes

@ For a single mode with annihilation and creation operators & and &' respectively, the displacement operator is
D(a) = explad’ - or*a).
While the latter is the simplest procedure, it does not achieve optimality. However, for weak coherent states
(J|? < 0.4), it yields an error probability very close to the optimal value P., and it is optimal among all Gaussian
measurements [23]. In fact, among the three mentioned, only the Dolinar receiver is globally optimal.

€ In particular, in [29] a two-mode squeezed vacuum state is shown to outperform any classical light, in the regime of
few photons and high reflectivity memories.
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See, e.g., Section Il A'in [45] for details.

Nonetheless, for finite dimensional systems, assuming a uniform prior can be better justified and very useful; see,
e.g. [46].

In fact, this holds for any model of i.i.d. quantum states p (regardless their dimensionality). This is known as local
asymptotic normality [48-51].

—-

9 Note that, sensu stricto, the dependence of P2 (n) on the localisation parameter oy should be made explicit. Keep in

mind that, in general, all quantities computed in this paper will depend on «. Thus for the sake of notation clarity,
we omit it hereafter when no confusion arises.

In our notation, the outcome of the measurement also labels the estimate, so B8 stands_for both indistinctly. This
should generate no confusion, since the trivial guess function that uses the outcome § to produce the estimate 8
does not vary throughout the paper.

This is the case whenever the covariance of the Gaussian model is known, and the mean is a linear transformation
of the unknown parameter.

Note that we have chosen the POVM elements to be rank-1 projectors. This is no loss of generality. Due to the
convexity properties of the trace norm, POVMs with higher-rank elements cannot be optimal.

Note that here we have only considered sending a single-mode signal. However, in what coherent states are
concerned, increasing the number of modes of the signal and increasing the energy of a single mode are
equivalent operations.

Note that the zero-order eigenvalues y,f) are nondegenerate, hence Eq. (52) presents no divergence problems.
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