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Abstract
Nitrogen-vacancy centers in diamond, being a promising candidate for quantum
information processing, may also be an ideal platform for simulating many-body
physics. However, it is difficult to realize interactions between nitrogen-vacancy
centers strong enough to form a macroscopically ordered phase under realistic
temperatures. Here we propose a scheme to realize long-range ferromagnetic Ising
interactions between distant nitrogen-vacancy centers by using a mechanical
resonator as a medium. Since the critical temperature in the long-range Ising model is
proportional to the number of spins, a ferromagnetic order can be formed at a
temperature of tens of millikelvin for a sample with ∼104 nitrogen-vacancy centers.
This method may provide a new platform for studying many-body physics using
qubit systems.
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1 Introduction
The negatively charged nitrogen-vacancy (NV) centers in high-purity diamond have been
considered as a promising candidate for solid state quantum information processing due
to their long coherence time [–] and high feasibility in initialization, control, and read-
out of their spin states []. Simulation of many-body physics using NV centers, in analogue
to cold atom physics [, ], has been proposed [–]. To realize phase transitions in NV
center qubit systems under realistic temperatures, however, sufficiently strong interac-
tions between NV centers located sufficiently close (< nm) is till highly challenging [,
, ]. A new opportunity is to use resonators as mediators [, –], which has potential
of coupling NV centers at distance.

In this paper, we propose to realize long-range coupling between many separated NV
centers via a mechanical resonator. A remarkable feature of the long-range interacting
system is: the critical temperature for ferromagnetic phase transitions is proportional to
the number of spins, so a ferromagnetic order could be formed at a temperature of tens of
millikelvin (mK) for a sample with ∼ NV centers, even though the mediated coupling
between two NV centers is less than  kHz (∼ μK).
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Figure 1 Schematic setup. (a) Schematic set up of
a hybrid NV and mechanical resonator system.
A magnet attached to the end of the mechanical
resonator is positioned at a distance 25 nm above
the NV centers, coupled to the electronic spin of the
defect centers. (b) The NV defects in the samples.
The defects have one preferred orientations in the
sample, [111]. A static magnetic field BNV is applied
along the [111] direction. (c) Schematic energy levels
of NV centers as a function of the magnetic field. The
BNV is taken so that the states |1〉 and |0〉 of the NV
centers are nearly degenerate.

2 Microscopic model
The essential idea can be understood by considering a prototype system shown in Fig-
ure (a). A mechanical resonator with frequency ωr is attached with a magnet. The NV
sample is placed right under the magnet with a distance d. The oscillation of the mechan-
ical resonator generates a time dependent magnetic field that causes Zeeman shift of the
spins in the sample. In contrast to the schemes of direct dipolar coupling between NV
centers, our scheme does not require short distance between NV centers. We use a dia-
mond sample where the orientation axes of the NV color centers can lie along one of the
four possible crystallographic axes in diamonds, [] (Figure (b)) which can be grown by
chemical vapor deposition method [, ]. The NV centers have a spin triplet ground state
(S = ) with a large zero field splitting � = . GHz. We apply a static magnetic field BNV

along the [] direction of the sample so that two Zeeman states of the electron spin qubits
with magnetic quantum number |〉 and |〉 are nearly degenerate, δ ≡ (� – γeBNV) ∼ 
(Figure (c)).

We make use of the two Zeeman states of the electron spin |〉 and |〉 and define a
pseudo-spin by σz = |〉〈| – |〉〈| and the corresponding spin flip operators σ + = |〉〈|
and σ – = |〉〈|. In each NV center there is a N nuclear spin which interacts with the on-
site NV center spin. The Hamiltonian of the NV center near the degenerate point (δ ≈ )
is HNV =

∑
j[�N (Iz

j ) – γN Iz
j BNV + AIj · σj + δσ z

j ], where �N = . MHz is the N nuclear
spin quadrupole splitting [], γN is the gyromagnetic ratio of the nitrogen nuclear spin
and A ≈  MHz is the hyperfine coupling between the electronic spin and the N nuclear
spin [].

The motion of the mechanical resonator is described by the Hamiltonian Hr = ωrb†b,
with ωr as the frequency of the fundamental vibration mode of the resonator and b as the
corresponding annihilation operator. For example a silicon nitride string resonator has
dimensions ( × . × .) μm with ωr = π × . MHz and Q = . ×  at room
temperature [].
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The magnetic field felt by the electronic spin of the NV centers can be approximated
by a magnetic dipole [], �B(dj – x(t)) = �B(dj) – Gm�x(t) + o(x), where dj is the distance
between the equilibrium position of the resonator and jth NV center, Gm is the magnetic
field gradient at the position of the NV centers and x is the amplitude of mechanical res-
onator oscillation (x ∼ – m at temperature of mK). This magnetic field will induce a
Zeeman shift to the NV spins with Hamiltonian Hz =

∑
j ηjσ

x
j (b + b†) and ηj = γe|Gm|a,

where γe is the gyromagnetic ratio for electron and a =
√

�/mωr is the amplitude of zero
point fluctuations for a resonator of mass m.

Due to the distance distribution of the NV centers to the magnet, the coupling of the NV
centers to the mechanical resonator have a distribution. A magnetic tip with size of  nm
produces a magnetic gradient Gm ∼ . ×  T/m at a distance  nm away from the tip
[]. In such case η/π could reach  kHz. For a sample with typical distance of NV
centers ∼ nm, the neighbor NV centers have a direct dipolar interaction with strength
∼ kHz (∼. μK), much less than the critical temperature to be discussed later. For
the sake of simplicity, in the following we assume the coupling between the mechanical
resonator and NV centers to be uniform and neglect the direct dipolar coupling between
NV centers. Without these assumptions, however, the results in this paper would only be
quantitatively affected. The coupling constant η/π ∼  kHz considerably exceeds both
the electronic spin decoherence rate (∼kHz) of the NV centers and the intrinsic damp-
ing rate of the mechanical resonator, γ = ωr/Q []. We neglect the interaction between
the mechanical resonator and the N nuclear spins since it is three orders of magnitude
smaller than that between the NV center and the mechanical resonator.

Summarizing the three terms described above, the total microscopic Hamiltonian in-
cluding the spin qubits in the NV centers, nitrogen nuclear spins, the mechanical res-
onator and the interaction among them is,

H = ωrb†b +
N∑

j=

[
�N

(
Iz

j
) – γN BNVIz

j + AIj · σj
]

+
N∑

j=

[
η
(
b + b†

)
σ x

j + δσ z
j
]
. ()

3 Effective long-range Ising model
To obtain the effective interactions between NV centers, we calculate the partition func-
tion of the hybrid system Z = Tr[e–βH ]. We shall neglect the Zeeman energy of the N
nuclear spin since its strength (∼. MHz) is much smaller than the zero field splitting
∼ MHz and the hyperfine interaction ∼ MHz. The hyperfine interaction between the
electronic spin and the N nuclear spin term AI · σ can be separated into the diagonal
term AIxσ x and the flip-flop term A(Iyσ y + Izσ z). Let us first neglect the flip-flop term and
the qubit splitting (δ = ). By partial trace of the phonon bath and the nuclear spins, the
partition function can be factorised as

Z = Tr
[
e–βH]

= Zphonon × ZN × Tr
[
exp(–βHeff )

]
, ()

where Zphonon is the partition function of an independent phonon bath, ZN is the
partition function of the nuclear spins. A unitary transformation of the form, U =
exp(

∑
j ηjσ

x
j (b – b†)/ωr), can be applied to the Hamiltonian in equation (), with the Zee-

man splitting δ and flip-flop term neglected, to obtain an effective Hamiltonian for the
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NV electron spins up to the second order in η/ωr ,

Heff = –
∑

i<j

η

ωr
σ x

i σ x
j – h(β)

∑

j

σ x
j , ()

with h(β) = β– ln[( +  cosh(βAx))/] being an effective magnetic field resulting from the
on-site interaction between the NV center and the N nuclear spin. Note that in equation
() all the NV center spins interact with each other, making an effectively N-dimensional
model. The physics for the effective long-range interactions between the NV centers is
that an NV center spin flips by virtually emitting a phonon, and then the phonon is vir-
tually absorbed by another NV center spin far away with a spin flip. Therefore two NV
spins at distance can flip-flop via virtual exchange of phonons, which leads to long-range
σ x

i σ x
j coupling. In the temperature range we are interested in (∼ mK), the effective field,

h(β) ∼ . μK, is negligible. Therefore the distant NV centers interact through an effective
long-range ferromagnetic Ising interaction with the Hamiltonian

Helectron = –
∑

i<j

Jσ x
i σ x

j , ()

where the ferromagnetic coupling strength J = η/ωr . If the flip-flop term of the hyperfine
interaction is taken into account, it would contribute an effective transverse field to the
electronic spins, which, however, is ∼. μK and hence negligible.

4 Ferromagnetic ordering
The long-range Ising model can be solved by mapping the ensemble onto to a single large
spin. With the notation Sx =

∑N
j= σ x

j /, the Hamiltonian of the long-range Ising model can
be written as

Helectron = –J
∑

i<j

σ x
i σ x

j = –J
(

S
x –

N


)

. ()

The spin quantum number S takes values , , , . . . , N/ for even N and /, /, . . . , N/
for odd N . Moreover, the spin degeneracy in each large spin subspace is D[S] = CN/–S

N –
CN/–S–

N where Cj
N is the binomial coefficient. Then the electron spin partition function

Z = Tr
[
e–βHelectron

]
= e–NβJ/

N∑

n=

Cn
N eβJN(n/N–/)

. ()

In the large N limit []

Z ≈ e–β̃/N
∫ /

–/
dXe–Nϕ(β̃ ,X), ()

where ϕ = (/ + X) ln(/ + X) + (/ – X) ln(/ – X) – β̃X and β̃ = βNJ . The integration
in the partition function can be evaluated by the saddle point approximation method. For
β̃ < , the saddle point appears at X = , and for β̃ > , there are two symmetric saddle point
located respectively within (–/, ) and (, /). Therefore β̃ =  is the critical point for the



Wei et al. EPJ Quantum Technology  (2015) 2:18 Page 5 of 7

Figure 2 Free energy landscapes of the
long-range Ising model. (a) The free energy as a
function of the spin polarization along the x
direction at high temperature β̃ ≡ NJ/kBT = 0.5.
(b) The same as (a) but at a lower temperature
β̃ ≡ NJ/kBT = 2.0.

ferromagnetic phase transition in the long-range Ising model. So the critical temperature
for the long-range ferromagnetic Ising model, kBTc = NJ , is proportional to the number
of spins and the coupling strength []. The mean-field theory gives a good estimation of
the phase transition temperature in the long-range Ising model, which becomes exact in
the thermodynamic limit.

We present the scaled free energy of the long-range Ising model as a function of the spin
magnetization Mx ≡ 〈Sx〉/N for different temperatures in Figure . One can see that at high
temperature (Figure (a)) the free energy minimum is situated at Mx =  and a paramag-
netic state is stable, while at low temperature (Figure (b)) the free energy minimum is
doubly degenerated with Mx ≈  or Mx ≈ –, and a ferromagnetic state is preferred.

For the hybrid system, the phase transition temperature can be controlled through the
detuning from the degeneracy point between the NV spin states |〉 and |〉. If the NV
qubits have a small splitting δ = � – γ BNV, the resonator mediated interaction between
the NV centers becomes

J = –
(

η

ωr – δ
+

η

ωr + δ

)

. ()

The critical temperature becomes

kBTc =
Nη

ωr – δ
+

Nη

ωr + δ
. ()

Here the magnetic field is tuned so that the NV spin states |〉 and |〉 are nearly degenerate.
Hence the splitting δ is much smaller than the frequency of the resonator. In Figure  we
plot the phase diagrams of the NV centers as a function of splitting for N = ,. In a
diamond sample with NV concentration ∼ ppb, coupling between a resonator and such
many NV centers is possible. A ferromagnetic order can be formed at the temperature of
 mK. The magnetization of the large number of spins would cause a displacement of
the resonator ∼aηN〈Mx〉/(�ωr) ≈  nm for N =  NV centers, which can be detected
by optical reflection as done in atomic force microscopy.
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Figure 3 Phase diagram. The phase transition
temperature of the NV-resonator hybrid system as a
function of the scaled detuning δ/ωr . We take the
NV-mechanical resonator interaction strength
η = 200 kHz, eigen frequency of the mechanical
resonator ωr = 1 MHz and the number of spin is
N = 10,000.

Figure 4 Comparison of the finite size numerical
results and the mean field theory. (a) The order
parameter, Mx , as a function of the reduced
dimensionless temperature, kBT/NJ for different sizes
of the spin systems. The black-short-dashed line is
for N = 100, the blue-long-dashed line is for N = 500
and the red-solid line is the mean field prediction.
(b) The specific heat plot in the same style as in (a).

In Figure (a), we present the numerical and the mean field results of the order param-
eter as a function of reduced temperature, kBT/NJ . One can see that the order parameter
vanishes at and above the critical temperature kBT/NJ =  and also the finite size numer-
ical results approach to that of the mean field predictions reasonably well as the number
of spins increases. The specific heat shown in Figure (b) has a finite jump which signals
a second order phase transitions occurs.

5 Conclusion
In summary, we propose a scheme to realize ferromagnetic ordering of distant nitrogen-
vacancy centers by using a mechanical resonator to mediate long-range Ising-type inter-
action. The critical temperature for the ferromagnetic phase transition in the long-range
Ising model is proportional to the number of spins, so the ferromagnetic order could be
formed at the temperature of tens of millikelvin for a sample with ten thousand nitrogen-
vacancy centers. In addition, it may also be possible to use a superconducting resonator
[, ] as a medium to realize the long-range ferromagnetic coupling between the NV
centers. Since the interactions between the NV centers mediated by a superconducting
resonator is usually small compared to that by a mechanical resonator, high density NV
samples are required to observe the magnetic ordering in the NV centers.
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