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Abstract

We consider a microscopic collision model, i.e, a quantum system interacts with a
hierarchical environment consisting of an auxiliary system and a reservoir. We show
how the non-Markovian character of the system is influenced by the coupling
strength of system-auxiliary system and auxiliary system-reservoir, coherence of
environment and initial system-environment correlations. And we study the
non-Markovianity induced by coherence of environment from the perspective of
energy, further the relationship between information backflow and energy flux is
obtained. Then we study the effect of non-Markovianity on thermodynamic
properties. By studying the entropy change of system especially that from heat
exchanges with the environment, we reveal the essence of entropy change between
positive and negative values during non-Markovian evolution is due to the
contribution of heat flux induced by coherence. And compared with the case of
Markovian dynamics, we observe that the entropy production decreases in some
specific time intervals under non-Markovian dynamics induced by the coupling
strength. And this is different to the case of non-Markovianity caused by initial
system-environment correlation, that we show the possibility of positive entropy
production during the whole dynamics.

Keywords: Open quantum systems; Collision-based models; Quantum
non-Markovianity; Quantum coherence; Initial correlation; Quantum thermodynamics

1 Introduction

The study of open quantum systems is of great importance in quantum information and
computation recently. Because the dynamics of open quantum systems is greatly affected
by its environment, and the environments are often very complex, solving the dynamics
of open quantum systems has always been a challenge. The Markovian approximation is
important to describe the dynamics of open quantum system either in terms of maps and
Kraus operators or in terms of master equations [1]. One advantage of this approximation
is that the dynamics of the system will be a Markovian process and can be described by a
standard Markovian master equation.
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However, it has been shown that the Markovian approximation fails in many situations
[2-5], and the non-Markovian dynamics have been received considerable attention and
have been extensively studied recently [6—13]. Based on this, several measures of non-
Markovianity(NM) have been proposed [14—16]. With the help of these measures, one can
claim that an evolution is non-Markovian if a nonzero degree of NM is detected. These
measures have been applied to many models to investigate their non-Markovian charac-
teristics [17—24]. Furthermore, the transition from Markovian to non-Markovian dynam-
ics has also been theoretically and experimentally implemented based on these measures
[25-31]. For example, Brito et al. have implemented the transitions from Markovianity to
NM by preparing different system initial states or dynamically manipulating the subsystem
coupling [26]. Ma et al. have showed how the non-Markovian character of the system is in-
fluenced by the coupling strength between the qubit and cavity and the correlation time of
the reservoir, and they have found a phenomenon whereby the qubit Markovian and non-
Markovian transition exhibits a anomalous pattern in a parameter space depicted by the
coupling strength and the correlation time of the reservoir [27]. In Ref. [31], initial system-
environment correlations have been showed to substantially increase the distance between
two qubit states evolving to long-time-limit states according to exact non-Markovian dy-
namics. And in Ref. [32], it have showed that the trace distance between two states of
the open system can increase above its initial value when the system and its environment
are initially correlated. In particular, Smirne et al. [33] have provided experimental evi-
dence of the behavior showed in Ref. [32]. All of these factors together make it difficult
to understand their independent role in the non-Markovian dynamics of open quantum
system. However we have not seen any reports about the effect of coherence of environ-
ment on the non-Markovian dynamics. Thus an interesting question concerns how the
independent role of these factors to influence the system dynamics, specifically system-
environment coupling, initial system-environment correlations and the intraenvironment
coherence.

As one of the representative models for studying open quantum systems, collision
model, also called repeated interaction framework, has been extensively studied during re-
cent decades [34-40]. A quantum collision model is a microscopic framework to describe
the open dynamics of a system interacting with a reservoir assumed to consist of a large
collection of smaller constituents (ancillas), and the system is assumed to interact (collide)
sequentially with an ancilla at each time step [34, 41, 42]. It offers a bottom-top description
of an environment, where one has precise theoretical control of the microscopic aspects
that give rise to macroscopic characteristics of the reservoir. The collision model has been
applied in non-Markovian dynamics widely [43-57]. For example, Ciccarello et al. have
endowed the reservoir with memory by introducing interancillary collisions between next
system-ancilla interactions [44]. Bernardes et al. have investigated the Markovian to non-
Markovian transitions in collision models by introducing correlations in the state of the
environment [46]. In Ref. [47], the use of collision model with interenvironment swaps has
displayed a signature of strongly non-Markovian dynamics that is highly dependent on the
establishment of system-environment correlations. Campbell et al. have also identified the
relevant system-environment correlations that lead to a non-Markovian evolution in a col-
lision model [52]. Kretschmer et al. have studied the applicability of collisional models for
non-Markovian dynamics of open quantum systems, and they have discussed the possi-
bility to embed non-Markovian collision model dynamics into Markovian collision model
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dynamics in an extended state space [48]. Lorenzo et al. have shown that the composite
quantum collision models they studied can accommodate some known relevant instances
of non-Markovian dynamics [53]. In Ref. [54], a non-Markovian dynamics is established
under a structured environment based on collision model. In Ref. [56], it has studied the
effects of different strategies of system-environment interactions and states of the blocks
on the non-Markovianities by introducing a block (a number of environment particles) as
the unit of the environment instead of a single particle. Ref. [57] has found that the infor-
mation is scrambled if the memory and environmental particles are alternatively squeezed
along two directions which are perpendicular to each other.

Recently, the relation between NM and thermodynamics in open quantum system has
attracted considerable attention. In Ref. [58], the heat flux has exhibited a nonexponen-
tial time behavior in the case of non-Markovian dynamics of the subsystem. In Ref. [59],
the heat flux changes between positive to negative values for a non-Markovian evolution
of the subsystem, which leads to a violation of open-system formulation of Landauer’s
principle for the heat and entropy fluxes. A similar result has also been obtained in Refs.
[60, 61] that the Landauer’s principle is violated in non-Markovian dynamics. Raja et al.
have investigated how memory effects influence the ability to perform work on the driven
qubit, and they have showed that the average work performed on the qubit can be used as
a diagnostic tool to detect the presence or absence of memory effects [29]. Abiuso et al.
have found that the non-Markovian effects can fasten the control and improve the power
output of a quantum thermal engine [62]. Pezzutto et al. have addressed the effects that
NM of the open-system dynamics of the work medium can have on the efficiency of the
thermal machine [63]. Katz et al. have studied the performance characteristics of a heat
rectifier and a heat pump in a non-Markovian framework [64]. Ref. [65] has studied the
effects of environmental temperature on the NM of an open quantum system by virtue of
collision models.

As one of the important thermodynamic quantities, the entropy production and the
associated entropy production rates are crucial in the thermodynamic characterization of
a given process. And the exploration of the relation between NM and entropy production
has provoked great interest recently [66—73]. Refs. [68, 69] have shown that the entropy
production can become transiently negative in the non-Markovian dynamics compared
with the Markovian case, and the transient negativity of the entropy production rate is
a sufficient sign of NM [69]. Further, Strasberg et al. have explored the link between a
negative entropy production rate and NM precisely by showing under which conditions a
negative entropy production rate implies NM and when it does not [70]. And Ref. [71] has
shown that the possibility of positive entropy production rate with the initial correlation
between the system and its heat reservoir.

In this paper, we consider a two-level system coupled to a structured environment con-
sisting of a auxiliary system and a reservoir, and the reservoir is of a large collection of
initially uncorrelated systems which we call ancillas (see Fig. 1). Based on this structured
environment model, there can be different factors to influence the non-Markovian char-
acter of the system, and we mainly consider the effects of coherence of environment and
initial system-environment correlations on system dynamics. And we study the relation-
ship between NM and thermodynamic properties. For example, information backflow and

energy flux, non-Markovian dynamics and entropy change of system, including entropy
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flux (entropy change of system induced by heat exchanges with environment) and entropy

production.

2 Methods

2.1 Model and solution

We consider a qubit (system S) couples to a hierarchical environment, which contains
a auxiliary qubit Ag and a collection of N identical noninteracting ancillas (qubits)
{R1,R2,...,Rn} that consists a reservoir R, and this reservoir is in the product state
Ntot = ®f\:[1 nj. In this way, the auxiliary qubit A and the reservoir hierarchically constitute
the whole big reservoir E, which is called the environment of system S. And the general
scheme is illustrated in Fig. 1. The Hamiltonians of system and a generic environment
particle E; including the auxiliary qubit and ancillas are

A

Hyg) = ws(£)6./2, 1)

where &, is the Pauli matrices and we set /i = 1 throughout this paper.

The evolution of system S and its interaction with the environment are proceeded as
follows. S interacts with the environment first: Specifically S and A interact and then A
collides with the individual ancilla of the reservoir. As the assumption of a big reservoir R
that A never interacts twice with the same ancilla, i.e., at each collision the state of the

ancilla is refreshed. And this process is implemented through the unitary operator

Use = Vagr, Us.ag 2)

7l«]:[int A _ilflint

A T
where Usa, =e >4, Vagr; = € AQR;

. Here H™ and A", are the interaction
4Q QRj
between ‘S — Aq; ‘Ag — R respectively, and 7 is the interaction time.

In our model, we consider a coherent interaction between the bipartite systems includ-
ing‘S—-Ag and ‘Ag — R;; i.e., a mechanism that can be described by a Hamiltonian model
of some form, specifically in this paper we suppose that the interaction Hamiltonian is
~int ~S(AQ) A AQ(R)  AS(AQ) ~AQ(R))

&Q(AQ,R,) =) (6 V6T 46y Ve )

~S(4Q) A Aq(R))
+ GZ @ GZ / ))

Figure 1 Sketch of the protocol of system S plus a Environment
hierarchical environment. S interacts with the - ~
environment: After Ag interacts with R, (the nth —
ancilla of reservoir R), it collides with S and is then @

directed to R
@j &S ® R
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AS AA AR . . . . .
where 65, 6; % and 6,/ (i = x,9,2) are the Pauli matrices, and g1y is a coupling constant.

And we use the result [34]
013 0x@0x15,00y45:85) _ o-i% (cos @l +isin PS5, (4)

where 1 is the identity operator, and S5 is the two-particle swap operator, i.e., it is the
unitary operation whose action is |/1) ® ) — |¥2) ® [y for all |v1), |v) € C2. We
can now write the unitary time-evolution operator Us Aq inEq. (2) as

Usaq(y) = (cosy)lsaq +ilsiny)S3,, (5)

where y = 2g; 7 is a dimensionless interaction strength. And when y = 0 Eq. (5) is reduced
into an identity operator and indicates that there is no interaction between S and A¢; and
when y = /2 Eq. (5) is reduced into a fully swap operator and represents a complete ex-
change of quantum state information between S and A. Thus in the range of y € [0,7/2],
the larger the y, the stronger the coupling. And in the ordered basis {|00), |01), |10}, |11)},
§§mQ in Eq. (5) reads [74]

1 0 00
WY
0 0 0 1
Similarly XA/AQ,R]. in Eq. (2) can be written as
Vagr,(8) = (cos 8)laqr, +ilsin )83y ., 7)

with § # y, in general, and the analog of the operations introduced above applies to ﬁA oR;
and S:‘Z,R, (swap gate between A and R;). As mentioned above the dynamics of system
S consists of sequential system-environment interaction and each step is treated in the
following process: First S and A interact and then subsequently A collides with R; (one
of the ancillas in R). Thus the system is brought from step # to step # + 1 through the
process

S,A ~ S,A At
Pn @ ® Npe1 = ,0251 =Usk (pn @ ® 77n+1)us]3: (8)

where ,ofAQ is the state of ‘S — Ay’ after the nth interaction. Hence after the (# + 1)th in-
teraction, we can obtain the reduced system state, pjﬁQ = Trr[p3E ] (the state of ‘S — Ag),
,ofﬂ = TrAQ[anﬁQ] (the state of S) and ,0:31 = Trg[pjle] (the state of Ag), where Try[- - -]
means the trace of x degree of freedom.

2.2 NM
The trace distance between two quantum states is one of the most important measures of
distinguishability of quantum states [74], which is given by

1
D(p1,p2) = 3 Tr|p1 = p2l, )
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where |A| = v/ ATA for any operator A. It is obvious that for any pair of states p; and p,
the trace distance satisfies the inequality 0 < D(p;, p2) < 1. For the time evolution of a
quantum state described by a trace-preserving completely positive map, the trace distance

is always less than or equal to the initial value [75]; that is,

D(p1(2), p2(2)) < D(p1(0), p2(0)). (10)

In particular, for a Markovian evolution it can always be represented by a dynamical semi-

group of completely positive and trace-preserving maps [76], and we obtain the inequality

D(p1(t+ 1), po(t + 1)) < D(p1(2), p2(2)), (11)

for any positive t, which indicates that the trace distance decreases monotonically with
time. The decrease of trace distance corresponds to the reduction of distinguish ability
between the two states, and this could be interpreted as an outflow of information from the
system to the environment. In contrast to this, if the time derivative of the trace distance
becomes positive in some time intervals, the time evolution is non-Markovian [14, 17].
Furthermore, if the trace distance exceeds the initial value, the time evolution cannot be

described by a trace-preserving completely positive map. Based on this, a measure of NM

can be defined by [14]
N max [ dto(60),p0) 12)
£1(0),02(0) J 550

where o (¢, 01(0), p2(0)) = %’D(pl(t), 02(t)). Conceptually, A accounts for all regions where
the distance between two arbitrary input states increases, thus witnessing a backflow
of information from the environment to system. And in this case, an evolution is non-
Markovian if and only if N > 0.

As the evolution in our model proceeds in discrete steps, we will employ the discretized
version of Eq. (12), which is obtained as [17, 77]

N = max Z [D(pl,n+1: p2,n+l) - D(pl,rn ;02,71)]: (13)

neot

with 0% = |J,(n,n + 1) is the union of all the interaction steps (1,7 + 1) within which
D(p1,n415 P2,n+1) = D(01,1 P2,) > 0, and {01,441, 2,441} @ pair of state of system obtained
starting from the corresponding pair of orthogonal state {|1, ), |Y_)} after n + 1 steps of

our protocol,

0 0
|¥,) = cos —|0) + €'¥ sin —|1),
2 2
0 0 (14)
_) =sin —|0) — e cos —|1),
[¥r_) sm2|) e cos2|)

where 6 € [0, 7] and ¢ € [0,27]. The maximization in Eq. (13) performed over all possible

values of 6 and g, i.e., all possible orthogonal pairs of initial system states.
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3 Results and discussion

3.1 Non-Markovian dynamics of the system

In this section we study how the system dynamics can be affected by different ways, includ-
ing the coupling strength between the bipartite systems (‘S— A’ and ‘Ag — R’), coherence
of the environment and initial system-environment correlation. We consider the initial

state of each ancilla of reservoir R as

o =pl) (Y| + (1 - p)og, (15)

where p € [0,1], |¥) e 1958|0) 1 #1158 |1)) with a relative phase ¢;, and pg is

= %( i
the thermal state assumed to be of canonical equilibrium form, i.e., pg = %e‘ﬁHE .Here 8 =
1/T and Z = Tr[e‘ﬁi{f ] are the inverse temperature and the partition function respectively.
Note that the diagonal elements of states pr and pg are identical, and compared with the
thermal state, the off-diagonal elements of state pg are nonzero if p # 0. Therefore, Eq. (15)

can also be written as

PE = Pg + PPcohs (16)

where peoh is the non-diagonal part of state |y) (|, i.e., the off-diagonal elements of pcon
are the same as that of state |{) ({| and the diagonal elements are zero.

3.1.1 Effect of the coupling strength on NM

We suppose that the environment is in thermal state, i.e., all environment particles in-
cluding A and each ancilla are in the state pg with T = wg = 1. We numerically calculate
the degree of NM for different y and § which is presented in Fig. 2. We can see that the
whole diagram is divided into two regions, where the green stars represent the degree
of NM being equal to zero (Markovian region) and the red dots represent the degree of
NM being larger than zero (non-Markovian region). It shows that the non-Markovian dy-
namics of the system is determined by a delicate balance between the two parameters y
and 8. Specifically the system dynamics is Markovian for small y and larger §, and the non-
Markovian region increases with the increase of y. Physically this can be understood as
following. When the interaction between S and A, is small (small y) and with a relatively
large interaction between A, and R; (larger §), the information obtained by A from § is

Figure 2 The transition from Markovian to 05 "
non-Markovian dynamics induced by manipulating
coupling strength ¥ and 8. The A/ in Eq. (13) is &
performed over all possible 6 and ¢ of initial state 0.4 3
(14). And the green stars represent A being equal
to zero (Markovian region) and the red dots 0.3 ;8 £
represent A/ being larger than zero & it
(non-Markovian region) o i &

0.2

0.1}

O:
0 0.1 0.2 0.3 0.4 0.5

v ()
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less and all of which flow into the reservoir R, which forms Markovian dynamics of the
system. In other words, the system is losing information at a slower rate than that of the
evolution of environment, thus the backflow of information cannot happen now. However
with the increase of y, more and more information flows from S into A which leads to
only part of the information flows into the reservoir and the rest is reserved and flows back
to S, and in this case the non-Markovian dynamics of system is formed.

3.1.2 Effects of coherence of environment on NM and energy flux

We consider the case of environment with coherence, i.e., Ag and each ancilla are in state
(16) with a relative phase ¢, and ¢; respectively. Thus the phase difference between reser-
voir R and Aq is ¢ = ¢1 — ¢,. In Fig. 3, we plot the variation of the NM with respect to p for
fixed ¢ (¢ = 0) (Fig. 3(a)), and ¢ for fixed p (p = 0.4) (Fig. 3(b)), and the coupling strength
y and § are of the Markovian region of coupling presented in Fig. 2. From numerical cal-
culations we find that the system dynamics is Markovian for p € [0,0.4], and in the region
p € (0.4, 1] the increase of p leads to an increase of NM. An interesting feature here is that
a transition from Markovian to non-Markovian dynamics is observed. Besides parameter
p phase difference ¢ is also one of the influence factor of coherence of environment. The
system dynamics is Markovian for ¢ € [0, 7/4], and in the region ¢ € (7 /4, 7] the increase
of ¢ leads to an increase of NM, in the region ¢ € [0, 2] the change of NM is symmetrical
about ¢ = 7. Also a transition from Markovian to non-Markovian dynamics is observed
by means of ¢. Physically this can be understood as following. As we consider energy-
conserving interactions, i.e., [I:IE‘;ZQ, (I:IS + I:IAQ)] =0, [ﬁ/ifé,n,-’ (]:[AQ + ﬁRj)] =0, leading to

AE, = -Qug o (17)

where AE,, = Tr{I:[g[pg(n +1) — ps(n)]}, is the change in energy of the system in each inter-
action, and Qa,,r, is the change in energy of the environment. From Eq. (16), compared
to initial thermal state of each element of the environment, coherence, i.e., the second
term in Eq. (16), is added, and the amount of coherence increases with the increase of

x10°

0.07 i i i i 5

0.06 1

0.05|

0.04 |

0.03

0.02 1

0.01}

0 ; ; ; 0 U
0 02 04 06 08 1 0 /2 ™ 3n/2 27
p

Figure 3 Change of the NM with respect to p for fixed ¢ (¢p =
for fixed p (p = 04) (b). For both plots T=we =1,y = & and §
coupling presented in Fig. 2

0) (@), and the change of NM with respect to ¢

% which is the Markovian region of
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T whichis

Figure 4 AF,, AO’: and AO;Oh with respecttonforfixed ¢ (p=0), T=wr =1,y = f—4 and 8 =
0.9 of the

the Markovian region of coupling presented in Fig. 2. p = 0.4 of the Markovian regime (@), p =
non-Markovian regime (b), and the initial state of system is excited state |0)

0.02

0 20, 40 60 0 20 n 40 60

Figure 5 AF,, AQE and AQ;Oh with respecttonforfixedp (p=04), T=we =1,y = f—4 and é = % which is
the Markovian region of coupling presented in Fig. 2. ¢ = /2 (a) and ¢ = 7t (b) which are the non-Markovian
regime presented in Fig. 3(b), and the initial state of system is excited state |0)

parameter p. Therefore, AE, in Eq. (17) can be divided into two parts:
AE, = AQE + AQX™, (18)

where the first term, AQﬁ, is the contribution of the first term in Eq. (16), i.e., the ther-
mal state of environment, and the second term AQZ"h is the contribution of coherence of
environment (the second term in Eq. (16)). In Fig. 4, we plot AE,, AQE and AQ®! with
respect to # in two cases: p = 0.4 of the Markovian regime (Fig. 4(a)) and p = 0.9 of non-
Markovian regime (Fig. 4(b)). It shows that in the Markovian regime AQS plays a major
role in AE,, which suppress energy backflow from the environment to system. In contrast
to this, in the non-Markovian regime AQ®" plays a major role of the contribution to AE,
and the energy backflow appears.

In order to study the relationship between the energy backflow of interest and the NM of
the system dynamics definitely, we consider the effect of ¢ on NM presented in Fig. 3(b).
In Fig. 5, we plot AE,, AQﬁ and Afoh with respect to u for different ¢, ¢ = 7/2 (a) and
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¢ = 7 (b) which are in the non-Markovian regime. We find that for the non-Markovian
regime caused by ¢, AQY plays a major role in Eq. (18), and the energy flows from S to its
environment unidirectionally, i.e., energy backflow is suppressed. Above all, in the Marko-
vian regime energy backflow is suppressed. However the opposite is in general not true;
namely, the absence of energy backflow does not imply absence of information backflow.
Note that similar results have been obtained that NM allows for the observation of energy
backflow [78], and the information backflow from the reservoir to the system does not
necessarily correlate with the backflow of heat [79].

3.1.3 Effect of initial system-environment correlations on NM
Compared to the cases discussed above without any initial correlation between system
and its environment (i.e., product state), we consider a group of two initial states

0 0 0 0
1 _ o EP gy1-£2 0
pS,AQ(O)—Iw><W|- 0 %_\/1_—%,2 1—|§|2 0 ’ (19)
0 0 0 0
P5.4,(0) = 1E710)(01 @ I1)(1] + (1 - [§1)[1){1] ® [0)(O]
0 0 0 0
o Er o o (20)
o o 1-12 ol
0 0 0 0

where |) = |£]|01) + /1 — |£]2|10). It is worth noting that the reduced density matrixs
of these two initial states are identical, and ,051 Ao (0) has quantum correlations (quantum
entanglement and quantum discord) between S and Ay initially, p§ AQ(O) has classical cor-
relation. We adopt Wootter’s concurrence [80] as the entanglement measure. For the X-
structure density matrix p4p of bipartite system the concurrence is given by

C(pag) = 2max (0, | 23| — /P110as, | L1l — /P22P33), (21)

where p;; (i = 1,2,3,4) are the matrix elements of psp. For the X state described by the
density matrix p4p, the analytic expression of quantum discord has been reported [81]
and expressed by

QD(/OAB) = min(Ql’ Q2)r (22)

where Q; = H(p11 + p33) + Zil Ailog, A; + D; with A; being the four eigenvalues of
pag, Di(r) = H(zr), Dy(r) = —Y 1, pilogypi — H(pin + ps3) with © = (1 +
V11 =2(p33 + paa)]? + 4(|p1al + |0231)?)/2 and H(r) = —tlog, T — (1 - 7)log,(1 - 7). And
the classical correlation can be expressed as

Cela(pas) =I(pap) — QD(p4B), (23)

where I(pag) = S(pa) + S(pg) — S(pap) is the mutual information, S(p) = —Tr p log, p is the
von Neumann entropy. And in the case of initial correlation between S and A, the non-
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Figure 6 Concurrence (solid line) and quantum discord (dashed line) with respect to & for initial quantum
correlation Eq. (19) (a). Trace distance Eq. (23) against the number of collisions n with different & in the
Markovian coupling region of Fig. 2 (y = 3%, 8 = %), a non-Markovian process is induced by initial quantum
correlation Eq. (19), and the bound of Eq. (24) is indicated by the upper horizontal line (b)

Markovian dynamics of system can be witnessed by the non-monotonicity in evolution of
trace distance between two states of system

D(ps(n +1), ps(n +1)). (24)

Here ps(n + 1) and ps(n + 1) are a pair of states of system after the (n + 1)th step, which
corresponds to the pair of initial states of the composite system ‘S—Aq; {05,4,(0), 05,4, (0)},
and ps,44(0) = Tra,y(ps.44(0)) ® Trs(ps.a,(0)). And in this section we suppose that each
ancilla in R are initially in the thermal state pg with T = wg = 1.

From Egs. (21) and (22), the amount of entanglement and quantum discord may change
with & and this change is showed in Fig. 6(a). They (entanglement and quantum discord)
have the similar behaviors, and in the region & € [0,0.7] the amount of entanglement and
quantum discord increase with the increase of £. In Fig. 6(b) we plot the trace distance
Eq. (24) against the number of collisions # for initial state (19) and thermal state of each
ancilla of the reservoir for different & (£ = 0.3,0.5,0.7), y = {7 and § = ¥ which correspond
to a Markovian region of coupling presented in Fig. 2. It shows that the trace distance in-
creases from zero to a maximum and then decreases until to zero, which implies that a
non-Markovian dynamics of system, and the amount of information backflow increases
with the increase of initial quantum correlation (entanglement and quantum discord) be-
tween system and environment. It is noted that the trace distance here exceeds the initial
value. Laine et al. have pointed out that the trace distance between two states of the open
system can increase above its initial value when system and its environment are initially
correlated [32]. And in our case it can be written as

D[ ps(n), ps(n)]

(25)
= D[pé,AQ (0), Trag (pSI,AQ(O)) ® Trs (pé,AQ(O))]’

where ps(n) and ps(n) are the reduced state of system after the nth interaction corre-
sponding to the initial state pg AQ(O) and Tra, (04 4 L0 ® Trs(pg 4 o(0), respectively. This
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inequality shows how far from each other two initially indistinguishable reduced states
can evolve when only one of the two initial states is correlated. And physically this can be
understood as following: The maximal amount of information the open system can gain
from the environment is the amount of information flowed out earlier from the system
since the initial time, plus the information which is initially outside the open system. Thus
the increase of the trace distance is bounded from above by the correlations in the ini-
tial state. We calculate the bound of Eq. (25) in different cases of & which is showed in
Fig. 6(b), and the inequality Eq. (25) is well satisfied. We notice that the maximum value
of the trace distance at a certain # in Fig. 6(b) is much smaller than the bound of Eq. (25)
for a fixed &, i.e., the bound of Eq. (25) is actually loose. This means that only less of the
information in the composite system ‘S + A’ initially transfers to the reduced system S
during the evolution, and this is due to the Markovian reservoir R. Moreover, Smirne et
al. have provided experimental evidence that if the environmental state is fixed, the trace
distance between two states of an open quantum system can increase over its initial value
only in the presence of initial correlations [33].

From the discussion above, it is always able to induce a transition from Markovian to
non-Markovian dynamics for initial quantum correlation between system and its envi-
ronment. For initial classical correlation state (20) and a thermal state of the reservoir,
from numerical calculation we find that the trace distance Eq. (24) is always zero with the
number of collisions # within the Markovian region of coupling presented in Fig. 2. In or-
der to study the effect of initial classical correlation on NM more comprehensively, we use
the measure of the degree of NM in the Appendix (Eq. (32)), and we find the similar result
that AV in Eq. (32) is also zero. However it is worth noting that Eq. (32) can only be used
to witness the occurrence of non-Markovian dynamics rather than to confirm a Marko-
vian dynamics. Therefore, from now on it cannot guarantee that the dynamics of system
must be Markovian for initial state (20). And thus for initial classical correlation we do
only claim that the A/ in Eq. (32) is zero in the case of thermal reservoir comparing to the
case of reservoir with coherence (see below). In Fig. 7, we plot the trace distance Eq. (24)

0.6 T T 0.08 T - .
(a) p=10.4 (b) £ =0.7
0.5
0.06 —p=01
0.4 --p=02
v = 0.4
D D
0.3 1 0.047: .
,‘, \\
B
T
0.2 q o
I \
0.021 ! A
0.1 i
0 P ““—;"-__‘_ . . - T
0 10 20 30 40 0 10 20 30 40 50 60
n n
Figure 7 (a): Trace distance Eq. (24) against the number of collisions n for different &, & = 0.3 (black-solid line),
& =0.5 (black-dashed line) and & = 0.7 (black-dotted line), a non-Markovian process is induced by means of
initial classical correlation Eq. (20) with coherence of reservoir, p = 0.4 in Eq. (16) which is a Markovian regime
presented in Fig. 3; and the bound of Eq. (25) is indicated by the upper blue-solid line (¢ = 0.3), green-dashed
line (¢ = 0.5) and red-dotted line (§ = 0.7). (b): Trace distance Eq. (24) against the number of collisions n for
fixed & (£ =0.7) and different p, p = {0.1,0.2,0.4}. For both plots y = % and § = %
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against the number of collisions # for initial classical correlation state (20); y = 17,8 = %,
and a state with coherence (Eq. (16) with p # 0) of each ancilla of the reservoir, p = 0.4
in Fig. 7(a) and p = {0.1,0.2,0.4} in Fig. 7(b) which corresponds to a Markovian regime
presented in Fig. 3(a). Obviously the change of trace distance is similar to the case of ini-
tial quantum correlation presented in Fig. 6(b), the trace distance increases from zero to
a maximum and then decreases until to zero. This also indicates a non-Markovian dy-
namics of system and the trace distance here exceeds the initial value. And the amount of
information backflow can be increased by two ways, on the one hand with the increase
of initial classical correlation between system and environment, on the other hand with
the increase of coherence of reservoir. Here from numerical calculation we find that the
change of amount of classical correlation with & in Eq. (20) is the same to quantum correla-
tion, i.e., Caa(p2 AQ(O)) increases with the increase of £ in the region & € [0,0.7]. Note that
in Ref. [32] it has pointed out that the effects of initial classical correlation are related to
the form of interaction, and they have verified that the existence of the initial classical cor-
relation will not make the trace distance of the system exceed the initial value if two qubits
are under the action of controlled-NOT gate only; and if first apply the controlled-NOT
gate and then a swap operation, it can obtain a growth of the trace distance. In our case, a
growth of the trace distance and a non-Markovian dynamics are emerged by means of co-
herence of reservoir in the case of initial classical correlation. And Eq. (25) is also satisfied
now.

In summary, we study the effect of initial system-environment correlations on system
dynamics, including quantum correlation and classical correlation. We realize a growth of
the trace distance and a non-Markovian dynamics with the help of initial quantum corre-
lation, however for initial classical correlation this can only be confirmed to occur when
there is coherence of the reservoir simultaneously.

3.2 Effect of NM on thermodynamic properties

In this section we consider the system in contact with a thermal environment, i.e., the
C s . o A
initial state of each ancilla of the reservoir is thermal state pg, and the reduced state p, Q

%e_ﬂ 40"4q | with the n-dependent inverse

o A A
maintain the form of thermal state, p, < = Pg Q-

temperatures ,BAQ = ﬁ.
Q

Entropy change and heat flux It is known that the total von Neumann entropy of the
composite system ‘S — A g’ under the unitary evolution Us 4, is invariant during each step,
. S,AQ ..S,AQ ..S,AQ S,AQ + . .
ie, S(pn" ") =S(p,,1°), here p, .1~ = Usa,(v)(pn )US,AQ(V)‘ Based on this, the change in
entropy of system during the (# + 1)th interaction can be expressed as [61]

ASpi = S(/}2+1) - S(pf,)

(26)

= D(5yi? | 35,105%) + Trag (A — £3%) Inps® = 1(ps"),
where £5,, = Trag[f,1%), 5pd = TrslGynls D(pallp2) = Tr(pi1n p1) — Tr(py In py) is the
quantum relative entropy between two density matrices p; and p, and the mutual in-
formation I(pgAQ) =S(p3) + S(pr) - S(pﬁAQ), measures the correlation between S and
Aq, and this correlation has been established after their collision in the first step. Accord-
ing to the definition of ng above, we can obtain TrAQ[(,5:+Q1 - p::Q) In ng] = BagAQus1,
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Figure 8 (a)-(b): AS, and ﬁAQAQM agamst the number of collision n with y = 4 and different 8, § =

(Markovian region of coupling (a)), § = % Z (non-Markovian reglon of coupling (b)). (c) The correlation /(,on )
Eq. (28) against the number of collision n with fixed y (y ) and different 8. (d) The heat AQ,41 absorbed
by system and its two contributions AQ¥, and AQ" agalnst the number of collision n, and the parameters
are the same as those of (b). For all plots the initial state of system is ground state |1), Ag and each ancilla of
the reservoir are initially prepared in the same thermal states pg, i.e, Eq. (16) withp=0,T=1and w =1

here

AQua = Teag[(on° - &) Fa), (27)

representing the heat flowing from auxiliary qubit A to system S. Therefore, Eq. (26) can
also be written as

ASnir = D(Frr | 55,105%) + BagAQun —1(pn™ ). (28)

Notice that we choose energy-preserving interactions between the bipartite systems, ‘S —
A@, ‘Aqg—R;. Mathematically, this translates as [LA[s,AQ,ngQ] =0, [XA/AQ,R] Hfre oR; ] =0, that
is, A, 55 ) = 0 (A o FIiS = 1= 0, here A = Hy + Hag, HS o, = HAQ + Hr,. So
that the heat given by the system is completely transferred to the environment, and vice
versa. In other words, no heat is given or taken in the form of thermodynamic work while
performing the unitary operations. Thus the canonical definition of heat flow AQ,,; in
Eq. (27) is valid and compatible with thermodynamics, and the term B4,AQy1 in Eq. (28)
is associated with the system entropy change due to heat exchanges, i.e., entropy flux.

In order to study the system entropy change especially that results from heat exchanges
with the environment, in Fig. 8(a)—(b) we plot AS,,,; and BayAQus1 against the number
of collisions n of a Markovian region of coupling (y = {3, § = %) in Fig. 8(a) and a non-

Markovian region of coupling (y = {3, § = §) in Fig. 8(b). The initial state of system is

12
ground state |1), and the initial states of aux1l1ary qubit and reservoir qubits are in the
same thermal state pg (p = 0 in Eq. (16)) with T = 1. It shows that the changes of AS,,,;
and ﬂAQAQn+1 are almost consistent with the increase of #, increasing first and then os-
cillating decay. However AS,,; and ﬂAQAQn+1 are always larger than zero for Markovian
environment (Fig. 8(a)), and which can be less than zero during some time intervals for

non-Markovian environment (Fig. 8(b)). Physically this can be understood as following.
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We define p;; (i,j = 1,2,3,4) are the matrix elements of state pﬁ'AQ of ‘S — Aq’ before their
(n + 1)th collisions. Due to the correlations between S and A, AQy.; in Eq. (27) can be
divided into two different contributions:

AQui1 = AQY + AQWh (29)

n+l n+1’
where

AQflifl = wsin®(y)(p33 — p22), 30)
AQSH = wIm(pys) sin(2y),

nel =

are the heats determined, respectively, by the diagonal and coherent (off-diagonal) ele-

Q

SA .
ments of state p,” -, and w = ws = wg is the resonance frequency of S, Ag and R;. The

Q

SAqQ . . . .
nonzero coherent term p,3 of p,” ~ is a direct witness of correlation between S and

coh

“o%. For fixed parameter y,

pﬁQ, which in turn gives the correlation-dependent heat AQ
the relatively large values of § lead to Markovian dynamics, and the established system-

dia

environment correlations are weak, so the contribution AQZ%

plays a major role in de-
termining the behavior of total heat AQ,,,;. This can be verified by Fig. 8(c): the correla-
tions 1 (pgAQ) established within the dynamical process decrease with the increase of § for
fixed y. Differently, when § is sufficiently small (non-Markovian dynamics) the behavior
of AQ,1, especially its transition from positive to negative values, is mainly determined
by the contribution AQ®%%, as showed in Fig. 8(d).

Irreversible entropy production  The entropy production can be defined as the difference
between the change in entropy of the reduced system state and the mean exchanged heat
with a reservoir at fixed temperature, T, divided by T [66, 69, 71]. From Eq. (28), the
irreversible contribution to the entropy production during the (# + 1)th interaction can be
written as

En+1 = ASn+1 - ,BAQAQVHI

~SAQ ~S AQ SAQ (31)
=D(/On+1 l Pus1Pp )—I(pn )¢

it provides the contribution in entropy change of system which cannot be traced back to a

reversible heat flow. In Fig. 9, we plot entropy production of system X, D(ﬁjﬁQ I ,55+1p2Q)

(the first term in Eq. (31)) and the established system-environment correlation / (p;g'AQ)
(the second term in Eq. (31)), with respect to # for different dynamics of system. As ex-
pected, we find the entropy production of system can become transiently negative for
the non-Markovian dynamics compared with the corresponding Markovian case. In other
words, in some specific time intervals the entropy production can decrease, provided that
the quantum dynamics fails to be positive divisible, i.e. it is essentially non-Markovian.
And the multiple-interaction entropy production, X is zero regardless of whether the un-
derlying dynamics is Markovian or non-Markovian, which is due to thermalization of sys-
tem with the environment, i.e., S is in a thermal equilibrium state pg in the long-time
limit.

In Fig. 10, we study the entropy production of system X against the number of collisions
n for initial quantum correlation between the system and its environment Eq. (19). We
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find that it can undergoes a negative X during the dynamics in some cases, for example,
& ={0.3,0.5,0.7} in Eq. (19). However X can always positive during the whole dynamics for
& =0.9. In other words, we see the possibility of positive X induced by the kind of NM of
the initial quantum correlation. And this is different from the kind of NM induced by the
coupling strength of system-auxiliary system and auxiliary system-reservoir mentioned
above, that there is a corresponding relationship between non-Markovian dynamics and a
negative 2. Consequently, the NM originated from the coupling strength induces a nega-

tive X definitely, whereas from the initial quantum correlation may be positive or negative
And a similar result has been obtained that the non-Markovian effect regarding the initial
correlation may yield positive entropy production rate [71].
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4 Conclusion

In this paper, we have investigated the non-Markovian character of the system and its
effect on thermodynamic properties by means of a collision model, that a system is cou-
pled to a structured environment consisting of a auxiliary system and a reservoir. We have
studied how the system-auxiliary system and auxiliary system-reservoir coupling strength,
coherence of environment and initial system-environment correlation affect the non-
Markovian character of the system. Especially we have studied the non-Markovian dy-
namics induced by coherence of environment from the perspective of energy, and the re-
lationship between information backflow and energy flux. And we have shown the growth
of trace distance regarding initial classical correlation between the system and its environ-
ment by means of the coherence of reservoir, and this is different from the result showed
in Ref. [32] that the effect of initial classical correlation on the growth of trace distance is
related to the form of interaction.

Then we have studied the effects of NM on the entropy change of the system. We have
shown that the essence of entropy flux (the system entropy change induced by heat ex-
change with the environment) between positive and negative values under non-Markovian
evolution is due to the contribution of heat flux induced by coherence. And we have ob-
served a one-to-one correspondence between a transient negative values of the entropy
production and non-Markovian dynamics induced by the coupling strength. On the con-
trast, we have shown the possibility of positive entropy production during the whole non-
Markovian dynamics induced by initial system-environment correlation.

Note that in this paper we have used the collision model to investigate the influences
of non-Markovian dynamics, and the relation of NM and thermodynamics. The reason
to consider this simple model is that exact solutions can be obtained for a general class
of initial system-environment correlations and the initial states of reservoirs with coher-
ence. We expect that some features of the NM and thermodynamics in this simple model
might be similar to those in more involved but less tractable structured-environment mod-
els, so we can gain some insight into the general feature of the effects of initial system-
environment correlations and reservoirs with coherence on NM, and hence the relation

between NM and thermodynamic properties.

Appendix: NM witness with initial classical correlation
We introduce the degree of NM which makes use of the non-monotonicity of the trace
distance between two states of system to witness the effect of initial classical correlation

on the non-Markovian dynamics of the system [54],

N = popmax g AD(n +1), (32)
where AD(n + 1) = D]ps(n + 1), ps(n + 1)] — D[ ps(n), ps(n)], and ps(n + 1) is the same as
that in Eq. (19), ps(n + 1) is the reduced state of system after the (n + 1)th interaction
corresponding to the initial state ps4,(0) = 05(0) ® Trs(p2 AQ(O)) with the initial system
state p5(0) = cos % |0) + e sin % |1),0 € [0,7],¢ € [0,27]. The maximization is performed
by taking all possible system states p5(0) over the Bloch sphere. And here the definition of
o* is the same as that in Eq. (13), in which AD(n) > 0.
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