Panelli et al. EP/ Quantum Technology (2020) 7:5 @ E PJ Qua ntu m TeCh nO|Ogy
https://doi.org/10.1140/epjqt/s40507-020-00081-9 a SpringerOpen Journal

EP].org
o [
RESEARCH Open Access

®

Check for
updates

Applying the matched-filter technique to
the search for dark matter transients with
networks of quantum sensors

Guglielmo Panelli' @, Benjamin M. Roberts'? and Andrei Derevianko'

“Correspondence:

ggpanelli@gmail.com Abstract

'Department of Physics, University .. . . . .

of Nevada, Reno, USA There are several networks of precision quantum sensors in existence, including

Full list of author information is networks of atomic clocks, magnetometers, and gravitational wave detectors. These
available at the end of the article networks can be re-purposed for searches of exotic physics, such as direct dark matter

searches. Here we explore a detection strategy for macroscopic dark matter objects
with such networks using the matched-filter technique. Such “clumpy” dark matter
objects would register as transients sweeping through the network at galactic
velocities. As a specific example, we consider a network of atomic clocks aboard the
Global Positioning System (GPS) satellites. We apply the matched-filter technique to
simulated GPS atomic clock data and studly its utility and performance. The analysis
and the developed methodology have a discovery reach up to three orders of
magnitude above the previous GPS results and have a wide applicability to other
networks of quantum sensors.
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1 Introduction

Astrophysical observations on the galactic scale indicate that dark matter (DM) consti-
tutes 85% of all matter in the universe, leaving only 15% to ordinary matter [1]. These
galactic scale observations (e.g., rotation curves, cosmic microwave background, gravi-
tational lensing) characterize solely the gravitational interaction of dark matter and ordi-
nary matter, leaving the microscopic composition of DM and its non-gravitational interac-
tions with standard model particles and fields a mystery. Among the current DM searches,
weakly interacting massive particles (WIMPs) have been the primary target with no suc-
cess to date, thereby partially motivating alternative DM candidates [1]. One such alter-
native are ultralight fields where the DM candidate may take the form of a macroscopic
object coherent over large scales. Such objects would exert gentle minute perturbations
detectable by quantum sensors [2]. Quantum sensors are typically well protected from
environmental perturbations which makes them uniquely sensitive to new physics. Ex-
amples include atomic clocks, magnetometers, atom interferometers, and microwave and
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optical cavities. The particular hypothesized form of coupling of DM fields to baryonic
matter determines the type of the sensor to be used in the DM search [3].

Here we focus exclusively on ultralight fields. In general, one may consider free non-
interacting and self-interacting fields. We are interested in models with self-interaction
that can form macroscopic dark-matter objects, such as topological defects or Q-balls [4—
7]. Interactions of such DM constituents with standard model (SM) particles and fields
can induce variations in fundamental constants of nature. Such variations may be detected
by observing atomic frequencies in atomic clocks [8—10]. As the DM constituents sweep
through a device, the variation would register as a transient perturbation. Geographically-
distributed networks can resolve the velocities of the transients and provide a powerful
vetoing of the potential events as the sweep velocity must be consistent with standard halo
model priors. These ideas form the basis of dark matter searches with distributed networks
of atomic clocks [11-15], magnetometers [16, 17], and gravitational wave detectors [18—
20] alike.

Our GPS.DM group focuses on searching for DM-induced transients in GPS atomic
clock data [12, 13]. Here the advantage is the public availability of nearly two decades of
archival data enabling relatively inexpensive data mining. A dark matter signature would
consist of a correlated propagation of atomic clock perturbations through the GPS con-
stellation at galactic (~300 km/s) velocities. Previously, our GPS.DM collaboration per-
formed an analysis of the archival GPS data in search for domain walls (a particular type
of topological defect) [13]. Although no DM signatures were found, new limits were placed
on certain DM couplings to atoms that were several orders of magnitude more stringent
than prior astrophysical limits. The original search [13] focused on finding large DM sig-
nals well above the instrument noise. In Ref. [14], we have shown that the application of
more sophisticated Bayesian search techniques can extend the discovery reach by several
orders of magnitude both in terms of sensitivity and size/geometry of the DM objects.
Here we study the performance of the matched-filter technique (MFT) as an alternative
frequentist search method. In addition, we develop analytic results for idealized network
of white-noise sensors with cross-node correlation.

The MFT is a relatively ubiquitous technique, utilized, for example, by the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) in gravitational wave detection (see,
e.g. [21]). It is also used in a variety of applications, such as astrophysics [22], geophysics
[23], and searches for exotic physics [24]. Of a special interest to us is the performance
of the MFT for large networks, as the GPS.DM sensor array may include over a hundred
instruments if we take into account all GNSS constellations and terrestrial clocks. A tech-
nical complication in applying the MFT to these networks is that the noise is correlated
between spatially separated nodes of the network. Understanding the consequences of
this cross-node correlation is of importance to our analysis.

The structure of this paper is as follows. Section 1.1 reviews the MFT for data analysis
and previous applications. Section 1.2 formalizes requirements for a network detector of
clumpy DM. Section 1.3 reviews the relevant theory and how the GPS network can be re-
purposed for DM searches of this sort. A summary of processing the GPS data is provided
in Sect. 1.4. In Sect. 2, we describe our methodology, including the formulation of our
detection statistic and the search algorithm. The detection threshold, detection probabil-
ity and parameter estimation capabilities are provided in Sects. 3.2, 3.3, and 3.4, respec-
tively. Lastly, the projected discovery reach for this method is provided in Sect. 3.5 and
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Sect. 4 draws conclusions. The paper also contains appendices where we discuss network
covariance matrix and its inversion, inverse transform sampling, and present supporting
derivations. Since the intended audience includes both atomic and particle physics com-
munities, we restore % and ¢ in the formulas in favor of using natural or atomic units. We

also use the rationalized Heaviside-Lorentz units for electromagnetism.

1.1 The matched-filter technique

The matched-filter technique is often used to search for hidden signals within data streams
in cases where the signal’s “shape” is known but the signal’s strength is not. In this case, the
general shape can be compared to the data stream to search for an underlying correlation
that is not immediately evident to the un-aided eye. The matched-filter itself is the best
estimate of the unknown signal strength by employing an optimal filter. In the most gen-
eral sense, an optimal filter is a particular combination of data that optimizes a quantity
deemed to be significant, usually relating to signal detection within data sets [21]. Usual
quantities of interest include the detection probability for a given signal strength and the
signal-to-noise ratio (SNR), though many other application-specific statistics can be de-
vised.

Since the MFT requires a predefined signal shape, this approach cannot be used for un-
modeled signals. When a hypothesized signal signature is able to be modeled, there often
exist many candidate shapes along with the unknown signal strength. Thus, one forms a
collection of signal shape templates that approximately spans the range of possible shapes.
One could think of the MFT as a technique that maximizes an overlap between the tem-
plates and the data stream. This maximization is done with the help of a matched-filter
statistic, such as a SNR. However, it is not usually the value of the SNR alone that deter-
mines the level of overlap, but rather the value of the SNR compared to a threshold. Addi-
tionally, one of the most promising aspects of the MFT is the ability to align the shape of
the detected signal with the template that produced an SNR above the detection threshold,
leading to immediate signal parameter estimation.

The efficacy of the MFT depends on how well one can distinguish a weak signal from
intrinsic device noise. Thus, a network of devices can offer a better sensitivity and higher
confidence in the event of a positive detection since all network sensors would experience a
signal from the same event.? If a hypothesized signal shape can be modeled for a network of
devices, the MFT becomes a powerful tool for weak signal detection and signal parameter

estimation.

1.1.1 Examples of the MFT in practice

Perhaps the most well-known application of the MFT comes from the gravitational wave
detection by LIGO (see e.g., [25]). A detailed outline of search techniques and matched-
filtering is provided in Ref. [21] and guided much of our development of the method dis-
cussed in this paper. However, LIGO’s use of the MFT involved a small network of devices
that exhibit uncorrelated noise. The black hole merger gravitational wave detection from
2015, for instance, used only two spatially separated interferometers in the waveform tem-
plate matching analysis [25]. Another previous application of the MFT used 15-20 station
from the International Deployment of Accelerometers (IDA), where geophysicists were
been able to identify previously undetected global seismic events in archival IDA data
[23]. The method has also found use in galaxy cluster identification [22] and in the search
for neutrino-less beta decay [24].
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All of these examples consider networks of devices far smaller than that available (~100)
to our DM search. Furthermore, an essential feature of our GPS.DM network search is
a cross-node correlated noise (due to a reference clock common to all the nodes, see
Sect. 1.4), which, to the best of our knowledge, has not been addressed in the literature.
A related theoretical development for ultralight (non self-interacting) DM fields is pre-
sented in Ref. [26]. There a quantum sensor network was considered for detecting DM
waves and a SNR statistic was developed in the frequency domain. By contrast, here we
focus on network detection of dark matter transients and develop a SNR statistic in the

time domain.

1.2 Network desiderata

Here we are devising a strategy for detecting macroscopic DM objects that sweep through
a distributed network of Np, sensors. We use the words “sensor” and “node” interchange-
ably. In particular, a single geographical location may host several instruments, yet each
individual sensor is referred to as a distinct node for our purposes. We will assume that
DM objects interact (non-gravitationally) with the instruments and the interaction only
occurs when the bulk of the DM object overlaps with a sensor.

There are several criteria for such networks:

(i) The network should be sufficiently dense so that the finite-size DM object can
overlap with at least several geographically-distinct nodes.

(ii) The network size should be sufficiently large to increase the likelihood of
encountering compact DM objects spread throughout the galaxy.

(iii) As per the standard halo model (SHM) [27] the DM objects sweep through the
network at galactic velocities (v, ~ 300 km/s), the sampling rate should be
sufficiently high to enable tracking the propagation of the DM object through the
network. The tracking enables reconstructing the geometry of the encounter.

(iv) Although not necessary, it is desired that the encounters of DM objects with the
network are sufficiently rare, so that only a single DM object interacts with the
network at any given time.

While most of these requirements are apparent, criterion (iii) deserves further discus-
sion. For example, while a setup [28] of two co-located clocks with a shared optical cav-
ity can be considered as a rudimentary two-node network, such network does not sat-
isfy criterion (iii) since even if both clocks were to register a DM signal, there would
be no galactic velocity/direction signature to support the signal’s DM origin. Thus, such
low-sampling rate networks can only be used to constrain couplings to the DM sec-
tor.

1.3 Clumpy dark matter models

Stable macroscopic objects may form from ultralight DM fields due to their self-
interaction in the dark sector [29—34]. Topological defects (TDs) are an example of such
macroscopic “clumpy” DM objects, though they can also contribute to dark energy de-
pending on their cosmological fluid equation of state [14]. Monopoles (0D), strings (1D),
and domain walls (2D) are all examples of TDs of various dimensionalities. Other ex-
amples of macroscopic DM candidates include Q-balls [5-7], solitons [35, 36], and axion
stars [37, 38]. A special case of clumpy DM are DM “blobs” [39]—particle-like DM objects
sourcing long-range Yukawa-type interactions with the SM sector.
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For concreteness, we focus on topological defects. Inside the defect, the amplitude of the
DM field A and the average energy density of the defect is related by pisiqe = A2/(hed?),
where d is the width or spatial scope of the defect (we use the convention where the field
has units of energy). The DM object width d is treated as a free observational parameter
and, for TD models, may be linked to the mass of the DM field particles 14 through the
healing length which is on the order of the Compton wavelength d = h/(mc). Further, the
local DM energy density ppy may be linked to d and A by assuming that these objects
saturate the local DM energy density,

T
A? = (FLC)IODMdZ — (1)
avg

where 7,4 ~ d/v, is the average duration of crossing through a point-like instrument and
T is the average time between subsequent encounters of the DM objects with the device
[13].

As for the non-gravitational interactions, to be specific and consistent with our earlier
work [14], we assume the quadratic scalar portal,

_ P
Lot = (meczwfwf ~Lt s --)¢>¢*, ©)

where 1y are the fermion masses, ¢ is the scalar DM field (measured in units of energy), I'x
are coupling constants that quantify the DM interaction strength, and y¢ and F,, are the
SM fermion fields and the electromagnetic Faraday tensor, respectively. The SM fermions
f in the above equation are summed over implicitly. Such interactions appear naturally for
DM fields possessing either Z, or U(1) intrinsic symmetries. The above Lagrangian leads

to an effective redefinition of fundamental masses and coupling constants,

a®(r,0) = [1+ I o(r, 0 ], 3)

mi(r,0) = [1+ Lo, 0)] ]y, (@)

where my are the fermion (electron/proton m,,, and light quark m, = [m,, + m,]/2) masses
and o ~ 1/137 is the electromagnetic fine-structure constant. The coupling constants I
have units of [Energy]~? and we also define the effective energy scales as Ay = 1/3/[Tx]|
with X = a, m,,,, m, to aid the comparison with previous literature.

The observable atomic frequency shift induced by the DM objects can be linked to
the transient variation of fundamental constants, and thus the DM field parameter, from
Eqgs. (3) and (4). For a particular clock transition,

Sw(r,t)
wo

2

= kxIx|o(r, 0| = Ll d(r,0)

X

; (5)

where o is the nominal clock frequency, X runs over relevant fundamental constants, and
kx are dimensionless sensitivity coefficients. For convenience, we introduced the effective
constant, I'eg = )y kxI'x, which depends on the specific clock.

The effective coupling constants for the GPS network microwave atomic clocks (Rb, Cs
and H) read (using computations [40, 41], see [14] for details, and Ref. [42] for illucidating
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the underlying logic)
Te(*Rb) = 4.341, — 0.069T,,,, + 2y, (6)
e ('*°Cs) = 4.831, — 0.0481,,, + 21, (7)
Ieg('H) =4I, — 0.1505,,, + 21, 8)

Although linear combinations of the coupling constants differ for each type of clock
in the GPS network, individual coupling constants I'x (or, equivalently, individual energy
scales Ay) can be obtained by combining the results from different clock types. A labora-
tory optical Sr clock has provided the most stringent constrains on A, for specific regions
of the (d,T) parameter space (see, e.g. [28]). More recently, new constraints have been
placed on Ay, A, and Am, by our GPS.DM collaboration [13] and on A, by a global
network of optical laboratory clocks [15]. These two papers reported null results for do-

main wall searches.

1.3.1 Thin domain walls

In this paper we will focus on a specific type of DM signal—“thin” domain walls. While
retaining the main features of more complicated signals from other types of DM “clumps’,
this signal offers a sufficiently simple, analytically treatable signature. Domain wall-like sig-
natures can appear naturally in the context of bubbles, i.e., domain walls closed on them-
selves [13]. Locally, one can neglect the bubble curvature as long as the bubble radius is
much larger than the spatial extent of the sensor network. Another example are Q-balls
that couple to SM fields through derivative couplings, ¢p¢* — 9,,00*¢* in Eq. (2). Q-balls
are spherically symmetric objects with a nearly flat density profile in the bulk. Thus the
dominant part of the interaction would occur at the Q-ball walls. Again one needs to re-
quire the radii of these objects to be much larger then the network size. Since bubbles and
Q-balls are spherically symmetric, gravitationally interacting ensembles of these DM ob-
jects are a subject to the equation of state for pressureless cosmological fluid as required
by the ACDM paradigm.

We distinguish between “thin” and “thick” walls based on the sampling rate, which is
finite for any realistic device. If the interaction time with the device d/v, is shorter than the
sampling interval 7o, the exact arrival time of the DM clump is not resolved, and neither
its shape. Thus the DM object is “thin” for observational purposes if its size d < v;70.
For domain walls, strictly speaking, the relevant velocity is its component normal to the
wall, v, .

For the GPS sampling interval of 7o = 30 s, the above arguments translate into domain
walls of thicknesses below the Earth size, d <« 300 km s™! x 30 s ~ 10* km. Any domain
wall with a thickness larger than this value is characterized as “thick” and is discussed in
more detail in Ref. [14].

The thin wall network signature is formalized in Sect. 2.2. For thin walls, the value of the
effective coupling relates to the maximum DM-induced accumulated clock phase (time)

signal 1 = Swmax/wo X T by

h=A’Tgr, )
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7 = d/v, being the interaction time between the wall moving at velocity v and an individual
device. Again, for the wall to be “thin’, we require t to be less than the sampling time
interval 1.

With the theoretical background established, we now review GPS data and character-
ize the utility of applying the matched-filter technique for DM search in network data
streams. This includes establishing a signal-to-noise ratio test statistic and benchmarking

the method via simulation.

1.4 Overview of GPS data

A detailed description of modern GPS data acquisition and processing techniques and
their application in precision geodesy can be found in Ref. [43]. Details relevant to DM
searches with GPS constellation are given in Ref. [13]. Here, we briefly review the main
aspects of GPS atomic clock data and introduce relevant concepts and terminology.

In our search, we analyze the GPS data generated by the Jet Propulsion Laboratory (JPL)
[44]. This data consists of clock biases, the difference in clock phases (i.e., the operational
“time” as counted by the clocks) between a given satellite clock and a fixed reference clock,
and are sampled at 7y = 30 s intervals. The same reference clock is used for the entire net-
work of satellite clocks on any given day. The data set also provides the satellite orbits, so
we know the locations of the networks nodes (satellites). The JPL performs the initial GPS
data processing [44]. In their processing, they do not limit clock bias behavior, meaning
that real transient signals are not removed as outliers.

Each clock’s bias data, denoted d;o) where the subscript enumerates data points (epochs),
is non-stationary and is dominated by random walk process. Prior to our analysis, we

“whitten” the data by performing the first-order differencing and define a new data stream
d" =d” - d?. (10)

This differencing procedure is sufficient for the Rb satellite clocks while a second-order
differencing procedure (d;z) = d;o) - 2d;9)1 + d;(j)z) is often preferred for Cs clocks. We re-
fer to the differenced data a’;l) as the pseudo-frequency due to its proportionality to the
discrete clock bias derivative. The units of pseudo-frequency d}l) are nanoseconds. As
shown in Ref. [14] the pseudo-frequency noise is dominated by the Gaussian white noise.
To streamline notation, for the rest of the paper, d; = dj(,l). Such data standard deviation o
is related to the commonly used Allan deviation o,(7) as o = 790,().

An important aspect of the GPS time series data is that it consists of the individual clock
noise and the noise of the reference clock. So, for each clock 4, the noise component can

be represented as

a _ ,a .
nf=ef —g, (11)
where ¢; is the individual clock noise and ¢; is the contribution from the reference clock
noise common to all data streams. Here and below the superscript enumerates sensors.
While both sources of noise in pseudo-frequencies are dominated by the Gaussian white
noise, in our simulations we will include realistic auto-correlation functions for the GPS

clocks computed in [14].
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1.4.1 Simulating GPS data
Characterizing the efficacy of the MFT is contingent on our ability to simulate the GPS
atomic clock data. A detailed description of GPS data simulation along with a direct com-
parison to the GPS archival data is provided in Ref. [14]. The essence of the simulation
method comes from utilizing the known power spectral densities for each clock (from
JPL) to “color” pseudo-random white noise [45]. Moreover, we are able to simulate cross-
clock correlation by adding an extra set of simulated white noise with standard deviation
equal to that of a typical reference clock (o« = 0.006 ns) to all of the simulated satellite
clock data streams. This effectively acts as the common reference clock noise component
to the satellite data in Eq. (11).

With the necessary background provided, we pivot to a description of our methodology

in next section.

2 Methodology

We wish to determine whether there is significant evidence that a thin wall DM signal
is present in the GPS archival atomic clock data or not. This can be formalized by the
following two-sided hypothesis test:

Hy:h=0, vs. Hi:h#0,

where / represents the strength of the possible hidden DM signal. Note that the alternative
hypothesis H; can be thought of a union of all possible alternatives H;, where # may be
any non-zero real number. Furthermore, note that we allow the signal strength /4 to be
both positive and negative, which is different than a typical signal strength search that
treats /1 as an amplitude (and therefore non-negative). This is because the sign of the DM
interaction coupling I” is not known a priori. That is, we do not know if the DM-induced
perturbations will cause the GPS atomic clocks to tick faster or slower.

To perform the aforementioned hypothesis test, we must formulate a detection statis-
tic p, which in this case will be a signal-to-noise ratio and is formulated in the following
section. Then, in order to claim detection, we must first establish a detection threshold p*
(provided in Sect. 3.2) to compare to our observed statistic p.

The cases in which our search produces an observed SNR that exceeds the established
threshold or not are treated differently. If our search results in a detection statistic larger
than the threshold, we then wish to estimate the parameters relating to the DM interaction
event. This is discussed in Sect. 3.4. On the other hand, if our search does not result in
a detection statistic indicating an event, we wish to place limits on the signal strength /
which translates into into limits on the DM coupling I" via Eq. (9), see Sect. 3.5.

2.1 Formulation of test statistic

Consider a candidate DM model M that would leave a coherent signal in network sensor
data set D. The data set may or may not include a candidate model-prescribed signal s(8),
where 0 is the specific set of parameters that define the signal signature, such as the DM
object’s velocity, orientation, arrival time and strength. If there is no signal within the data,
then s = 0. Taking a frequentist approach, all one needs is a likelihood function for the data
set. This is given by the following Gaussian:

L(DIM) = K exp [—% Xz(s)}, (12)
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where K is the normalization factor and

Np Jw

K38 =Y Y (dr — s (ET)Y (df - s7). (13)

ab jl

Here df is data for the ath clock at epoch j and E is the covariance matrix for the network.
To streamline notation, we dropped the explicit reference to template parameters 6. The
indices a, b run over Np, sensors (excluding the reference clock for GPS) and j, [ range over
the epochs (data points) in the observation time window of length Jy,. In an equivalent

vector notation,
x(s)=(d-s)"E"(d-s), (14)

where d is the data stream and s is the signal stream.

The likelihood in Eq. (12) is a multivariate function of the signal parameters 6. An im-
portant aspect of our method is the signal linearity with respect to its strength % so that
we can define a “unit” signal that is scaled by its strength

s(0) = 15(0]5-1). (15)

This way, our likelihood becomes

L(DIM) = Kexp|: ((d—-hs)"E™H(d - h§))]. (16)

1
2

Since we do not know the shape or parameters of the unit signal s (or if there exists a
signal within the data at all), we span the space of all possible signals by forming a large
repository of unit signal templates (a discussion of how we form the repository of tem-
plates is provided in Sect. 2.2). Suppose we form a unit signal template s; with a set of
randomly (but strategically) chosen parameters. We then compare this template to the
data stream via the likelihood function in Eq. (16). The template specific likelihood is then
a function of only the signal strength % since each of the other signal parameters have been
fixed to form §s;. In this case, the template-specific likelihood can be re-cast as a function

of /1 alone
1/ h—h\2
L;(D|M) x exp|:—— <u> ], 17)
2\ oy
where
~ d'Es;
h= , 18
s/E's; {8
1
oy = (19)

Here /1 is the signal strength that maximizes the template-specific likelihood and oy, is the
template-specific likelihood standard deviation. We quantify how well the signal template
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5; matches the signal within the data via a signal-to-noise ratio statistic defined as

h dTEs;
pi= =L (20)

o T 1 —
o JSTETs;

We emphasize that our use of the SNR as a statistic rather than its square is to retain the
dependence on the sign of the DM coupling. The SNR statistic depends on the inverse of
the covariance matrix E. Properties of the covariance matrix and its inversion techniques
are discussed in Appendix 1. Note that Eq. (20) is general in that it applies to any modelled
signal (monopoles, strings, walls, etc.), though here we treat the case of thin walls only.

In general, due to the central limit theorem, we can assume that the intrinsic noise of the
network sensors is Gaussian (the noise may be colored). This was the underlying assump-
tion in writing the likelihood (12). Then the SNR statistic (20) is a linear combination of
Gaussian random variables, and as such, the SNR is also a random Gaussian variable.

Now, recall that we wish to span the space of possible model-prescribed signals with
a repository of unit signal templates. Then, given a repository of M randomly generated
templates, we define our detection statistic p as the template-specific SNR with the largest
magnitude

M
p =p; suchthat |p]= max{|p,v|}i=1. (21)

Choosing this as the detection statistic results in finding the signal template that maxi-
mizes the multivariate likelihood (12).

With our detection statistic defined, in the next sections we outline our method of unit
template generation and provide an overview of our procedure for searching the GPS

datastreams for DM events.

2.2 Template generation

Each signal template is determined by the DM model used (in this case, the thin domain
wall) and the necessary parameters associated with the event: velocity (and incident di-
rection), time of the event and thickness of the DM object. Since it would take an infinite
number of model-prescribed signal templates to cover such a continuous parameter space,
we strategically generate our finite repositories (template banks) of signals with a Monte-
Carlo approach using prior distributions for individual parameters. When generating sig-
nals for a template bank, we employ importance sampling for each parameter according
to these prior distributions in an effort to approximately span the continuous parameter
space with a finite sample. This approach is formalized in Appendix 3.

We use the SHM to generate necessary parameter prior distributions. The velocity dis-
tribution for DM objects in the halo is quasi-Maxwellian and isotropic with a dispersion
around v ~ 300 km s~* [27]. In addition, there is a motion of the Solar system through the
halo at galactic velocities of v, & 220 km s™". The resulting most probable incident direc-
tion of a DM object is along the path of the Sun’s orbit in the galaxy, toward the Cygnus
constellation. This implies that over 90% of DM events would come from the forward fac-
ing hemisphere [13]. Further discussion of priors for event parameters such as domain

wall width and event rate is provided in Ref. [14]. The event parameters (velocity, incident
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direction, etc.) determine in which order the nodes are swept, as well as how quick the
sweep is. These characteristics distinguish the templates within the template bank.

After generating the template parameters, we form the signal templates. The thin do-
main wall is characterized by an interaction time with each device (clock) of less than
the sampling time interval; thereby, the profile contains delta-functions of time. The DM-
induced clock bias (phase) of a given clock a is proportional to an integral of the frequency
shift (5). Further, the bias data stream is given with respect to a fixed reference clock R,
which is also affected by the domain wall. We thus distinguish between maximum signals

a(l

h* and K® as shown in Eq. (9). The signal in the differenced data stream 5] ) then reads

(for the case when the wall encounters the clock a prior to the reference clock R)

0, J <Ja

ha, ] =ja7
Sq(l) ={o . P (22)
; s Ja<j<jr

_th ] :jR)

0’ ] >jR’

where the time at epoch j is j x 79, a discrete time on the sampling grid, and j,, jr are
the epochs in which the satellite clock and reference clock interact with the DM object,
respectively. This template is shown graphically in Fig. 1.

In a homogeneous network of clocks, the values of 4% and AR are the same, thereby
allowing us to split a single / from the differenced signal to form the templates with unit
spikes at j, and jr. This is also true for any network under the assumption that the I,
coupling dominates over other couplings (i.e., |1}, | > |I44|) since the I3, contribution
in Egs. (6)—(8) is the same for all clock types. Assuming that any other coupling dominates,
we may still split a single / from the differenced signal but the unit templates will contain

a unit spike at j, and a spike of magnitude n = h*®/h* = '} /"% and of opposite sign at .

> & & & ¢ o ® & 6 o ® & 6 6 O &

1
S/.a()
=}

Ja Jr
Time

Figure 1 Time series for a differenced thin domain wall signal. Here clock a is affected by the DM object prior
to the reference clock R. When the thin wall object interacts with clock a between epochs j; — 1 and j,, a spike
of magnitude h? is seen at epoch j,. Then, as the thin wall object sweeps the reference clock between epochs
ja—1and jp, a spike of opposite sign and magnitude h” is seen at epoch jz

Page 11 of 33
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We would also like to highlight the importance of a well-spaced network for the MFT
approach and template generation. Well-spaced meaning that few (if any) satellite clocks
are affected by the DM wall within the same 30 s time period as the reference device. If the
network nodes were not sufficiently spatially separated, the signal templates from Eq. (22)
would collapse into “null” templates, where all elements of the signal stream are zero. This
is due to the node devices and reference device de-synchronizing and re-synchronizing
all within the time period of one epoch, effectively eliminating detectable DM interaction
effects on the data stream.

Beyond individual template generation, we must choose an appropriate number of tem-
plates in the repository to accurately span the parameter space. In Sect. 3.3 we gauge how
the number of templates affects the DM signal detection capabilities.

3 Results

3.1 Analytic results for idealized network

Now we turn to the general SNR (20) and determine the statistical properties of SNR for
thin domain wall signals (22). In this section, we consider an analytically treatable case
of an idealized network comprised of N identical white noise sensors. We additionally
incorporate a white noise reference sensor common to all the sensors. This common noise
reference sensor is especially relevant to GPS clock network, where it arises due to all clock
biases reported with respect to a single reference clock. We will denote the intrinsic noise
variance of the network sensors and the reference sensor as o and o2, respectively. Both
the sensors and the reference can be affected by dark matter transients.

We will determine the expected distribution of the template-specific SNR values p; given
that there is no signal in the data stream, Prob (p;|Hp), as well as the distribution of the
detection statistic given that there is a signal of strength % present, Prob (p|H},), for this
idealized sensor network.

As discussed in Sect. 1.1, the central quantity of interest, SNR (20), is a Gaussian random
variable and as such its probability distribution is fully characterized by its mean value and
variance. Because it is random, the SNR can fluctuate. Due to these fluctuation, even in
the absence of the DM signal, the SNR may attain large values that can be falsely misin-
terpreted as the presence of the DM signal. The larger the SNR variance, the larger the
fluctuations are, and the larger detection threshold must be.

For the idealized network, the inverse of the covariance matrix needed to compute the
SNR statistic can be found analytically (see Appendix 1)

-1 ab_i ) ﬂb_i g
(E); _025],<5 ND1+$>’ (23)

where & = Npo2/o2.

Now, if there is a signal present in the data stream, each individual sensor’s data is given

by df =€/ —¢; + ks (a sum of an individual sensor noise, reference noise and a signal
term). When the signal is absent, one can simply set # — 0. Our explicit computation
using Eq. (20) with's; = s (see Appendix 2 for derivation) results in a Gaussian distribution

for p with a mean of

_hJNp [1+n?+&
e = o 1+¢& @4)
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and variance of

o) =1 (25)
Here n =hi/h* =T elfgf/ I% is the ratio between the strength of the signal experienced for
the reference clock to that of the satellite clocks. Note that we assumed that device de-
generacy (multiple sensors experiencing a signal at the same epoch) can be ignored. Note
that when the DM signal is absent (% = 0), 1, = 0 while o, remains constant. Moreover,
the standard deviation of template-specific SNR o, is also constant at 1. The probability
density distribution for SNR (for a fixed, matching template) is given by

(26)

= ﬂp)z]
—

1
Prob(p|H}) = E exp |:—

Assuming that none of the couplings 'y dominates the DM interaction with GPS de-
vices, n ~ 1 for any of the satellite-reference clock combination (see Egs. (6-8)). This re-
mains true if either I, or I',,, dominates the interaction. The only major deviation of 7
from avalue near 1 is when I, is the dominate coupling, for which the use of a network of
Rb clocks with an H-maser reference clock will result in 1 ~ 2. For the following analysis,
we will assume that n = 1.

Inthelimité < 1,ie., 0x < o/4/Np, wearriveat i, = h/2Np/o, recovering the known
result for a network of uncorrelated devices (see e.g., Ref [21]). For networks with large
cross-correlation or large number of devices (£ > 1), we arrive at u, = h/Np/o, a factor
of 4/2 less than the uncorrelated network. Regardless of the level of cross-correlation, the
network sensitivity grows with the sensor number as v/Np.

In our search, we do not use the exact inversion of the covariance matrix as was used
to derive the expressions in this section. Instead we incorporate a perturbative inversion
(see Appendix 1) which assumes that the reference clock noise is small compared to the

noise of the satellite clocks.

3.1.1 Multiple events
The Bayesian technique outlined in [14] assumed there to be at most one DM interaction
event in any particular time window of the archival GPS data. So far, here we have also
only treated the case of a single thin wall interaction event occurring in a time period of
Jw epochs. However, if we consider dark matter encounters to be Poisson distributed in
time, with an average time between consecutive events 7, over the 20 years of archival
data we would expect there to be Nr = (20 years)/T events. Then, extending our search
window Jy, to contain the total number of epochs in the entire two-decade window of GPS
data, and assuming that consecutive events are non-overlapping, we find that the mean of
our detection statistic (24) increases by a factor of /N, while the variance of the statistic
remains unchanged. This ultimately improves our sensitivity by +/Nz. Qualitatively, this
is due to the fact that we measure the signal strength N times.

While this section analyzed an idealized network, simplifying assumptions will be
lifted in full numerical simulations in later sections. We will use real colored noise auto-

correlation functions for heterogeneous networks of GPS clocks.
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3.2 Determination of a detection threshold

In order to find a detection threshold, we must determine how the detection statistic be-
haves in the case when there is no signal present in the data. This way we can determine
whether the computed statistic provides a significant evidence for rejecting the null hy-
pothesis and claiming DM detection. Rather than obtaining the distribution for our test
statistic given the null hypothesis is true, Prob(p|Hy), we determine our detection thresh-
old in a different yet equivalent fashion given the nature of our test statistic.

Recall that we define our detection statistic as the template-specific SNR with the max-
imum magnitude out of a repository of M templates. Instead of assessing the distribution
of the maximum magnitude p;, we simply assess the distribution of p;. To this end, we per-
formed Monte-Carlo simulations consisting of ~10° SNR calculations on event free sim-
ulated data and confirmed that the distributions for p; given the null hypothesis is true are
Gaussian with a mean of zero and standard deviation o,,. The results of the simulations
for various simulated clock networks (clock networks for the years 2000, 2005, 2010, and
2015; see Table 1) are provided in Fig. 2. Given that the template-specific SNR behaves in
this fashion, the probability that any of the templates in the repository produces an SNR

value larger in magnitude than some SNR threshold p* = n*o,,, is

v\ M
Prob(|p;| > n*o,,|Ho) = 1 - [erf(%)] , (27)

Table 1 GPS network clock types used for simulation with a white noise reference clock

Year Cs-ll Cs-IIA Cs-lIF Rb-II Rb-IIA Rb-IIR Rb-IIF H
2000 5 11 0 1 7 3 0 0
2005 1 8 0 1 8 12 0 0
2010 0 5 0 0 5 19 2 2
2015 0 1 1 0 3 19 3 0
0.10f > o
2000 Network 2005 Network
0.08
0.06
0.04
~ 002
T
St
T @ 2010 Network| @ 2015 Network
~
& 0.08
0.06
0.04
0.02
6 5 4 3 2 -1 0 1 2 3 4 6 6 5 4 3 2 -1 0 1 2 3 4 56

5
i (Template SNR)

Figure 2 Signal-free template-specific signal-to-noise ratio distributions. Histograms of template-specific SNR
calculations (p;) on signal-free simulated data for various clock networks. The network composition for
indicated years is given in Table 1. Standard deviations for template-specific SNR values are: 1.15 (2000), 1.03
(2005), 0.86 (2010), and 0.81 (2015)
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Table 2 Detection thresholds p* as a function of various generations of GPS constellation and false
positive (f.p.) rates. The network compositions for indicated years are given in Table 1

Year 1 fp/day 10 f.p./year 1fp/20 years
2000 5.87 6.61 7.58
2005 5.26 592 6.79
2010 4.40 4.95 5.67
2015 411 4.62 530

where M is the number of templates used in the template repository. This is a false positive
rate per epoch.

A reliable SNR threshold will ensure that we can expect less that 1 false positive in Z
epochs. The value of #n* that meets this criterion is

n* = ﬁerf’l[(l - l)M:| A Log(ZMZZ2)~ (28)
Z T

The most reliable threshold would allow less than one false positive in the entire span of
data. For 20 years of archival 30-second GPS data, Z = 2.1 x 107 epochs. With M = 1024
templates in the repository, the value of n* is 6.57, corresponding to a threshold SNR of

p* = 6.570,,. However, less strict detection thresholds may be used to identify possible
weak candidate events for further investigation. Note that the value for n* depends weakly
(logarithmically) on the number of templates M, thereby it does not vary significantly
for different sized template repositories. Ultimately, our detection threshold is given by
p* = n*o,,. Using the distributions in Fig. 2, we calculate the detection thresholds for each
network allowing for 1 false positive per day, 10 false positives per year, and 1 false positive
in 20 years. Table 2 summarizes the results.

3.2.1 Future networks and alternative data processing

As mentioned in Sect. 3.1, in our simulations we use a perturbative inverse of the covari-
ance matrix; see Appendix 1. This approximation relies on the noise level of the satellite
clocks being sufficiently larger than the noise of the reference clock. The GPS clock net-
works for the years 2000 through 2015 satisfy the quiet reference clock requirement. In
recent years, however, more stable Rb-IIF clocks with noise comparable to that of the refer-
ence clocks have been added to the GPS constellation thereby weakening the justification
for the perturbative approximation for E~!. Moreover, future GNSS networks will contain
a plethora of ground- and satellite- based H-maser clocks to be exploited in our searches
(Galileo satellites already house stable H-masers [46]). Switching our method to use the
exact inversion mitigates, but with the trade-off of computational overhead. We wish to
avoid using an exact inversion of the covariance matrix due to the fact that it drastically
increases computation time and would add a considerable amount of time to a search
through the GPS data.

Considering the insufficiency of the perturbative approximation for more recent clock
networks, here we offer a possible mitigation technique. As more accurate satellite clocks
are being placed in orbit, more reference clocks are being placed around the globe. We pro-
pose pairing each of the satellite clocks with their own reference clock, thereby eliminating
the cross-correlation caused by the use of a single reference clock that is inhibiting cur-
rent search techniques. Suppose there are N atomic clocks, satellite- and Earth-based, at



Panelli et al. EPJ Quantum Technology (2020) 7:5 Page 16 of 33

our disposal with half of them being Earth-based. The large level of cross-correlation that
restricts the perturbative inversion may be eliminated by using data from Np/2 satellite-
Earth clock pairs. The application of the matched-filter technique can be reformulated for

a network of device pairs and is left for future work when such networks become a reality.

3.3 Detection probability

3.3.1 Detecting events

In the event of a weak DM signal presence in the data stream, it may not be immediately
noticeable in the atomic clock data due to the randomness of the clock noise. The advan-
tage of the SNR (and a detection statistic in general) is to provide a clear gauge of the signal
presence. We verify that the SNR statistic is capable of detecting sought DM signals via
simulation.

To this end, we simulated 2 hours of data for a network of Np = 30 clocks that ex-
hibit Gaussian white noise with a standard deviation of o = 0.05 ns along with a white
noise reference clock contribution with noise level o, = 0.006 ns. We then injected a
signal of strength /4 = 0.1 ns in the middle of the data stream with normal velocity of
v, ~ 300 km s7! and incident direction angles # ~ 1.7z rad and ¢ &~ 0.27 rad (this in the
Earth-centered Inertial (ECI) J2000 frame), which are the most probable event parameters
according to the SHM and our previous calculations (see [14]). The results of performing
our search technique on this data set is shown in Fig. 3, where we show the time series data
(with the injected signal) for 6 of the 30 clocks. The upper panel shows magnitude of the
calculated detection statistic [Eq. (21)] for each epoch in the two hour window. This simu-
lation used a template repository of size M = 1024 and the calculated detection threshold
for this type of network is given by p* = 6.57 (allowing for no false-positives in 20 years).

£ (SNR)

st it Wenpredeiagk

(b)

d® (ns)
(=}

-60 -40 -20 0 20 40 60
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Figure 3 Frequentist detection of a simulated thin domain wall signal. The thin wall with strength h =0.10 ns
interacts with a network of 30 white noise clocks, each with o = 0.05 ns, at time ty = 0. The common
reference clock contribution is white noise with o, = 0.006 ns. Bottom panel: simulated clock bias data for 6 of
the 30 clocks with the injected signal included. For visual clarity, each data stream is shifted by a constant. Top
panel: magnitude of the corresponding SNR statistic p for the same time scale
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While the injected signal is not recognizable by the eye in the simulated data streams, a
spike in the detection statistic at the time of the injected event is apparent.

Note that the search method is not aware of the event’s strength, speed, direction, time
of occurrence, or the fact that there was an injected signal at all. The injected signals were
generated independently of the search routine and the template bank.

3.3.2 Detection probability
The main figure of merit of the MFT algorithm is a detection probability curve for the var-
ious clock networks that have been collecting data for the past two decades. The detection
probability is defined as the probability that the observed detection statistic exceeds the
detection threshold given that the alternative hypothesis is true: Prob(p > p*|Hj). We wish
to determine the detection probability for our various clock networks as a function of the
signal strength / and obtain a 95% detection probability signal strength, denoted /#*>%P,
Monte-Carlo simulations produced the detection probability curves shown in Fig. 4. The
simulation scheme consisted of 128 trials where a randomly-generated thin-wall signal of
strength /1 was injected into a data stream for a particular clock network and the detec-
tion statistic was calculated for every epoch within the simulated data stream. An event
was considered found if the computed SNR exceeded the network’s threshold within one
epoch of the injected event time. We compared the calculated SNR values with two differ-
ent detection thresholds: one that allows for 10 false positive events per year and another
one that allows for less than 1 false positive event in the 20 year span of the GPS data. The
number of found events divided by the number of iterations gave us the detection proba-

bility. This detection probability was computed for a range of injected signal strengths.
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Figure 4 Detection probability and signal-to-noise ratio scaling for simulated clock networks. Top panel:
Detection probability curves as a function of the injected signal strength h for various simulated clock
networks. Each point represents the percent of injected events of strength h found for 128 trials. Each curve
contains 42 points. Bottom panel: The average detection statistic value p of the 128 trials at the time the event
was injected. Though not plotted here, the 2005 network maintains a similar sensitivity to the 2000 clock
network while that of the 2015 clock network sensitivity is similar to the 2010 network
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Figure 5 Signal-to-noise ratio distribution for large signal strength. Histogram of the detection statistic for a
simulated network replicating the clock types of the 2010 GPS constellation with an injected signal of
strength equal h?°%PP. (h = 0,045 ns). The dotted black line is the detection threshold for this network
(p* =4.95). The shaded red region encompasses all iterations that resulted in a detection statistic larger than
the threshold. 94.6% of the iterations fall into this region

Along with the detection probability curves, we plot the average of the 128 SNR calcu-
lations at the epoch where the signal was injected as a function of the signal strength. This
is also shown in Fig. 4. We can see that the SNR is a linear function of /, as expected. This
fact helps form a confidence interval for the signal strength / in the event that a DM signal
is found.

To verify that our detection probability curve provides us with the correct value for

h>%PP e performed an auxiliary simulation. Here we injected signals of strength

h*>%PP — 0,045 ns for the 2010 clock network into a simulated data stream. For each signal
injection with random parameters, we calculate the detection statistic p. The histogram
of the detection statistic for 10° of these simulations is provided in Fig. 5. The resulting
histogram confirms that the distribution for Prob(o|Hj, & = h***P?) is indeed Gaussian.
Moreover, using a Gaussian distribution with the same mean and standard deviation as
calculated, we find that Prob(p > p*|Hj, h = h*>%P-P) = 0.946, almost exactly as expected.

A major factor associated with detection probability is the number of devices in the
network Np. A more complete discussion of this using the analytic results from Sect. 3.1
is provided in Sect. 3.5.1. Our analysis of detection probability using simulated GPS data
was continued by the varying the number of devices in the network Np. We injected signals
of varying strength into simulated homogeneous networks of 20, 30, and 50 white noise
devices. The percentage of events found as a function of the injected signal strength for
these networks is shown in Fig. 6. The average value of the detection statistics for each
signal strength and clock network is also provided in the same figure. It is clear that our
sensitivity to weaker signals improves as the number of devices in the network increases.
We have found that #*%P® oc 1/4/Np, as expected.

To complete our analysis of factors affecting detection probability, we tested the effect of
the template repository size M. To this end, we simulated a network of 30 homogeneous
devices with standard deviation o = 0.05 ns and injected events of varying strengths into
the data streams. The simulated reference clock had a standard deviation of o, = 0.006 ns.
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Figure 6 Detection probability and signal-to-noise ratio scaling with number of devices. Top panel: Detection
probability curves as a function of the injected signal strength h for simulated clock networks of varying size.
Each point represents the percent of injected events of strength h found for 128 trials. Here o represents the
standard deviation of the individual white noise devices that comprise the simulated network. We use o =0
in this simulation. Bottom panel: The average detection statistic value p of the 128 trials at the time the event
was injected

We then calculated detection statistics for the event using repositories of 256, 1024, and
4096 templates. The effect of template size on sensitivity in provided in Fig. 7 along with
the corresponding detection statistic. Notice that an increased template repository size
results in better sensitivity and larger SNR values. However, increasing the number of
templates results in an increase in the false positive rate [Eq. (27)] along with an increase
in computation time. To balance the false positive rate, detection probability and compu-
tation time, we typically use 1024 templates in our template repositories.

3.4 Parameter estimation
In the event that we find a DM signal in the data stream, our main goal is to estimate the
parameters associated with the DM object that caused the signal. Among the parameters
of interest are the incident speed, incident direction, event time, and signal strength. The
estimates we provide on these parameters correspond to the parameters associated with
the model-prescribed signal template that results in an SNR above the detection threshold.
In order to test the efficacy of our parameter estimation, we performed = 20,000 itera-
tions of injecting a DM signal of considerable strength (twice the level of the noise standard
deviation, o = 0.05 ns) with random parameters into a stream of simulated white-noise
data for Np = 30 clocks. For each iteration, we calculate the SNR for every epoch in the
simulated time window and store the event parameters that resulted in an SNR above the
detection threshold. These extracted parameters are then compared to the injected pa-
rameters to check the precision of our parameter extraction. Histograms depicting our
precision are shown in Fig. 8. Our resulting resolution was the following: £27 km s™! for
velocity, £0.057 radians for incident angle 6, and (though not shown in Fig. 8) £5 s for
the event time.
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Figure 7 Detection probability and signal-to-noise ratio scaling with number of devices. Top panel: Detection
probability curves as a function of the injected signal strength h for varying template repository sizes. Each
point represents the percentage of injected events of strength h found for 128 trials. Here o represents the
standard deviation of the individual white noise devices that comprise the simulated network. Bottom panel:
The average detection statistic value p of the 128 trials at the time the event was injected
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Figure 8 Matched-filter technique parameter estimation. Histograms of the difference in extracted and
injected event parameters from parameter estimation routine. Left: Incident direction angle @, resolution of
40,057 radians. Right: Event velocity v, 1o resolution of £27 km s™!

3.5 Placing limits

Suppose we do not observe a DM interaction signature in the GPS atomic clock data
stream. This means that there were no SNR values with a magnitude above the detec-
tion threshold p*. We may then establish the lower and upper limits on the DM signal
strength /. For the upper limit, suppose the largest SNR value we observed was pops. We
define the 95% confidence upper limit #°>%'V% as the minimum value of / for which

Prob(p > pobs|Hy) = 0.95. (29)

That is, we find the minimum value of / for which we would observe an SNR value larger
than pobs 95% of the time if there was in fact a signal of strength / in the data stream.
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The 95% confidence lower limit, #°°%L1 is defined similarly. Since the SNR p is an odd

function in jz, h5%LL = UL,

3.5.1 Maximum and minimum sensitivity given clock network characteristics

Before analyzing the data, we can project a minimum upper limit and maximum lower
limit on /4 by replacing pops — (0obs). Then, the minimum 95% confidence upper limit for
h is the minimum value of / for which

Prob(p > (pobs) |l = h*, Hy) = 0.95. (30)

We will denote the value of /1 that satisfies this requirement by /*. Assuming that events are
weak, i.e., well below the noise floor, it is clear by the nature of the SNR {pops) — 0. Once
again, the maximum lower limit is defined in a similar fashion, resulting in —/4* serving as
the maximum lower limit for the signal strength. The maximum possible exclusion limits
can be placed on the magnitude of / with 95% confidence by bounding it by /*: |h| < |*|.

For the idealized sensor network of Sect. 3.1, we are able to find the exact relation be-
tween /* and the network characteristics (Np, o, §, and n) using probability distribution
(26). Ultimately, we find that

W= Kl 1+§ (31)
O JNpNe\ 1+&+72

where K is determined by the level of confidence (for 95% confidence K = 1.64). Notice
that when & = Npo2/0? <« 1 (i.e., when cross-correlation is negligible) our sensitivity is
Ko /\/NpNe(1 + n2). However, when cross-correlation is considerable, or the network is
large (£ > 1), the sensitivity becomes Ko /«/NpNg. Thus, when the reference sensor is
noisy, its sensitivity encoded by the constant n = I'%/I"% is effectively suppressed.

We can also estimate our minimum sensitivity by projecting a maximum upper limit
and minimum lower limit on /% by using our detection threshold value as the maxi-
mum possible observed SNR value for which we do not claim a detection. Then, the
minimum 95% confidence lower limit is given by the minimum value of % for which
Prob(p > p*|H},) = 0.95. It should be clear that the maximum upper limit above is the same

195%, K25%DLP gcales in the

as the 95% detection probability signal strength DP. In this case,
same fashion as /#* above, but the constant of proportionality K increases as a function
of the false positive rate and template repository size (for less than 1 false positive in 20
years and 1024 templates in the repository, K = 8.2). Ultimately, this makes the minimum

sensitivity reach nearly an order of magnitude below the maximum predicted reach.

3.5.2 Projected sensitivity and discovery reach
Given a DM model type (domain wall, monopole, etc.), the signal strength / links to the
specific field parameters for those models. For a thin domain wall, the average strength 4

is related to the effective coupling and DM object parameters by
havg = hcreffﬁpDMdzT: (32)

in agreement with Ref. [13].
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If we assume that a specific coupling I'y dominates the effective coupling then I'.g —
kxTx in Eq. (32). The limit on /, |/1ayg| < k* translates into a limit on the coupling constant

for a particular coupling to a fundamental constant Iy

|*|
[Ix| <

—_—, 33
- hC,ODMTﬁGpKX ( )

where for idealized network /* is given by Eq. (31). This provides projected exclusion
limits on the effective energy scale Ay = 1//|I'x],

A
Ax>d %ﬂ\/—m{' (34)

Our projected discovery reach using #* for the 2010 GPS network (o ~ 0.02 ns, o &
0.006 ns, Np = 33 clocks, and n ~ 1), is plotted in Fig. 9 along with existing constraints.
This discovery reach includes the possibility of multiple DM interaction events occurring
within the time window of the search, which results in a sensitivity that is comparable to
that of optical clocks [15, 28]. Notice that the projected sensitivity reach in Fig. 9 exhibits
a sharp cutoff for domain-walls of thickness larger than 10* km and for average times be-
tween events larger than 7 = 20 years. This is due to the fact that DM objects of size larger
than 10* km will affect satellite clocks and the reference clock simultaneously, resulting in
a no detectable signal is the data stream. Moreover, for thin domain walls, we require that
the signal be present for just a single epoch. The regime for d > 10* km belongs to “thick”
domain walls (see Ref. [14]). The sharp cutoff for average time between events larger than
20 years comes from the fact that only two decades of archival data exists.

Also notice that for a fixed DM wall thickness, the increase in sensitivity from the previ-
ous GPS results is larger for shorter average times between interaction events. This is due
to the fact that the sensitivity of this approach is proportional to /N (see Sect. 3.1.1) while
previous GPS work did not consider the case of multiple events. Thus, as 7 decreases, the
expected number of events increases making the gap between previous GPS constraints
([13, 14]) and the predicted reach of this work larger—an effect that is exaggerated for
small 7.

4 Conclusion

In this paper we focused on detecting dark matter transients with networks of atomic
sensors. We formalized the desired characteristics of such networks and developed ap-
plications of matched-filter technique in the network settings. We extended the previous
literature to the practically important case of a network with cross-node correlations. This
setting is especially relevant to GPS atomic clock network. Our simulations have proved
the method’s signal detection and event parameter estimation capabilities.

While our paper deals with classical networks of quantum sensors, it is worth noting
recent proposals [48, 49] for massively entangled networks of atomic clocks. In these net-
works, entanglement is spread not only over an atomic ensemble at a single node, but also
over nodes. We leave generalization of our paper to entangled networks for the future

work when such entangled networks become a reality.
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Figure 9 Matched-filter technique discovery reach. Projected discovery reach for thin wall dark matter
objects using the matched-filter technique along with existing constraints. The red dotted lines represent the
least stringent and most stringent discovery reaches for the 2010 GPS atomic clock network. The shaded blue
regions are the constraints coming from astrophysics [47] while the salmon shaded regions are the
constraints placed by previous work from the GPS.DM collaboration [14]. The green shaded region contains
the constraints placed by optical clock experiments [28], while the yellow region contains the constraints
from a global terrestrial network of laboratory clocks [15]

Appendix 1: The network covariance matrix and its perturbative inversion
A.1 Properties of the network covariance matrix
The covariance matrix E is given by the ensemble average

Ejf’ = (n/n}) = Ewpon, (35)
where #{ is the noise in the datastream of the ath device at the temporal grid point (epoch)
J»and (nf) = 0 is assumed. Here subscripts j and / range over epochs and the superscripts a
and b span network sensors. When a = b the covariance refers to a single instrument, while
cross-node correlations are given by the a # b elements. The matrix Eﬁb can be visualized
as a 2D matrix with super-indexes (aj) and (bl): E(,p). The dimension of the matrix is
determined by the number of devices in the network (excluding the reference clock) and
the number of points in data window, Np x Jw . Because the data streams are stationary,
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the covariance matrix only depends on the lag |j — /|. From the definition (35), it is apparent
that the covariance matrix is symmetric with respect to swapping the (aj) and (b/) super-
indexes. Further, the covariance matrix is positive (semi-) definite.
For the GPS constellation, as discussed in Sect. 1.4, the noise component entering the
definition (35) can be represented as
nt =ef -, (36)

where el‘-’ is the individual clock noise and ¢; is the contribution from the reference clock
noise common to all data streams. Then

Eﬁb = (eqef’) - <e;’c1) - (cjef) + (cjcy)

= (¢fe]) + (i), (37)

as the reference and the node clock noises are uncorrelated.

While the definition of the covariance matrix (35) explicitly refers to noise, in practice
[14] we use data a’j’ to compute this matrix (this assumes that DM events are exceedingly
rare, so that most of contributions into the above values comes from the intrinsic noise of
the network). Notice that in our approximation, the covariance matrix does not depend
on the spatial geometry of the network—however it does depend on the network com-
position. For example, for GPS, if the reference clock is switched to a different clock or a
satellite clock is swapped, the covariance matrix is affected and needs to be recomputed.

To gain an insight into the structure of the covariance matrix, consider a simplifying
case: suppose the network is comprised from white-noise devices (including reference
clock). Then

Ef =088 + 028, (38)
where 02 and o2 are variances for the individual nodes and the reference clock respec-

tively. The common noise source contributes to all the clocks. For example, for Np = 2
nodes and Jy = 3 time window, the covariance matrix reads

012 0O O
0 of 0 O
0 0 of
E=
o} 0 0
0 0 of O
0 0 o}
o2 0 0| |62 0 O
0 o2 0 0 o2 0
0 0 o? 0 0 o?
+ (39)
o2 0 o 0
0 o2 0 0 o2 0
0 0 o2 |0 0 o2

Page 24 of 33
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The block structure of the covariance matrix is apparent. Each block corresponds to indi-
vidual sensors and the elements inside each block refer to epochs.

For colored noise sensors each block is assembled from elements of the auto-correlation
functions A,(jj - I|) = (efe?)/a; and A, (|j - I]) = (¢je;) /o2, so that Eq. (37) becomes

Ef =0l Al(lj - 1)6% + o2 A, (I - 1I). (40)

Thereby, the covariance matrix is a block matrix: the block diagonals are composed of the
sum of cross-node and individual device auto-correlation functions while the off-diagonal
blocks contain the cross-node correlation. By the definition of the auto-correlation func-
tion, |A,« ([f—])] <1, and typically inside each block the elements with larger lag (further
away from diagonals) become smaller. A, (0) = 1 by definition.

Based on these observations, and to aid in computer implementation, we can introduce
blocks A”’ and X“, so that the corresponding blocks of the covariance matrix E* = A% +
X%, with each block internally assembled as (cf., Eq. (40))

(Aab)ij = UZA“(U - i|)8ab’ (41)

(X)), =0 2A,(Ij - il). (42)

ij
Because X“® does not depend on the particular sensor, we simply refer to all such blocks
as X, ie, X =X.

We are interested in the inverse of the covariance matrix required for computing the
SNR statistic (20). For our white noise example (39), the inversion of the first matrix is
trivial as it is diagonal. The second (x-node covariance matrix) contribution introduces
off-diagonal matrix elements making the inversion difficult. Moreover, the x-node co-
variance matrix is singular.

It is instructive to rewrite the definition of the inverse, EE™! =1, in our notation,

ZE(ai)(bj) (E_l)(bj)(a’z”) = ZEZ'b (E_l)f; = ‘SM/‘SH” (43)
bj bj

We derived the covariance matrix inverse in a closed form for a special case of white
noise devices (38),

Ly (e L E
ey = (0 - o) @

where & = Npo2/02. One can verify directly that Eq. (43) is satisfied. The inverse retains
the same block structure as the original matrix (38). Its derivation is outlined in the fol-
lowing section.

Additionally, certain simplifications can be obtained using discrete Fourier transforma-
tion (DFT) (see, e.g., Ref. [26], where DFT for a network covariance matrix was carried
out). In DFT, the transformed matrix becomes block-diagonal, each block being of dimen-
sion Np, thus simplifying the inversion procedure. However, this approach also requires
DFET of the sought DM signal. In our work, this signal is non-oscillatory making the in-
terpretation of the DFT procedure non-transparent; we leave the DFT implementation
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for future work if the computational speed-up is needed. In this work, the full covari-
ance matrix (40) is inverted numerically using Cholesky decomposition. Below we outline
a perturbative method which holds in the limit when the noise of the reference sensor
is well below that of the network sensors. We used this perturbative inversion for older
(pre-2015) GPS data, where this approximation remains valid.

A.2 Perturbative inversion
This approximation to inverting the network covariance matrix was used in our earlier
GPS.DM work [14] and we will detail it below. It relies on the von Neumann series expan-

sion,

(G+1F) =G ) (-1)A"(FG)"

n=0

~G'-AG'FG!, (45)

where G and F are matrices and A is the expansion (book-keeping) parameter. This identity
can be proven by matching terms of the same power of A in the definition (G + AF)™1(G +
AF) = I. The series converges as long as the absolute values of eigenvalues of the product
matrix FG™! are smaller than 1/|A|.

Returning to our covariance matrix E, we make the following identification using our
block decomposition (42)

Gab _ Aaasub’ (46)

F* =X, (47)

and A = 1. Notice that G is a block-diagonal matrix (inverse of such a matrix is again a
block-diagonal matrix composed of inverses of original blocks).

Now we illustrate this perturbative technique for a network of white-noise devices. Here
the covariance matrix is given by Eq. (38). Then the above decomposition leads to Gj“lb =
0288, Fi? = 025 Then

2
(BN = (%5“" - %)&,, (48)
0 020}

which are the two leading terms in the expansion of the exact result (44) in £. Nominally,
the contribution of the second, perturbative, term is suppressed when o, < min,(o,),
i.e., this approximation can only be used for networks of sensors that have noise levels
far greater than that of the reference sensor. In cases when the reference sensor noise is
comparable to that of the network sensors, the approximation breaks down and either an
exact inversion must be used or mitigation techniques must be implemented to eliminate
or minimize the reference sensor contribution to the individual sensor data streams (see
Sect. 3.2.1).

For the general case of colored noise sensors, we return to our block decomposition (42)
of the network covariance matrix and focus on a single block,

(EN” ~ (61" - (6F6)™.
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Because G is block-diagonal, (G™1)* = §**(A*)~1. To simplify the second term in the ex-
pansion, recall the product rule for block matrices,

Np
(AB)* = > " A“B®. (49)
c=1

This rule parallels the conventional matrix multiplication with individual matrix elements
replaced with blocks. Then

(E)" s (a) ™ - () "X (A7) (50)

Further approximation may consist in neglecting off-diagonal matrix elements of the
x-node correlation function in the above expression [14], X = o'2I. In this secondary ap-

proximation,
(E—l)ﬂb ~ S”b( au)—l —Ui( aa)—l(Abb)—l‘ (51)

This is the approximation used in our calculations for pre-2015 GPS network generations.
We also point out that the exact covariance matrix inversion (44) for our idealized network
of white noise sensors can be derived by following these block-matrix steps and summing
the von Neumann series (45) to all orders.

A.3 Performance comparison between exact and perturbative inversion

In order to utilize the perturbative inversion outlines in the above section, we require
that the reference device noise be sufficiently smaller than that of the node devices. To
verify the inadequacy of the perturbative inversion for networks with a noisy reference
sensor, we simulated signal-free data for a homogeneous network of 30 white noise node
devices for various reference device noise levels (o, /o =0, 0.1, 0.5, and 1). We then calcu-
lated standard deviation of ~ 25,000 template-specific SNR values for the simulated data
streams using both the exact inversion and the approximate inversion of E. The results of
these simulations are provided in Table 3. We find that the results using the perturbative
inversion are nearly identical to the exact inversion for small levels of cross-correlation
(0x/o < 0.1). However, when the noise of the reference sensor is large, the approximate
inversion behaves poorly compared to the expected value of o,,. Note that the deviations

from o, = 1 in the exact inversion column can be attributed to sampling error.

Appendix 2: Derivation of SNR for idealized network
Consider a homogeneous network of N devices each with Gaussian white noise profiles
with zero mean and standard deviation o, along with a reference sensor also with a Gaus-

Table 3 Comparison of performance of exact numerical inversion of the covariance matrix and the
perturbative inversion for various degrees of cross-correlation with simulated white noise data. The
computed values for o, are to be compared with the exact analytic result of o, = 1, see Sec. B.1

ox/0 op (Exact E7) op (Approx. E™")
0.0 0.99 1.00
0.1 1.04 0.99
0.5 1.00 11.15

0.9 0.99 64.07
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sian white noise profile with a standard deviation of o« and also with zero mean. That

is,
ej ~ Normal (0, 02) and  ¢; ~ Normal(0, oz).
Data that contains a dark matter transient signal will be of the form
dj =ej—cj + hs, (52)

where ¢; is the node sensor Gaussian noise at epoch j (with variance o2), ¢; is the reference
sensor Gaussian noise at epoch j (with variance 0%), and 5; is the “unit-ized” DM signal
which is scaled by the DM signal strength % (the strength of the signal felt by the network
sensors). Since the network is assumed to be homogeneous, % is the same for all network
sensors, though we allow for the possibility of the strength of the DM interaction with the
reference device to be different than that of the satellite nodes. In this case, the reference
sensor experiences a signal of strength 4% from the same event in which the network sen-
sors experience a signal of strength /4. Then, the unit signal for a sensor a will be of the
form (in the case that % > 0 and the network sensor interacts with the DM wall prior to
the reference device)

s“=1{0,...,0,1,0,...0,-1,0,...,0}, (53)
where 1 = #®/h. In order to calculate the detection statistic mean [Eq. (24)] and its variance

[Eq. (25)], we must utilize the inverse of the covariance matrix from Appendix 1. This is
given by

1 ub_i’ ”b_i S
ey = (- o) 2

where & = Npo2/o2.

Recall the definition of the template-specific SNR from Eq. (20), and suppose that
the template repository contains the exact signal that lies in the data stream, i.e., s, = §
for some signal template in the repository. Then, the detection statistic is given by p =
d"E-'s/VSTE s, Thus, calculating the expectation value of p and its variance will consist
of calculating s” E~'5 as well as d”E~'5.

Using the thin wall template from Eq. (53), the vector-matrix-vector product is com-
puted as the sum

Np Jw

Te1- 1 1 & 1\
Tp-1g _ a_— o ab _ _— b
FEs =)D 5 (o

ab jl

where Np is the number of network sensors and Jy is the number of epochs in the given
time window. Factoring out 1/0%, one can sum over the terms separated by the subtraction
INLD 1%55’. The sum in (1) is
just the sum of the squares of all the signal terms from Eq. (53) multiplied by the number

independently: (1) sum over Ej’ jZS“th and (2) sum over —375}-

of devices. Since the signal terms are all zero except at epochs where the satellite clock a
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and the reference clock R are affected, the sum simplifies immensely. Now, to compute the
sum in (2), it must be dissected further. The Kronecker delta §; in (2) collapses the sum
over / and we split the sum in (2) based on whether the signal terms come from distinct

sensors or not

Np Jw Np Jw Np Jw
T L e (LD X 2w e

a,b#a j

Notice that the first term on the right side of this equation is the same as (1) above. Now,
since every clock experiences the same signal term at the epoch when the reference sen-
sor interacts with the DM wall (epoch jr), the second term on the right can undergo yet
another dissection

Np Jw Np
> Y- 3% (5 e ). 0

abia j a,ba J#R

The first term in parentheses on the right side is simply 52. Since the signal template values
atall epochs consists of entirely null values besides the epochs where the individual sensors
and the reference sensor interact with the DM wall, the second term on the right is only
non-zero when there are disparate sensors that are affected by the DM object at the same
epoch. We denote the ratio of network sensors that are close enough spatially to interact
with the DM wall within the sampling time interval 7y as A. For GPS, tp = 30 s and at
galactic velocities, this “fractional degeneracy” factor A &~ 0.2. Ultimately, we arrive at

S [(1 )N - 15_5((1 o)+ (No-D)(n2+ x))}. (57)
For a time window large enough to contain multiple non-overlapping events, it is clear
that s”E~'s — Ngs'E~'s, where N is the number of events contained within the Jy time
window.

To derive d” E~'s, we recall that each network sensor data term is the sum of noise (com-
prised of node sensor noise and reference sensor noise) and a signal [Eq. (52)]. Then,

d"E's=hsTE's +nTE 5, (58)

where the elements of n are given by Eq. (36). Since the elements of n are Gaussian ran-
dom variables with zero mean, the quantity n” E~'s will also be Gaussian distributed with
a mean of zero. Furthermore, since sTE-'5 is a constant given by Eq. (57), we find that
d”E~'5 is Gaussian distributed with a mean of /5’ E-'s and variance equal to the variance
of n”E~'s. This implies that the nature of the SNR detection statistic from Eq. (20) is Gaus-
sian as well, with the same mean and standard deviation as d” E~'5 scaled by 1/v sTE s,
Ultimately, using Eq. (57), the mean of the SNR when a signal is present is given by

h/ND(1+n2+é)—$
Mp = —

o 1+¢&

%h«/]\TD 1+n2+& (59)
o 1+¢
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where we dropped the dependence on the fractional degeneracy factor 1. The variance of
the SNR,

,  Var{d"E's)

= (60
P ETE—IE )

is computed in Sect. B.1, where we prove that (73 =1 in the most general case; this holds,
in particular, for our idealized network.

B.1 SNRvariance
The goal of this section is to prove that

Var{d"E~'s} =5"E"'s,

implying that the SNR variance (60) is 03 = 1. The proof holds regardless of the nature
of the covariance matrix—for example it applies to colored noise network with arbitrary
cross-node correlations.

Explicitly,
Var{d"E"'s} = ((n"E"'s)(n"E""3)),

where n is the intrinsic noise. To streamline notation, we will use Greek letters to index
combinations (a, i), where as in Sect. 1 the first index (2) enumerates the sensors and the
second index (i) spans epochs. Then,

e {(Fe ) i)

BB

ZZ arSar (nartp) (E7) 35

ao’ B’

By the definition of the covariance matrix, (n,71p) = Eqp. Further, 3, Eqs(E™")gpr = Sup,
which reduces

Var{d"E's Zsa Y),oSe =S E'S,
as we intended to prove. From Eq. (60), it follows that %2 =1.

Appendix 3: Inverse transform sampling (importance sampling)

Consider a prior probability density function on one of the DM model parameters p(0)
(e.g., the standard halo model velocity distribution). The cumulative distribution function
(CDF) for the prior is defined as

C(u):/ p6)de. (61)

o0

We can then define g(«) = # = C~!(u). This is particularly useful for sampling from known
probability distributions: if # is randomly drawn from a uniform [0:1] distribution, then
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the 6 = g(u) values will be drawn from the prior p(6) distribution. This has the affect of
concentrating the sampled points in the regions where p(0) is large (and thus naturally
reducing the probability of false-positives where p(0) is small). Thereby, the priors are
taken into account implicitly in the template generation procedure. Note that this just the
standard method of inverse transform sampling.
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