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Abstract
We study the quantum phase transition in the Dicke model beyond the
thermodynamic limit. With the Kibble–Zurek mechanism and adiabatic dynamics, we
find that the residual energy is inversely proportional to the number of qubits,
indicating that more qubits can obtain more energies from the oscillator as the
number of qubits increases. Finally, we put forward a promising experiment device to
realize this system.
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1 Introduction
Superradiance is the spontaneous emission of photons from the collective decay of an
excited population of atoms. This phenomenon is first predicted in the quantum phase
transition (QPT) of the Dicke model [1] and has been experimentally observed in several
quantum optical and solid-state systems [2]. The Dicke model describes the interaction
between N identical qubits and a single bosonic mode, which exhibits a second-order QPT
at weak coupling in the thermodynamic limit N → ∞ [3]. The superradiant QPT of the
Dicke model has been experimentally observed with a Bose–Einstein condensate trapped
in an optical cavity [4]. On the other hand, there has been much interest in the realization
of QPT of the Dicke model in circuit QED systems due to the theoretical and experimental
progresses on the ultrastrong coupling in recent years [5–24]. In thermodynamic limit,
the Dicke model is exactly solvable through the Holstein–Primakoff transformation for
the angular momentum algebra [25, 26].

The universality of equilibrium and nonequilibrium dynamics is important to charac-
terize critical exponents of the QPT [27]. Scaling functions go beyond critical exponents
and extend the range where theoretical predictions can agree with experimental datas.
Many-body systems can show up highly nontrivial behaviors [28] even for an adiabatic
evolution [29, 30]. For a slow quench dynamics, the adiabaticity breaks down regardless
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of the quench rate when the system across the critical point, which can be analyzed by the
Kibble–Zurek mechanism (KZM) [12].

For realizing the QPT dynamics in experiment [10–13], the major challenge is the con-
dition for thermodynamic limit where the number of the constituent system elements
is required to be infinite. Recently, much attention has been paid to the QPT of finite-
size many-body systems. However, beyond the thermodynamic limit, the Dicke model is
nonintegrable due to the unclosed Hilbert space in a general coupling range [31], so that
various approximate methods are proposed to obtain the effect of finite-size correction
[32–37], which is demonstrated to be crucial to understand the properties of universality
near the critical point of QPT [38–41]. Previous study [32] applied the method of Born–
Oppenheimer approximation to analyze the second-order QPT for the adiabatic Dicke
model in the thermodynamic limit. Vidal and Dusuel [33] focused on the finite-size cor-
rections in the Dicke model and determined the analytical scaling exponents at the critical
point for various atomic observables. There has been reported [35] that it was able to use
extended bosonic coherent states to numerically solve the finite-size Dicke model, but this
method can not be directly applied to investigate the QPT due to their lack of closed form.

Based on Schrieffer–Wolff transformation, recent work demonstrated that both the
finite-size Jaynes–Cummings lattice system [42] and Rabi model [12] exhibited the super-
radiant QPT even when the system involved only one qubit and one harmonic oscillator.
A natural generalization of the Jaynes–Cummings [42–45] and Rabi [46–60] models is
the system involving finite N qubits simultaneously interacting with a common harmonic
oscillator, i.e., the Dicke model beyond the thermodynamic limit. Such unitary transfor-
mation is very common in the context of spin boson problems which is also known as
“polaron transformation”. Although several mathematics approaches [32–35] have been
presented to analytically treat the finite-size Dicke model, few can be directly applied to
treat QPT in the Dicke model beyond the thermodynamic limit.

In this paper we study QPT of the finite-size Dicke model. With the Kibble–Zurek mech-
anism and adiabatic dynamics, we find that the residual energy is inversely proportional
to the number of qubits, indicating that more qubits can “absorb” more energies from the
oscillator as the number of qubits increases.

2 System Hamiltonian
The Dicke Hamiltonian [1] models the mutual interaction between N identical qubits and
a harmonic oscillator, which is described as

H = H0 – V , (1)

H0 = w0a†a + ΩJz, (2)

V = λ
(
a† + a

)
(J+ + J–), (3)

w0 and Ω are the frequencies of the oscillator and qubit, respectively. λ is the qubit-
oscillator coupling strength. a† (a) is the creation (annihilation) operator of the harmonic
oscillator. Jz and J± are the collective qubit operators and obey the general angular mo-
mentum commutation relations

[Jz, J±] = ±J±,

[J+, J–] = 2Jz.
(4)
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The Hilbert subspaces of collective qubit operators and oscillator are denoted by ΓQ =
{|j, m〉; m = –j, –j + 1, . . . , j – 1, j} and ΓO = {|n〉; n = 0, 1, 2, . . .}, respectively, where j =
N/2 and a†a|n〉 = n|n〉. The parity operator Π = eiπ (a†a+Jz+j) commutes with H and has
two eigenvalues ±1 which correspond to two noninteracting subspaces, depending on
whether the total excitation number is even or odd, respectively. In the thermodynamic
limit N → ∞, in which the number of qubits becomes infinite, the Dicke Hamiltonian
has been demonstrated to undergo a second-order QPT [25]. Hereafter, we focus on the
nonequilibrium dynamics of the QPT in the Dicke model with a finite number of qubits.

Based on Schrieffer–Wolff transformation, we find an anti-Hermitian operator to map
the finite-size Dicke Hamiltonian into an oscillator Hamiltonian within the collective-
qubit subspace. By means of Born–Oppenheimer approximation, we analytically derive
the eigenenergy and eigenstate of the normal and superradiant phases when the ratio of
the qubit transition frequency to the oscillator frequency approaches infinity, and demon-
strate that the ground state undergoes a second-order quantum phase transition at a new
critical point, where the effective qubit-oscillator coupling strength is quadratically en-
hanced by the number of qubits. For the finite-frequency scaling, we derive an analytical
leading-order correction by using the variational method, as proved in the Appendices A
to E.

3 Quench dynamics
To investigate the nonequilibrium dynamics of the QPT in the N-qubit Dicke model, we
focus on a slow quench dynamics based on the adiabatic perturbation theory and Kibble–
Zurek mechanism [61, 62]. Similar to Ref. [12], we consider the control parameter g to
change linearly with time, i.e., λ(t) =

√
w0Ωλf t/(2

√
Nτq), where λf is the final coupling

strength (λf ≤ 1) and τq is the quench time. For simplicity, we discuss the situation g(t) ≤ 1
in the following.

Suppose that the instantaneous eigenstates of the time-dependent Hamiltonian Hnp(t)
are |rnp(t), n〉 = P[rnp(t)]|n〉 and the corresponding instantaneous eigenenergies are εn(t) =
nεnp(t). In terms of the time-dependent wave function |Ψ (t)〉 =

∑
n βn(t)e–iΘn(t)|rnp(t), n〉,

where Θn(t) =
∫ t

0 εn(t′) dt′, the Schrödinger equation is equivalent to the following form

β̇n(t) = –
∑

m
βm(t)

〈
rnp(t), n

∣
∣∂t

∣
∣rnp(t), m

〉
ei[Θn(t)–Θm(t)], (5)

and the general solution of Eq. (5) is written as

βn(λ) = –
∑

m

∫ λ

0
dλ′βm

(
λ′)〈rnp

(
λ′), n

∣
∣∂λ′

∣
∣rnp

(
λ′), m

〉

× ei[Θn(λ′)–Θm(λ′)]. (6)

When the system is initially in its ground state with β0(0) = 1, for a slow quench ġ � 1 and
by keeping its leading order, Eq. (6) approximates

βn(λ) 	 –
∫ λ

0

〈
rnp

(
λ′), n

∣∣∂λ′
∣∣rnp

(
λ′), 0

〉
ei[Θn(λ′)–Θ0(λ′)]. (7)

To deal with the phase factor, we use the approximate evaluation equation of a fast oscil-
lating integral

∫ x2
x1

f (x)eiah(x) dx = f (x)
iah′(x) eiah(x)|x2

x1 + O(a–2) and obtain the equivalent solution
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of Eq. (7) as

βn(λ) 	 iλ̇
〈rnp(λ), n|∂λ|rnp(λ), 0〉

εn(λ) – ε0(λ)
ei[Θn(λ)–Θ0(λ)]

∣∣
∣∣

λ

0
. (8)

In the normal phase, rnp(λ) = – 1
4 ln[1 – 4Nλ2/(w0Ω)] and

〈
rnp(λ), n

∣
∣∂λ

∣
∣rnp(λ), 0

〉
=

1
2

∂rnp(λ)
∂λ

〈n|(a†2 – a2)|0〉

=
√

2Nλδn,2

w0Ω – 4Nλ2 , (9)

where the symbol δ represents the delta function. Therefore, when the higher-order term
O(ġ2) is omitted, the only nonzero solution in Eq. (8) is β2, given by

β2(λ) 	
√

2i
√

N λ̇λ

2w2
0Ω(1 – 4Nλ2

w0Ω
)zν+1

ei[Θ2(λ)–Θ0(λ)]. (10)

According to the adiabatic perturbation theory [63], the final residual energy becomes

Er =
∑

n>0

εn

(√
w0Ωλf

2
√

N

)∣
∣∣
∣βn

(√
w0Ωλf

2
√

N

)∣
∣∣
∣

2

	 ε2

(√
w0Ωλf

2
√

N

)∣
∣∣
∣β2

(√
w0Ωλf

2
√

N

)∣
∣∣
∣

2

= τ–2
q

w0λ
4
f

16N(1 – λ2
f )zν+2

∝ τ–2
q

N
. (11)

Thus, the residual energy Er scales with τ–2
q /N when the quench is far below the critical

point g � 1, which is different from the universal scaling Er ∼ τ–2
q in the Rabi model.

However, as λ(t) approaches the critical point, the relaxation time of the system diverges
due to the singularity of the spectral gap, and the scaling relation Er ∼ τ–2

q /N does not hold
near the critical point. Based on KZM, there exists a time instant T that divides the whole
dynamics into two regimes: one is the adiabatic regime below the coupling instant λ(T)
and the other is the impulsive regime beyond λ(T). Since the relation time is calculated
through the inverse of the accessible energy-gap equation η(λ) = 2εnp(λ), the solution of
λ(T) should satisfy the nonlinear differential equation

∣∣∣
∣

1
η[λ(t)]

∣∣∣
∣ =

∣∣∣
∣
η[λ(t)]
η̇[λ(t)]

∣∣∣
∣. (12)

By replacing η(λ) = 2w0
√

1 – 4Nλ2/(w0Ω) into Eq. (12), we obtain the effective scaling
relation between λ(T) and τq as

λ(T) =
√

w0Ω

2
√

N
[
1 – (2

√
2w0τq)

–1
zν+1

]
. (13)
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Figure 1 Residual energy Er versus the quench time
τq obtained by KZM for different N values:
(a) Er ∼ τ –2

q /N, (b) Er ∼ τ –1/3
q /N. The curves from the

top to the bottom correspond to N = 1 to 10

Figure 2 (a) Schematic of N identical NV centers
located near a current-carrying nanotube, and there
has no direct interaction between arbitrary two
driven NV centers. I is the electric current and B is the
magnetic field in the nanotube. d is the distance
between the nanotube and NV centers, and varies
when the nanotube vibrates. The blue-dot line
represents the other NV centers. (b) Level configuration of each driven NV center. u is the driving of external
microwave field and � is the symmetric detuning

When the system approaches the critical point, the residual energy becomes

Er 	 τ–2
q

w0

16N
(2

√
2w0τq)

zν+2
zν+1 ∝ τ–1/3

q

N
. (14)

This result shows that when the quench dynamics approaches to the critical point, Er

grows inversely proportional to the number of qubits, which is different from the uni-
versal scaling Er ∼ τ–1/3

q in the Rabi model [12]. In Fig. 1, we plot the curves of residual
energy Er versus the quench time τq obtained by KZM for different N values. The results
in Fig. 1(a) and 1(b) show that the residual energy more quickly decrease when the number
of qubits increases, indicating the cooperation of the qubits enhances quench effect. The
above inverse-proportion scalings between Er and N physically come from the collective
enhancement effect among N qubits and this effect vanishes when there is only one single
qubit, indicating that more qubits can “absorb” more energies from the oscillator as the
number of qubits increases, and the energy exchange between the qubits and the oscillator
does not affect the total energy.

4 Feasible experimental system
Hybrid quantum device with a nitrogen-vacancy (NV) center in diamond coupled to a
current-carrying nanotube has been demonstrated to be well mapped to the standard
single-qubit Dicke model [64]. Without loss of generality, we generalize this hybrid quan-
tum device to a more common situation where N identical NV centers collectively coupled
to a current-carrying nanotube and there has no direct interaction between arbitrary two
driven NV centers when each NV center is far away from the others, as shown in Fig. 2.
Each NV center in diamond consists of a substitutional nitrogen atom and an adjacent
vacancy, which has one ground state with zero-field splitting between the ground state |0〉
and excited states |±1〉. External microwave fields u cause Rabi oscillations between |0〉



Shen et al. EPJ Quantum Technology             (2020) 7:1 Page 6 of 16

and |±1〉. According to Ref. [64], when |�| 
 u, the effective Hamiltonian of this system
reduces to the same framework of the N-qubit Dicke Hamiltonian in Eq. (1) as

Heff = wbb†b +
u2

�
Gz + λeff (G+ + G–)

(
b† + b

)
, (15)

where b is the oscillator operator of the fundamental oscillating mode with mechanical
vibration frequency wb. Gz and G± are the collective angular-momentum operators for
the bright state |B〉 = (1/

√
2)(|+1〉 + |–1〉) and the dark state |D〉 = (1/

√
2)(|+1〉 – |–1〉)

in each NV center, where Gz =
∑N

h=1(|B〉h〈B| – |D〉h〈D|), G+ =
∑N

h=1 |B〉h〈D|, and G– =
∑N

h=1 |D〉h〈B|. With current experiment parameters [65, 66] and suitable drivings, the nan-
otube vibrates at a frequency wb ≈ 1 kHz and the effective frequency u2/� of NV center
can be tuned to 10 MHz, i.e., the condition Ω/w0 → ∞ for finite N playing the role of
a thermodynamic limit is satisfied. At the same time, |�| 
 u is still valid, because � is
compared with u, for example, � can be a quantity of 1 GHz and u can be a quantity of
10 MHz. The effective magnetomechanical coupling strength has a relation as λeff ∝ 1

d2 ,
which increases quickly just by decreasing d to reach the critical point of QPT. When the
strong-coupling regime is reached, i.e., λeff exceeds both the electronic spin decay rate and
the intrinsic damping rate of the mechanical mode, the dephasing effect on the QPT can
be ignored reasonably.

5 Conclusion
In conclusion, we have studied the Dicke model beyond the thermodynamic limit.
We combine the analytical methods of Schrieffer–Wolff transformation and Born–
Oppenheimer approximation, and derive the eigenenergy and eigenstate of the normal
and superradiant phases when the ratio of the qubit transition frequency to the oscillator
frequency approaches infinity, demonstrating that the ground state undergoes a second-
order quantum phase transition. At the critical point, the effective qubit-oscillator cou-
pling strength is quadratically enhanced by the number of qubits. We use the variational
method to derive the leading-order correction for the finite-frequency ratio and show
that the quartic correction term becomes a major contribution to the ground state en-
ergy when N is large enough. Under the Kibble–Zurek mechanism, the universal scaling
between the residual energy and the number of qubits is demonstrated to become an
inverse-proportion relation. Finally, we analyze a promising experiment device to realize
this N-qubit Dicke model. In the future, we hope to generalize the present method to
other many-body systems, and find more novel QPTs beyond the thermodynamic limit,
offering simple and applicable approaches for the experimental realization of QPT.

Appendix A: Normal phase
The free Hamiltonian H0 has N + 1 decoupled collective-qubit subspaces ΓQ1 = {|j, –j〉},
ΓQ2 = {|j, –j + 1〉}, ΓQ3 = {|j, –j + 2〉}, . . . , ΓQN+1 = {|j, j〉}. The decoupled collective-qubit sub-
spaces of H0 mean that there is no any interaction term between arbitrary two different
subspaces. Here, we point at H0 for decoupled subspaces, and do not point at the whole
Hamiltionian H . There are different “m” values, not “j” values, that give the decoupled
subspaces. When the ratio of the qubit transition frequency to the oscillator frequency
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approaches infinity, i.e., Ω/w0 → ∞, the eigenstate of H0 with the lowest energy corre-
sponds to that of the harmonic oscillator restricted in ΓQ1 . A macroscopic quantum tun-
neling, under the adiabatic condition of Ω/w0 → ∞, for large N the tunneling splitting
vanishes as exp(–N), while for small N the tunneling splitting disappears as

√
N/ exp(N),

as proved in [67, 68]. Therefore, the ground state has no degeneracy and is unique.
To find a unitary transformation U that decouples the mutual interaction between ΓQ1

and ΓQ2 caused by the perturbation V , we apply Schrieffer–Wolff transformation to the
Dicke Hamiltonian in the normal phase. Under the unitary transformation U = eS , where
the operator S is anti-Hermitian and block-off-diagonal within ΓQ1 , the system Hamilto-
nian becomes

H ′ = e–SHeS =
∞∑

k=0

[H , S](k)

k!
, (a1)

where [H , S](k) = [[H , S](k–1), S] with [H , S](0) = H . By dividing H ′ into the diagonal and off-
diagonal parts and requiring that the off-diagonal part becomes zero up to fourth order in
λ, we find the special anti-Hermitian operator S with the approximate form

S = λS1 + λ3S3 + O
(
w2

0/Ω2), (a2)

S1 =
1
Ω

(
a† + a

)
(J+ – J–), (a3)

S3 = –
4

3Ω3

(
a† + a

)3(J+ – J–). (a4)

With this approximate S and neglect the higher order terms O(w2
0/Ω2), the transformed

Hamiltonian becomes

H ′ 	 H0 +
1
2
[
[H0,λS1],λS1

]
– [V ,λS1] +

1
2
[[

H0,λ3S3
]
,λS1

]

+
1
2
[
[H0,λS1],λ3S3

]
+

1
24

[[[
[H0,λS1],λS1

]
,λS1

]
,λS1

]

–
[
V ,λ3S3

]
–

1
6
[[

[V ,λS1],λS1
]
,λS1

]

= w0a†a + ΩJz +
2λ2

Ω

(
a† + a

)2Jz –
w0λ

2

Ω2 (J+ – J–)2

–
2λ4

Ω3

(
a† + a

)4Jz. (a5)

For infinite ratio Ω/w0 → ∞, we project H ′ into ΓQ1 and keep the terms to the second
order of the qubit-oscillator coupling strength, we obtain an effective one-dimensional
oscillator Hamiltonian in the normal phase

Hnp =
〈

N
2

, –
N
2

∣∣∣
∣H

′
∣∣∣
∣
N
2

, –
N
2

〉

	 w0a†a –
Nλ2

Ω

(
a† + a

)2 –
NΩ

2
. (a6)
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Hnp in Eq. (a6) can be exactly diagonalized by applying a squeezing operator

P(r) = e
r
2 (a†2–a2), (a7)

where r is the squeezing parameter. This squeezing transformation leads to

H ′
np = P†(r)HnpP(r)

=
[

w0 cosh(2r) –
2Nλ2

Ω
e2r

]
a†a

+
[

1
2

w0 sinh(2r) –
Nλ2

Ω
e2r

](
a†2 + a2)

–
NΩ

2
–

Nλ2

Ω
e2r + w0 sinh2 r. (a8)

With the choice of the squeezed parameter rnp = – ln[1 – 4Nλ2/(w0Ω)]/4, the coefficient
of (a†2 + a2) term vanishes, so that H ′

np is diagonalized as

H ′
np = εnpa†a + Enp, (a9)

with the excitation energy

εnp = w0

√

1 –
4Nλ2

w0Ω
(a10)

and the ground-state energy

Enp =
1
2

(εnp – w0 – NΩ). (a11)

Crucially, the excitation energy εnp is real only when

1 –
4Nλ2

w0Ω
> 0, (a12)

or equivalently

g =
2
√

Nλ√
w0Ω

< 1. (a13)

Thus, the excitation energy εnp is a positive real value for g < 1, corresponding to the nor-
mal phase. In this phase, the eigenstates and eigenenergies of H ′

np are

∣
∣φn

np
〉

= P(rnp)|n〉
∣∣
∣∣
N
2

, –
N
2

〉
, (a14)

En
np = nεnp + Enp. (a15)

Compared with the Rabi model [12], the qubit-oscillator coupling required for the quan-
tum phase transition is reduced by a factor

√
N .
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Appendix B: Superradiant phase
When g > 1, we see that the excitation energy εnp is imaginary, which implies that the
number of photons in the oscillator becomes proportional to Ω/(w0N) and acquires a
macroscopic occupation, corresponding to the superradiant phase. In this phase, the
higher-order terms in O(w0N/Ω) can not be neglected, meaning that the assumption of
low-energy subspace restricted in ΓQ1 is invalid. To capture the physics of superradiant
phase, we displace the oscillator in H by applying the displacement operator D(α) = eα(a†–a)

(α is a displacement parameter), which corresponds to the displacement transformation

a† → a† + α. (b1)

Then, the original Hamiltonian is transformed to

Hsp = D†(α)HD(α)

= w0a†a +
[
w0α – λ(J+ + J–)

](
a† + a

)
+ ΩJz

– 2λα(J+ + J–) + w0α
2. (b2)

The main obstacle of dealing with Hsp is that it is hard to give the complete eigenstates of
the qubit part ΩJz –2λα(J+ +J–) due to the high-dimensional complexity of collective-qubit
subspaces when N increases. To overcome this obstacle, we here consider the effective
potential of the oscillator by means of Born–Oppenheimer approximation [32], instead of
the matrix diagonalization method used in Rabi model [12]. For Ω/w0 → ∞, we can say
that the qubits remain in the lowest energy eigenstate ˜|N/2, –N/2〉 and this state changes
adiabatically following the dynamics of the slow oscillator [32]. Since the coupling between
the qubits and oscillator is mediated by the oscillator’s position operator x, we start the
calculation by finding the qubits’ lowest eigenenergy for the slow oscillator. Assume that
x has a well-defined value, the qubit part of Hsp can be rewritten as

Hq(x) = ΩJz – (2λα +
√

2w0λx)(J+ + J–). (b3)

The lowest eigenenergy of this Hamiltonian in ΓQ is given by

Kg(x) = –N
√

Ω2

4
+ (2λα +

√
2w0λx)2. (b4)

When the qubits remain in ˜|N/2, –N/2〉, the oscillator’s effective potential acquires a new
contribution from the qubits as

Veff (x) =
1
2

w2
0x2 +

√
2w0w0αx

– N
√

Ω2

4
+ (2λα +

√
2w0λx)2. (b5)

Note that the position variable x appears inside the square root of Kg and the effective
potential in Eq. (b5), corresponding to a nonlinear harmonic potential. Therefore, it is im-
possible to obtain general analytical solutions and we consider the specially approximate
solution in the following.
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In the limit Ω 
 λ|x|, the effective potential in Eq. (b5) can be approximated as

Veff (x) 	 1
2

w2
0x2 +

√
2w0w0αx

–
N
2

√
Ω2 + 16λ2α

[
1 +

8
√

2λ2αx + 4w0λ
2x2

Ω2 + 16λ2α2

–
1
8

(
16

√
2λ2αx + 8w0λ

2x2

Ω2 + 16λ2α2

)2]

	 1
2
ε2

sp

(
x +

√
2w0w0α – 4

√
2Nλ2α

Ω̃

ε2
sp

)2

+ Vmin, (b6)

where

Ω̃ =
√

Ω2 + 16λ2α2,

ε2
sp = w2

0 –
4Nw0λ

2

Ω̃
+

64Nλ4α2

Ω̃3
,

Vmin = –
NΩ̃

2
–

(
√

2w0w0α – 4
√

2Nλ2α

Ω̃
)2

2ε2
sp

.

(b7)

The results show that the oscillator’s effective potential is changed due to coupling to the
qubits. On one hand, the equilibrium position of the oscillator is moved by a quantity pro-
portional to Nα/Ω̃ . On the other hand, the oscillator’s effective frequency εsp is reduced
by a quantity roughly proportional to N/Ω̃ . The minimum potential can be obtained by
setting dVmin/dα = 0, where the solution of α is derived as

αg = ±
√

NΩ

4w0g2

(
g4 – 1

)
. (b8)

With these two independent choices of αg , the oscillator’s effective frequency becomes

εsp = w0
√

1 – g–4, (b9)

which is real for g > 1, and the corresponding ground-state energy is

Esp =
1
2

(εsp – w0) –
NΩ

4
(
g2 + g–2). (b10)

Note that the expression of the ground state ˜|N/2, –N/2〉 can be found in Ref. [32] within
the spin space.

Appendix C: Quantum phase transition
The behavior of the system’s ground state is characterized by the excitation energies εnp

and εsp of the effective oscillator when the qubits are in the lowest energy eigenstate. These
excitation energies as a function of the coupling strength for different number of qubits are
displayed in Fig. 3. The result shows that as the coupling strength approaches the critical
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Figure 3 (a) Excitation energy ε of the Dicke Hamiltonian as a function of the coupling strength for different
number of qubits in the limit Ω/w0 
 1. (b) Coupling strength versus N at the critical point. We set
Ω = 100w0. The vanishing of ε at the critical point g = 1 indicates the appearance of the QPT

Figure 4 (a) The rescaled ground-state energy eG and (b) its second derivative d2eG/dg2 as a function of the
coupling strength for different number of qubits in the limit Ω/w0 
 1. (c) eG and (d) d2eG/dg2 versus N at
the critical point. We set Ω = 100w0

point g = 1, the excitation energy of the oscillator vanishes as ε(g) ∝ |g – 1|zν where zν =
1/2 is defined as the dynamical critical exponent, indicating the appearance of the QPT.
As shown in Eq. (a13), the qubit-oscillator coupling strength for generating QPT can be
quadratically reduced with the increasing of the number of qubits. This is due to the fact
that the effective qubit-oscillator coupling is enhanced by the collective interaction of the
qubits.

The rescaled ground-state energy eG = (w0/Ω)E is –Nw0/2 for g < 1 and –Nw0(g2 +g–2)/4
for g > 1, which is a continuous curve for different number of qubits shown in Fig. 4(a), but
the second derivative d2eG/dg2 in Fig. 4(b) exhibits a discontinuity for different number
of qubits at the critical point g = 1, clearly revealing the second-order nature of this QPT.
eG in Fig. 4(a) tends towards a value of –Nw0/2 when g → 1 from either direction, which
linearly depends on the number of qubits, and becomes infinite in the asymptotic limit of
g → ∞. As shown in Fig. 4(b), d2eG/dg2 vanishes as g → 1 and tends towards a constant
of –Nw0/2 in the limit of g → ∞. The physics behind this QPT is that the infinite ratio
Ω/w0 → ∞ for finite N plays the role of a thermodynamic limit, which allows the spectral
gap to vanish at the critical point.



Shen et al. EPJ Quantum Technology             (2020) 7:1 Page 12 of 16

Figure 5 The corrections due to finite frequency
ratio in (a) eG , (b) nc , (c) �x, and (d) �p as a function
of the number of qubits. We set Ω = 1000w0

Appendix D: Corrections due to finite frequency ratio
For finite ratios of Ω/w0 
 1, we derive an analytical leading-order correction by using the
variational method [12]. By keeping H ′ up to the fourth order term in λ/Ω and projecting
it into ΓQ1 , we obtain

HΩ
np = Hnp +

w2
0g4

16NΩ

(
a† + a

)4 +
w2

0g2

4Ω
, (d1)

which shows that the leading-order correction to Hnp corresponds to a quartic poten-
tial for the oscillator, with a strength coefficient inversely proportional to the number of
qubits. We assume the ground state of HΩ

np to be the squeezed state |ψ0(s)〉 = P(s)|0〉 with
a variational parameter s, which provides the corresponding variational energy

E0(s) =
〈
ψ0(s)

∣∣HΩ
np

∣∣ψ0(s)
〉

=
w0

2
cosh(2s) –

w0g2

4
e2s +

3w2
0g4

16NΩ
e4s –

N
2

Ω

+
w2

0g2

4Ω
–

w0

2
. (d2)

Through ∂E0(s)/∂s = 0, we have

3w0g4

2NΩ
e6s +

(
1 – g2)e4s – 1 = 0. (d3)

∂2E0(s)/∂s2 > 0 is valid for any real s, demonstrating that the ground state |ψ0(s)〉 has the
solution of s in Eq. (d3). At the critical point g = 1, the solution of s has a particularly simple
form

smin =
1
6

ln

(
2NΩ

3w0

)
. (d4)

With this variational solution at critical point, we find the corrections for the rescaled
ground state energy

eG =
w0

Ω

[〈
ψ0(smin)

∣∣HΩ
np

∣∣ψ0(smin)
〉
– Enp

]

	 w0

8
(2 + N)

(
2N
3

)–1/3(
Ω

w0

)–4/3

, (d5)
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Figure 6 Errors of solutions from the effective Hamiltonian of Eq. (a5) with the numerical solutions at g = 1
2

[(a)–(d)] and g = 1 [(e)–(h)]. At the top-right corner of each subgraph, the detail between the error and Ω/w0

is magnified when N = 10

for the rescaled photon number nc

nc =
w0

Ω

〈
ψ0(smin)

∣
∣a†a

∣
∣ψ0(smin)

〉

	 1
6

N1/3
(

2Ω

3w0

)–2/3

, (d6)

and for the variance of quadratures �x, �p

�x = esmin = N1/6
(

2Ω

3w0

)1/6

, (d7)

�p = e–smin = N–1/6
(

2Ω

3w0

)–1/6

. (d8)

For the excitation energy at the critical point, the correction is given by

εs = 〈1|P†(smin)HΩ
npP(smin)|1〉 – 〈0|P†(smin)HΩ

np

⊗ P(smin)|0〉

= w0N–1/3
(

2Ω

3w0

)–1/3

. (d9)
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Figure 7 Comparison of solutions from the leading order terms [Eqs. (d5)–(d8)] with the corresponding
numerical solutions at the critical point g = 1: nc [(a)–(b)], εs [(c)–(d)], �x [(e)–(f)], and �p [(g)–(h)]. The
dashed lines plot their leading order terms with analytical solutions, and the solid lines plot the
corresponding numerical solutions

The above results indicate that the correction term (a† +a)4 becomes a major contribution
to the ground state energy at the critical point when N is large enough, as shown in Fig. 5.

Appendix E: Justified estimate for the analytical result
To check the validity of the above analytical results, we perform numerical proofs in this
section. In Fig. 6, we compare errors between the analytical solution of Eq. (a5) and the
numerically exact solution when N is finite. From the result of Fig. 6, the deviation between
the analytical and numerical solutions is very small and decays fast as Ω/w0 increases,
indicating that H ′ is an excellent approximation of the Dicke model for Ω/w0 
 1 and
finite N .

As shown in Fig. 7, we make comparisons of the leading order terms between the ana-
lytical and numerical solutions when N is finite. By keeping the higher order corrections,
the difference between the analytical prediction and exact result is very small. However,
it is not necessary to expect our approximation results to be exactly accurate for small
values of Ω/w0 and finite N . We are only interested in scaling behaviors for large values
of Ω/w0 and finite N , and our analytical approximations correctly predict them. There-
fore, it is safe to predict quench dynamics of the N-qubit Dicke model based on the above
analytical approximations in the following section.
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