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Abstract
We consider the interaction of a magnetically trapped Bose–Einstein condensate of
Rubidium atoms with the stationary microwave radiation field sustained by a
coplanar waveguide resonator. This coupling allows for the measurement of the
magnetic field of the resonator by means of counting the atoms that fall out of the
condensate due to hyperfine transitions to non-trapped states. We determine the
quantum efficiency of this detection scheme and show that weak microwave fields at
the single-photon level can be sensed.
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1 Introduction
Sensing extreme low-intensity radiation fields in the quantum regime requires high-
efficiency, low-noise detectors. In the case of the optical wavelength range, single-photon
detectors are widely available. The thermal radiation at optical frequencies is naturally
suppressed at room temperature. Moreover, the electric dipole transitions in atoms or in
semiconductors give rise to large coupling to the electromagnetic field and, ultimately, to
high quantum efficiency. By contrast to the optical case, photon counting of microwave
radiation is still a formidable task. It is possible to count microwave photons of a res-
onator, for example, by means of Ramsey interferometry with highly-excited circular Ry-
dberg atoms [1]. Analogous schemes have been demonstrated for microwave waveguide
resonators integrated in a circuit with strongly coupled superconducting non-linear el-
ements [2–7]. In these chip-based circuits the quantization of flux and charge leads to
quantized electric and magnetic fields at microwave frequencies, in accordance with the
longitudinal dimension of the device [8].

There are approaches to photon detection, in the microwave frequency regime too,
which are based on the same principle as that of commonly used optical detectors, i.e.,
the absorption by a ground-state material probe. In this regime, the naturally occurring
transitions in material quantum systems are magnetic ones, which are weaker than the
electric dipole transitions typically by a factor of the fine structure constant α = 1/137.
One promising candidate is the spin degree of freedom of point defects in nanocrystals,
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which provides for a portable, well localised probe of the field [9, 10]. Alternatively, hy-
perfine transitions of atoms in the electronic ground state can be considered [11]. In this
approach, the quantum efficiency of the detection can benefit from the collective enhance-
ment gained by using a degenerate atomic cloud, i.e., a Bose–Einstein condensate (BEC)
of trapped atoms. The price to pay is that the condensate is not so well localised as a single
spin or atom, nevertheless, it is still orders of magnitude smaller than the corresponding
wavelength of the radiation. The trapped BEC is an ideal probe of weak external fields
due to the fact that all their relevant degrees of freedom can be controlled with unprece-
dented precision [12, 13]. That is, it approaches closely the ultimate quantum-noise limit
requested from a detector.

In this paper we evaluate the detection capabilities of a BEC in the microwave regime.
In particular, we investigate whether a microwave field at the single-photon level can be
sensed and translated to a detectable signal by means of the atomlaser scheme [14, 15] for
magnetic noise measurement [16–18]. It has been first proposed in Ref. [19] that strong-
coupling between ultracold atoms and the magnetic field of a waveguide resonator can
be achieved. Recently, the near-field microwave radiation of a coplanar waveguide res-
onator (CPW) has been successfully coupled to ultracold atoms [20]. In this experiment
the light-shift of a hyperfine transition induced by the strongly driven resonator mode in
the large photon number regime was detected by Ramsey interferometry and the possi-
bility of coherent control of the hyperfine states was demonstrated by directly observing
resonant Rabi oscillations. Here we consider the opposite, weak field limit and restrict our
aim at the detection of a feeble radiation field. To this end, we resort to the atomlaser de-
tection method which relies on counting single atoms outcoupled by the measured field
and falling out of the trap due to gravity [14, 18].

The paper is organized as follows. In Sect. 2 we consider a setup where the condensate is
situated at the antinode of the microwave magnetic field under the microwave resonator,
so that the outcoupled atoms can fall out of the trap due to gravity. Section 2.1 is devoted
to the description of the detection scheme. Section 2.2 overviews the geometry and the
description of the coplanar waveguide resonator. In Sect. 3 we consider the process of
sensing the magnetic field of a single photon in the resonator. First, we give an approxi-
mation for the magnetic field when there is, on average, a single photon in the resonator,
and present an analytical formula for the number of outcoupled atoms. Then, in Sect. 4
we consider typical parameters for the BEC and the CPW for the proposed setup and es-
timate how many outcoupled atoms would be found per a single microwave photon in a
given detection volume assuming perfect ionization detection of the atoms. We conclude
in Sect. 5.

2 The setup
The principle of the detection relies on the continuous atomlaser scheme [18]. Atoms are
localised in a static magnetic trap and are prepared in a Bose–Einstein condensate in a
given hyperfine state. Photon absorption from a driving microwave field leads to resonant
hyperfine transitions from the trapped to an untrapped state of the atoms. Counting the
outcoupled atoms [21], once spatially separated from the trap, characterises the strength
of the magnetic field component of the microwave radiation field and gives information
on the photon number. A possible geometry is sketched in Fig. 1. In order to enhance the
coupling, we consider the near-field of a microwave coplanar waveguide resonator as a
source of the radiation field.
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Figure 1 Setup. Sketch of the setup to sense the magnetic field of a CPW with a BEC. The ultracold atom
cloud is situated at the center of the central conductor of the waveguide resonator. The geometry of the CPW
ensures that its magnetic field is polarized in the x direction at the location of the BEC. The magnetic field Bx (t)
of the CPW oscillates in time with an angular frequency of ωCPW that is resonant with a magnetic dipole
transition of the BEC atoms, and induces transitions from the trapped state into an untrapped one

2.1 The Bose–Einstein condensate
We consider ultracold 87Rb atoms prepared in the hyperfine manifold F = 2 of the ground
state 52S1/2, placed in an external magnetic field B(r) in the presence of gravity. The to-
tal atomic angular momentum F̂ interacts with the magnetic field according to the Zee-
man term HZ = gFμBF̂B(r), where μB = e�/2me is the Bohr magneton, gF is the Landé
factor, and F̂ is measured in units of �. The dominant component of the magnetic field
B(r) is a homogeneous offset field Boffs pointing along the z direction. The eigenstates
of the spin component F̂z, labelled by mF = –2, –1, 0, 1, 2, are well separated by the Zee-
man shift �ω0 = μBBoffs/2 (see Fig. 2), the mF = 2 level being the highest in energy (due
to the fact that gF=2 = 1/2). The inhomogeneous component of the magnetic field B(r)
creates a harmonic trapping potential VT(r) = M

2 [ω2
xx2 + ω2

y y2 + ω2
z z2] around the mini-

mum of the total magnetic field in which we assume atoms to be confined in the low-field
seeking state |2, 1〉. Here ωx, ωy and ωz are the trap frequencies in the x, y, and z direc-
tions, respectively, and M is the atomic mass. In the presence of gravity, the atoms are
still under the effect of an effective harmonic trapping potential V eff

T (r) = VT(r) + Mgy =
M
2 [ω2

xx2 + ω2
y (y + g/ω2

y )2 + ω2
z z2] – Mg2/2ω2

y , where g is the gravitational acceleration. As a
result, the trapped atomic cloud is displaced from the minimum of the magnetic field into
the minimum of this effective potential, –g/ω2

y , which is the so-called gravitational sag.
The homogeneous offset magnetic field splits the magnetic sublevels of the F = 1 man-

ifold as well (see Fig. 2), the splitting between consecutive levels also being �ω0 (here the
mF = –1 level is the highest in energy as gF=1 = –1/2). As the untrapped state of the atoms,
we select the state |1, 0〉, as it is insensitive to the offset and trapping magnetic fields, and
atoms in this state simply fall out of the trap due to gravity. In our setup in Fig. 1 we assume
that the dominant component of the CPW’s magnetic field is Bx(t) (cf. Sect. 2.2). Bx(t) is
orthogonal to Boffs and oscillates in time with an angular frequency of ωCPW, thus, it can
induce transitions between the trapped hyperfine state |2, 1〉 and the untrapped |1, 0〉 state
(as indicated by the green arrow in Fig. 2). We note that there are other possible hyperfine
transitions in the ground state manifolds, with a trappable inital state and an untrapped
final state, as discussed in Appendix A. Our choice is motivated by the fact that the un-
trapped state |1, 0〉 can fall out of the cloud below the trap due to gravity and is therefore
more easily detectable by atom counting techniques, than a state that is repulsed by the
trapping magnetic field.



Kálmán and Domokos EPJ Quantum Technology             (2020) 7:2 Page 4 of 13

Figure 2 Level scheme of 87Rb. The Zeeman splitting of the 52S1/2 ground state of 87Rb, the harmonic
trapping potential for the atoms in the state F = 2,mF = 1, and the different frequencies involved in the
process

In the mathematical description it is convenient to choose the origin of the y axis such
that the single-particle potential for the atoms in state |1, 0〉 be given by V|1,0〉 = Mgy,
corresponding to the fact that the origin coincides with the center of the atomic cloud.
Then the total single-particle potential affecting the trapped atomic state is given by
V|2,1〉(r) = �ωt + VT(r), where ωt = Ω + ω0 + Mg2

2�ω2
y

is the transition frequency at the center
of the cloud in the presence of gravity, Ω = 2Ahfs ≈ 2π × 6.8347 GHz being the hyper-
fine splitting of the 52S1/2 state, and VT(r) is the harmonic part of V eff

T in the transformed
coordinate system which now has the same form as the trapping potential without gravity.

In the magnetically trapped |2, 1〉 state, we assume a pure Bose–Einstein conden-
sate (BEC) described by the second-quantized field operator Ψ̂|2,1〉(r, t) =

√
N0ΦBEC(r) ×

e–i(ωt+μ/�)t , where the wavefunction ΦBEC is the stationary solution of the Gross–Pitaevskii
equation with chemical potential μ and atom number N0. Atoms in the state |1, 0〉, which
can be described by the field operator Ψ̂|1,0〉(r, t) are only affected by gravity and, due
to collisions with the condensate atoms, by the influence of the mean-field potential
N0gsΦ

2
BEC(r), with gs = 4π�

2as/M, and scattering length as (as = 5.4 nm for 87Rb).
We consider a setup where at the location of the BEC the microwave magnetic field is

quasi-homogeneous in the x direction, and oscillates in time with a frequency of ωCPW, i.e.,
Bx(t) = Bx cos(ωCPWt). As discussed in Appendix A, in our case, it is the electron spin mag-
netic moment which determines the coupling of the atomic magnetic moment with this
magnetic field, so that the corresponding perturbation can be written as VI = gSμBBx(t)Ŝx,
where Ŝx = (Ŝ+ + Ŝ–)/2, Sx being the x component of the electron spin operator, with S+ and
S– the spin raising and lowering operators. We assume that initially no atoms populate the
|1, 0〉 state. To leading order in the small quantum field amplitude Ψ̂|1,0〉, the equation of
motion in rotating-wave approximation reads

i�
∂

∂t
Ψ̂|1,0〉 =

[
–

�
2∇2

2M
+ Mgy + N0gsΦ

2
BEC(r)

]
Ψ̂|1,0〉 – �ηΦBEC(r)ei
·t , (1)
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where η =
√

3μBBx
√

N0/4
√

2� and 
 = ωCPW – ωt – μ/� is the detuning of the microwave
frequency from the transition frequency at the center of the atomic cloud. Here we consid-
ered the BEC as an undepleted reservoir, i.e., the quantum fluctuation δΨ̂|2,1〉 was neglected
in comparison with ΦBEC as it corresponds to a second-order process. Furthermore, we
assumed that the quantum field components in the |1, mF �= 0〉, or the |2, mF �= 1〉 sublevels
are also negligible when the |2, 1〉 → |1, 0〉 transition is on resonance with the microwave
frequency as they are detuned by 
ω ≥ �ω0. Finally, we neglect the transitions |1, 0〉 →
|2, 1〉 back to the condensate, originating from the matrix element 〈2, 1|Ŝ+|1, 0〉 �= 0, be-
cause we assume that the atoms fall out of the trap before completing a Rabi cycle. Within
these approximations, the dynamics of the outcoupled field Ψ̂|1,0〉(r, t) is decoupled from
the other Zeeman states.

The solution to the partial differential equation (1) is outlined in Appendix B. Here we
note that the outcoupled atom field Ψ̂|1,0〉 can be constructed by using plane waves in the
horizontal directions, and the solutions of the quantum mechanical free-fall problem, i.e.,
the Airy functions, in the vertical direction. The absolute square of the outcoupled atom
field describes the local density of atoms at a position r, even if the underlying Airy-type
of wavefunctions are not normalizable, and, according to Eq. (10) can be expressed as

N(r) =
〈
Ψ̂

†
|1,0〉(r)Ψ̂|1,0〉(r)

〉
=

(
�η

Mgl0

)2

D(r), (2)

where l0 = (�2/2M2g)1/3 is the natural length of the Airy function. D(r) is a density function
in coordinate space with the dimension of 1/volume, and it accounts for the fact that in
the outcoupling process the energy of the microwave magnetic field is distributed among
the three coordinate directions in the outcoupled atom field. Its value for a given detuning

 between the frequency of the microwave field and the transition frequency of the atoms
inside the cloud, is mainly affected by the overlap between the Airy function and the BEC
wave function (the latter being dependent on the geometrical shape of the cloud), and the
distance of the spatial location r from the atomic BEC as can be seen from Eq. (11) and
(12). In Ref. [18] it was shown that for a spherical BEC of radius a 
 l0, D(r) is maximum
when 
 ≈ 0, i.e., when the detuning of the frequency of the outcoupling magnetic field
from the transition frequency at the center of the BEC is zero, therefore, in what follows,
we will focus on this case.

2.2 Coplanar waveguide resonator
We consider a (superconducting) half-wavelength coplanar waveguide resonator (CPW)
of length L with a central conductor strip of width S and two ground electrodes of width
w at a distance W from the central conductor situated on a substrate of thickness h and
relative permittivity εr (see Fig. 1). The electric and magnetic fields of the resonator oscil-
late in time with a frequency of ωCPW, with their maxima shifted in space: The magnetic
field has the largest amplitude at the center of the central conductor, where the electric
field is zero, and zero at the two ends, where the electric field has a maximum amplitude.
For the amplitude of the components of the magnetic field analytic formulas obtained
by the quasistatic approximation are presented in Appendix C. Here we assume that the
(half ) transversal size of the CPW, b = S/2 + W + w, is much smaller than the wavelength
λ = 2πc/ωCPW of the microwave field of the cavity (c being the speed of light in vacuum). In



Kálmán and Domokos EPJ Quantum Technology             (2020) 7:2 Page 6 of 13

this case, the z component of the magnetic field, Bz(t), can be neglected compared to the
other components (see Eq. (13)). Bx(t) may be considered to be the dominant component
of the magnetic field around the center of the central conductor, as its amplitude Bx has
a cosine shape in the transversal direction, and is maximum at the center. The amplitude
of By(t), on the other hand, has a sinusoidal dependence on the transversal coordinate,
is zero at the center, and grows approximately linearly in the transversal direction in the
close neighborhood of the center, where, the amplitude Bx, due to its cosine shape, may
be approximated to be constant. In our setup, we assume that the BEC cloud is situated
under the center of the CPW (see Fig. 1). Thus, we neglect the effect of By(t) on the atoms
as well as the inhomogeneity of the amplitude Bx, and approximate the latter with its value
at the center of the BEC cloud. These assumptions are plausible as the atom density in the
condensate is the largest around the center of the cloud and decreases rapidly in the radial
direction.

As we have shown in Sect. 2.1, in order to effectively couple the CPW to the hyper-
fine transition |2, 1〉 → |1, 0〉 of the BEC atoms, the microwave frequency of the resonator
should be resonant with the transition frequency of the atoms at the center of the BEC,
corresponding to 
 = 0, i.e., ωCPW = ωt + μ/�. Due to the effect of gravity, the transition
frequencies at the top and bottom of the atom cloud are detuned by –Mga/� and Mga/�
from ωCPW, respectively, with a being the semi-axis of the condensate in the direction of
gravity. As long as the corresponding bandwidth 2Mga/� is larger than the linewidth of the
CPW resonator mode, the full power spectrum of the field mode contributes to the out-
coupling of the atoms. In the case we consider, there is an order of magnitude difference,
which justifies the monochromatic approximation which was assumed when we derived
Eq. (2).

As the mode wavelength corresponding to ωCPW is given as λg = λ/√
εeff = 2πc/(ωCPW

√
εeff ), a CPW of length L = λg/2 is needed. We note that the effec-

tive dielectric constant εeff can be aproximated by analytical methods using the conformal
mapping technique [22] cf. Appendix D.

3 Results: the quantum efficiency of the sensing process
In the proposed setup the microwave field is generated as a near-field of an externally
driven coplanar waveguide resonator. In this geometry, the resonator can significantly en-
hance the local microwave field strength at the position of the atoms. The photons are
transmitted through the waveguide resonator at a rate κ = ωCPW/Q, with Q being the qual-
ity factor of the CPW. We will consider the “bad-cavity” regime in which the driving and
the transmission loss of photons from the resonator dominates the dynamics due to the
coupling to the atoms (see Sect. 4). Therefore, one can safely neglect the back-action of
the atomic hyperfine transitions on the CPW mode. The microwave field is in the steady-
state set by the driving amplitude. We will assume that the field is in a coherent state with
a mean photon number 〈nphoton〉 = 1.

In order to determine the number of outcoupled atoms corresponding to a mean photon
number 〈nphoton〉 = 1 in the microwave cavity, we estimate the maximum of the inhomo-
geneous magnetic field as the field corresponding to a single energy quantum �ωCPW in
the microwave cavity

|Bmax| =

√
2μ0�ωCPW

Vc
, (3)
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since when the magnetic field is maximal (in time), then all of the photon’s energy is carried
by the magnetic field, cf. Sect. 2.2. Using Eqs. (13) we can estimate the mode volume Vc =∫

V d3r|B(r′)|2/|Bmax|2 of the CPW cavity to be Vc ≈ Lb2/π .
Alternatively, one can estimate |Bmax| based on the circuit quantum electrodynamical

(CQED) formulation [8], where the amplitude of the voltage operator is given by V0 =√
�ωCPW/CCPW, with CCPW being the total capacitance of the cavity. Substituting this into

Eqs. (13) and using Eq. (20) the maximum of the magnetic field can be written as

∣∣BCQED
max

∣∣ =

√
2
κ0

s1

√
2μ0�ωCPW

Lb2 . (4)

We will show that for the physical parameters to be considered in our calculations, the
above two estimations are in good agreement.

In order to maximize the coupling between the two systems, the BEC cloud needs to
be placed close enough to the surface of the CPW, while avoiding the effect of van der
Waals forces on the trapped atoms. The latter can be achieved if the distance d0 between
the BEC and the surface of the CPW is d0 � 1 μm [23, 24]. Then, according to Eqs. (13),
at a distance of d > (d0 + a) in the negative y′ direction, i.e., at the center of the BEC (y =
0), the magnitude of the magnetic field is decreased by the factor e–dγ1 ≈ e– πd

b . Here we
assumed that γ1 ≈ π/b, which is valid for b � λ. Therefore, we estimate the amplitude of
the magnetic field to be

Bx = e– πd
b |Bmax|. (5)

In an experimental situation, the outcoupled atoms can be counted by ionizing a part of
the beam of atoms with lasers. This defines a detection volume Vd. To get the number of
outcoupled atoms in this volume, we need to integrate N(r) of Eq. (2) over Vd

N =
N0

VBEC

(√
15μB

8Mgl0

)2

B2
x

∫
Vd

D(r) d3r, (6)

where D(r) = D(r)/(μ/Ngs) is dimensionless and we used the fact that the chemical poten-
tial of a condensate can be written as μ = 5N0gs/(2VBEC) in the Thomas–Fermi approxi-
mation, where the BEC wave function is given by ΦBEC(r) =

√
[μ – VT(r)]/N0gs. In the fol-

lowing, we will assume that the ionization detection has unit efficiency, i.e., the number
of atoms in the above formula can be considered the detection signal.

4 Discussion: numerical estimation
Let us consider a spherical condensate of radius a = 5 μm with N0 = 2 × 104 87Rb atoms,
which corresponds to a trapping frequency ωx = ωy = ωz= 2π × 84 Hz and a chemical po-
tential μ/� = 2π ×0.75 kHz. The hyperfine splitting of the atoms is Ω ≈ 2π ×6.8347 GHz
and in a z-directional offset magnetic field B0 = 0.1 mT the Zeeman splitting of the mag-
netic sublevels is ω0 = 2π × 0.7 MHz, and therefore the frequency of the cavity needs to
be ωCPW = 2π × 6.8354 GHz.

We assume that the CPW is constituted by Al-film conductors on a Sapphire substrate
(ε = 11.5) with dimensions S = 15 μm, W = 10 μm, w = S/2, b = 25 μm, and h = 500 μm.
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Such CPW’s have been measured to have a quality factor of Q = 1.72 × 106 for low power,
i.e., 〈nphoton〉 ≈ 1 [25]. The effective permittivity is determined to be εeff = 6.25, and the
length of the cavity is L = 8.778 mm. Then, with a distance of d = 7 μm between the center
of the BEC and the CPW, the amplitude of the outcoupling magnetic field can be approx-
imated to be Bx ≈ 2.56 nT. (Note that for the same parameters, the estimation based on
the circuit QED result gives |BCQED

max | ≈ 2.25 nT.) This magnetic field yields an outcoupling
strength η ≈ 104s–1. The corresponding Rabi cycle time back to the trapped state |2, 1〉 is
then 2π/η ∼ 0.57 ms, whereas the atom in the untrapped state |1, 0〉 leaves entirely the
BEC volume in a period of time 1 ms. As the overlap with the BEC vanishes on the time
scale of 1 ms, the initial reduction on a shorter time scale impedes the Rabi precessing
between the falling atoms and the BEC. This justifies the approximation of neglecting the
transitions |1, 0〉 → |2, 1〉 back to the condensate in Eq. (1).

Based on our numerical results applying Eq. (6) (together with Eqs. (11) and (12) for

 = 0) we find that by choosing the center of the detection volume at yc = 65 μm below
the center of the condensate with a height of yd = 60 μm, the number of atoms in this
volume is N ≈ 3. Assuming ionization detection scheme with efficiency close to 1 [21],
all these atoms are detected, and N ≈ 3 calibrates the signal of sensing the weak magnetic
field corresponding to a stationary coherent state with mean 〈nphoton〉 = 1 in the resonator.

The number of N atoms in the detection volume is generated in a given duration of time
τ , which is the time difference of reaching the upper and lower border of the detection
volume, i.e. the heights yc ± yd/2. Using the assumed parameters, the detection interval is
between 35 μm and 95 μm, which corresponds to a time period of τ = 1.7 ms in free fall.
Note that the photon lifetime in the resonator is κ–1 = 40 μs. That is, for the generation
of N = 3 atoms, on average, in the presence of the stationary state with 〈nphoton〉 = 1, the
necessary time period of τ = 1.7 ms amounts to the transmission of about κτ = 42 photons.

As we can see from these numbers, there is, in principle, no fundamental reason which
would inhibit reaching the 100% detection efficiency for single photons enclosed in a high-
Q cavity in this scheme. However, the detection scheme with the detection time around
1 ms is relatively ’slow’ compared to the recently reported fast detection schemes in circuit
QED systems [4–7], where the time scale is in the range of μs.

The value of N in our setup is mainly affected by the magnitude of the magnetic field,
which can be increased by reducing the width W between the center conductor and the
ground planes of the CPW, but it would require to move the BEC closer to the cavity,
which is also limited by the radius of the cloud. Increasing the number N0 of trapped
atoms with increasing cloud radius does not significantly increase N , as can be seen from
Eq. (6). However increasing N0 while keeping the cloud dimensions the same or enlarging
the detection volume can obviously increase the number of outcoupled atoms.

5 Conclusion
We have evaluated the capabilities of a magnetically trapped Bose–Einstein condensate
of Rubidium atoms to detect the magnetic field of a superconducting coplanar waveguide
resonator by means of the atomlaser scheme. We have shown that by the counting of single
atoms outcoupled by the measured field and falling out of the trap due to gravity, weak
microwave fields at the single-photon level can be sensed and translated to a detectable
signal of a few atoms.
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Appendix A: Transitions between the F = 1 and F = 2 hyperfine manifolds
Transitions between the F = 2 and F = 1 manifolds of the 52S1/2 ground state of 87Rb
are magnetic dipole transitions. As the quantum numbers L and mL are both zero and
the nuclear Landé factor gI is much smaller than the spin Landé factor gS, it is the spin
magnetic moment μS = –gSμBŜ which determines the coupling of the atomic magnetic
moment with a resonant, oscillating magnetic field that is orthogonal to the offset field.
The x and y components of μS can be expressed by the spin raising and lowering oper-
ators Ŝ+ = Ŝx + iŜy and Ŝ– = Ŝx – iŜy, therefore, it is the nonzero matrix elements of Ŝ+

and Ŝ– which determine the possible transitions. (This can be seen by expressing the
basis states {|F , mF〉, F = 1, 2, mF = –F , . . . , F} common to the operators Ŝ2, Î2, F̂2, F̂z with
the basis states {|mS, mI〉, mS = –1/2, 1/2, mI = –3/2, . . . , 3/2} common to the operators
Ŝ2, Î2, Ŝz, Îz.) We focus on the |2, 1〉 → |1, 0〉 transition, because the transition matrix el-
ement 〈1, 0|Ŝ–|2, 1〉 ≈ –

√
3/2

√
2 is the largest possible involving a field-insensitive final

state. (We note that if one chooses the state |1, –1〉 as the trapped state and the |2, 0〉 state
as the untrapped one, then the corresponding transition matrix element of the Ŝ+ operator
is a factor of 1/

√
3 smaller.)

Appendix B: Outline of the solution of the outcoupling problem
Here we outline the solution to the partial differential equation (1), following the method
presented in Ref. [18]. We use the approximation that the mean-field potential N0gsΦ

2
BEC(r)

is negligible compared to the gravitational potential, and consider the resulting inhomo-
geneous differential equation as a scattering problem, i.e., use the Green’s function of the
corresponding free problem to determine the outcoupled wave function. The stationary
solution of Eq. (1), including the undepleted BEC assumption, is then given by

Ψ̂|1,0〉(r, t) = –�ηei
t
∫

d3r′′G3D
+

(
r, r′′; –�


)
ΦBEC

(
r′′) = i�ηei
tF(r), (7)

where G3D
+ (r, r′′; –�
) is the advanced (outgoing) energy-dependent Green’s function (cor-

responding to the energy E = –�
), which can be written as

G3D
+

(
r, r′′; –�


)
=

1
(2π )2

∫ ∞

–∞
dkx

∫ ∞

–∞
dkze–ikx(x–x′′)e–ikz(z–z′′)

× G1D
+

(
y, y′′; –�
 –

�
2

2M
(
k2

x + k2
z
))

, (8)

G1D
+ being the Green’s function of the 1D free-fall problem

G1D
+

(
y, y′′; E

)
= –

π

Mgl2
0

Ai
(

y + y′′ + |y – y′′|
2l0

–
E

Mgl0

)

× Ci
(

y + y′′ – |y – y′′|
2l0

–
E

Mgl0

)
, (9)

and Ci being the complex Airy function Ci(x) = Bi(x) + iAi(x). In the above expressions
r′′ refers to the coordinates of the source (i.e., the atomic cloud), kx and kz are the wave
numbers in the x and z direction, and l0 = (�2/2M2g)1/3 is the natural length of the Airy
function.
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The outcoupled atom density at a position r in this monochromatic outcoupling case is

N(r) =
〈
Ψ̂

†
|1,0〉(r, t)Ψ̂|1,0〉(r, t)

〉
= (�η)2∣∣F(r)

∣∣2 =
(

�η

Mgl0

)2

D(r), (10)

where

D(r) = (Mgl0)2∣∣F(r)
∣∣2 (11)

has the dimension of 1/volume and is dependent on the geometry of the BEC cloud. We
note that when the outcoupling magnetic field has a spectral distribution, then D(r) is a
function of the frequency, and may be considered the so-called spectral resolution func-
tion of the BEC as a measuring device [18].

For coordinates below a spherical BEC with radius a, in the Tomas–Fermi approxima-
tion

F(r) = –
π

Mgl0

√
μ

Ngs

∫ ∞

0
dk̄⊥k̄⊥J0(k̄⊥r̄⊥)Ci

(
ȳ –

Ey(k̄⊥)
Mgl0

)

×
∫ 1

0
dr̄′′

⊥r̄′′
⊥J0

(
k̄⊥r̄′′

⊥
)∫ ā

√
1–(r̄′′⊥)2

–ā
√

1–(r̄′′⊥)2
dȳ′′

√
1 –

(
r̄′′
⊥
)2 –

(ȳ′′)2

ā2

× Ai
(

ȳ′′ –
Ey(k̄⊥)
Mgl0

)
. (12)

Here k̄⊥ is the length of the dimensionless wave vector perpendicular to the direction
of gravity, with k̄2

⊥ = a2(k2
x + k2

z ) = 2Ma2(Ex + Ez)/�2, Ey(k̄⊥) = –�
 – �
2k̄2

⊥/2Ma2, r̄′′
⊥ =√

(x′′)2 + (z′′)2/a is the length of the dimensionless position vector perpendicular to gravity,
while ȳ′′ = y/a is the dimensionless coordinate in the direction of gravity inside the BEC.
r̄⊥ refers to the dimensionless length of the position vector r perpendicular to gravity [18].

Appendix C: Analytical formulas for the magnetic field of a CPW
If the transverse size of the conductors and their distance is small relative to the mode
wavelength of the cavity, then the quasi-static approximation may be applied [26]. Let
us introduce the coordinates x′ = x, y′ = y – d, z′ = z + L/2 (see Fig. 1) to describe the
magnetic field components of the CPW, where d is the distance between the center of the
BEC and that of the CPW. For reasons of symmetry, it suffices to restrict to one half of
the structure (i.e., 0 ≤ x′ ≤ b, 0 ≤ z′ ≤ L), and consider the CPW as coupled slots [27].
We assume magnetic walls at x′ = 0 and x′ = b = S/2 + W + w and open-circuit boundary
conditions at z′ = 0 and z′ = L = λg/2, with λg being the mode wavelength [27, 28]. As a
result of the longitudinal boundary condition, the maxima of the electric and magnetic
fields are shifted in space. The magnetic field is maximal at z′ = L/2, where the electric
field is zero, and zero at the two ends, where the electric field is maximal. Here we only
present the components of the magnetic field for the case of odd (transverse) excitations,
according to Ref. [22]. On the air side of the structure (y′ ≤ 0) they can be approximated
as

Bx(r′) = p

[ ∞∑
n>0

sn

Fn
cos

(
nπx′

b

)
e–γn|y′|

]
sin

(
πz′

L

)
,



Kálmán and Domokos EPJ Quantum Technology             (2020) 7:2 Page 11 of 13

By(r′) = p

[ ∞∑
n>0

sn sin

(
nπx′

b

)
e–γn|y′|

]
sin

(
πz′

L

)
, (13)

Bz(r′) = p
2b
λg

[ ∞∑
n>0

q
sn

nFn
sin

(
nπx′

b

)
e–γn|y′|

]
cos

(
πz′

L

)
,

where

p = –iμ0μr
4V0

ηb
λ

λg
, (14)

sn =
sin( nπδ

2 )
nπδ

2
sin

(
nπδ̄

2

)
, (15)

q = 1 –
(

λ

λg

)2

, (16)

Fn =
bγn

nπ
=

√
1 +

(
2bv
nλ

)2

, (17)

with δ = W /b, δ̄ = (S + W )/b, v =
√

(λ/λg)2 – 1, μ0 is the permeability of free space, μr ≈ 1
is the relative permittivity of the conductor, η =

√
μ0/ε0 is the impedance of free space,

and V0 is the voltage directly across the slot between the central and ground electrodes.
Let us note that the complex factor i in the expression of p is due to the fact that there is
a π/2 phase difference in the time dependence of the magnetic field and the electric field,
i.e., when the magnetic field is maximal in time, then the electric field is zero and vice
versa.

For the case when b � λ, h, where h is the thickness of the substrate, it can be shown
that the magnetic field on the substrate side of the structure is approximately given by

B0≤y′≤h
x (x′, y′, z′) ≈ –Bx(x′, –y′, z′),

B0≤y′≤h
y (x′, y′, z′) ≈ By(x′, –y′, z′),

(18)

while the z components of the magnetic field can be neglected on both sides of the CPW,
i.e., |Bz(r′)|, |B0≤y′≤h

z (r′)| � |Bx(r′)|, |By(r′)|.

Appendix D: Effective dielectric constant and the capacitance of a CPW
For a conventional CPW on a substrate of relative permittivity εr , the effective dielectric
constant εeff and the capacitance per unit length cCPW can be analitically approximated
using conformal mapping techniques as [22]

εeff = 1 +
εr – 1

2
κ1

κ0
, (19)

cCPW = 4ε0εeffκ0, (20)

where κi = K(ki)/K(k′
i), K being the complete elliptic integral, k0 = S/(S + 2W ), k1 =

sinh( πS
4h )/ sinh( π (S+2W )

4h ), k′
i =

√
1 – k2

i for (i = 0, 1).
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