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Abstract
Trapped atomic ensembles are convenient systems for quantum information storage
in the long-lived sublevels of the electronic ground state and its conversion to
propagating optical photons via stimulated Raman processes. Here we investigate a
phase-matched emission of photons from a coherently prepared atomic ensemble.
We consider an ensemble of cold atoms in an elongated harmonic trap with normal
density distribution, and determine the parameters of paraxial optics to match the
mode geometry of the emitted radiation and optimally collect it into an optical
waveguide.
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1 Introduction
An important yet difficult task in quantum information and communication is determin-
istic generation of optical photons in well-defined spatial and temporal modes. Photons
can serve as flying qubits to encode quantum information and reliably transmit it over
long-distances via quantum channels [1, 2]. For optical photons, such quantum channels
are free space or fiber waveguides. On the other hand, atomic ensembles have good co-
herence properties and strong dipole transitions for efficient coupling to optical photons
[3–5]. Moreover, atoms can couple to microwave fields and thereby be interfaced with
superconducting circuits, which are among the most advanced quantum processors [6].
The atomic ensembles can then play the role of the quantum memories and microwave to
optical transducers [6–8] to interconnect distant superconducting quantum circuits via
optical fibers.

Here we consider photon emission from an atomic ensemble coherently prepared in
a collective storage state corresponding to a single symmetric spin-wave excitation. This
preparation step may be the result of collective coupling of alkali atoms on the ground state
hyperfine transition [9, 10] or on the highly excited Rydberg transition [11, 12] to a mi-
crowave resonator that in turn contains superconducting qubits. A stimulated Raman pro-
cess triggered by a coupling laser pulse converts the collective spin excitation of the atoms
to an optical photon emitted predominantly in the phase-matched direction. We examine
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the spatio-temporal profile of the emitted photon and determine the parameters of the
paraxial optical elements to optimally collect this photon into a single-transverse-mode
optical waveguide. The waveguide can then transmit the photon encoding the quantum
information to a distant atomic ensemble, where a reverse process, equivalent to dynam-
ical light storage in an electromagnetically induced transparency (EIT) medium [3], will
coherently convert the optical excitation to a collective microwave spin excitation.

The paper is organized as follows. In Sect. 2 and in Appendices A and B, we present the
mathematical formalism to describe the photon emission by coherently prepared atoms
and photon collection by Gaussian optics. In Sect. 3 we present the results of analytic and
numerical calculations for optimal photon collection, followed by conclusions in Sect. 4.

2 Interaction of atoms with a radiation field
Consider an ensemble of N three-level atoms with the long-lived ground-state sublevels
|g〉 and |s〉 and an electronically excited level |e〉, as shown in Fig. 1(a). We assume that
the atoms initially in the ground state |G〉 ≡ |g1, g2, . . . , gN 〉 are transferred to the collective
single-excitation storage state |S〉 = 1√

N

∑N
j=1 |g1, g2, . . . , sj, . . . , gN 〉 by a weak microwave or

Raman process that acts symmetrically on all the atoms. A spatially uniform laser pulse
couples near-resonantly the storage state |s〉 to the excited state |e〉 with Rabi frequency
�. An atom at position r in the excited state |e〉 then emits a photon into the free-space
radiation field Ê(r) =

∑
k âkuk(r), with modes {uk(r)} forming a complete basis, and decays

to the ground state |g〉. The Hamiltonian of the system is

H =
∑

k

�ωkâ†
kâk +

N∑

j=1

∑

μ=g,s,e
�ωμ|μ〉j〈μ|

–
N∑

j=1

[
��ei(kc·rj–ωct)|e〉j〈s| + ℘eg · Ê(rj)|e〉j〈g| + H.c

]
, (1)

where the first term on the r.h.s. is the Hamiltonian for the field modes with energies
�ωk , the second term corresponds to the Bohr energies �ωμ of the atomic levels |μ〉 (μ =
g, s, e), the third term describes the interaction of the atoms with the coupling laser with
frequency ωc and wavevector kc‖ẑ, and the last term describes the coupling of the atoms
to the free-space radiation field with the dipole moment ℘eg on the transition |e〉 → |g〉.
We set the energy of the ground state to zero, �ωg = 0, and assume that ωs � ωe (ωc 	 ωe).

Figure 1 (a) Level scheme of three-level atoms. With all the atoms initially in the ground state |g〉, a weak
microwave or Raman transition (blue arrow) creates a single collective spin excitation in the storage state |s〉.
A laser pulse acting on the |s〉 → |e〉 transition with Rabi frequency � then converts the collective spin
excitation to a single-photon field E emitted on the |e〉 → |g〉 transition. (b) The photon is emitted
predominantly in the phase matched direction into a Gaussian mode with waist w0 and is collected into a
fiber waveguide by paraxial optical elements
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The state vector of the system with the single atomic or photonic excitation can be ex-
panded as

|�〉 =
∑

j

cje–iωst|sj〉 ⊗ |0〉 +
∑

j

bje–iωet|ej〉 ⊗ |0〉 + |G〉 ⊗
∑

k

ake–iωk t|1k〉,

where |sj〉 ≡ |g1, g2, . . . , sj, . . . , gN 〉, |ej〉 ≡ |g1, g2, . . . , ej, . . . , gN 〉, |G〉 ≡ |g1, g2, . . . , gN 〉, and
|1k〉 ≡ â†

k|0〉 is the state of the radiation field with a single photon in mode k. The state
vector is normalized as 〈�|�〉 =

∑
j(|cj|2 + |bj|2) +

∑
k |ak|2 = 1, and it evolves according

to the Schrödinger equation ∂t|�〉 = – i
�

H|�〉, leading to a set of equations for the atomic
amplitudes

∂tcj = i�∗e–ikc·rj bjei�ct , (2a)

∂tbj = i�eikc·rj cje–i�ct + i
∑

k

gk(rj)akei(ωe–ωk )t , (2b)

with �c = ωc – ωe, and an equation for the field amplitudes cast in the integral form

ak(t) = i
∑

j

g∗
k (rj)

∫ t

0
dt′bj

(
t′)ei(ωk –ωe)t′ , (3)

where gk(rj) = ℘eg ·uk(rj)
�

.

2.1 Atoms
We substitute Eq. (3) into Eq. (2b) and use the basis of the plane waves uk(r) =
ε̂k,σ

√
�ωk
2ε0V eik·r within the quantization volume V . We then replace the summation over the

modes by an integration, and use the Born-Markov approximation to eliminate the radia-
tion field [13, 14], while neglecting the field-mediated interatomic interactions assuming
sufficiently large mean interatomic distance k〈|rj – ri|〉  1 [15–17]. We thus obtain the
usual spontaneous decay rate 	 = 1

4πε0

4k3
e |℘eg |2

3� and the Lamb shift of level |e〉 that can be
incorporated into ωe. Equations (2a) and (2b) reduce to

∂tcj = i�∗e–ikc·rj bjei�ct , (4a)

∂tbj = –	/2bj + i�eikc·rj cje–i�ct . (4b)

We next assume a resonant laser �c = 0 with sufficiently weak Rabi frequency |�| � 	

and set ∂tbj = 0, obtaining bj 	 i �
	/2 eikc·rj cj. Substituting this into Eq. (4a) and performing

the integration, we finally obtain

bj(t) 	 icj(0)β(t)eikc·rj ,

β(t) ≡ �(t)
	/2

exp

[

–
∫ t

0
dt′ |�(t′)|2

	/2

]

,
(5)

with the initial condition bj(0) = 0 and cj(0) = eiφj√
N ∀j ∈ {1, N}, where we included a spatial

phase φj of the single-excitation spin wave. In Sect. 3 we will analyze the influence of this
phase on the photon collection into Gaussian optical modes.
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2.2 Field
We may define the wavefunction of the emitted single-photon field via E(r, t) ≡
〈0|〈G|Ê(r)|�(t)〉 [13, 14]. Assuming an isotropic dipole moment, in Appendix A we show
that E(r, t) ∝ ∑

j
e–iωe(t–|r–rj |/c)

|r–rj| bj(t – |r – rj|/c), and for an atomic ensemble with density ρ(r),
the emitted field is

E(r, t) =
℘egk2

e√
32πε0

∫

d3r′ρ
(

r′)e–iωe(t–|r–r′|/c)

|r – r′| br′
(
t –

∣
∣r – r′∣∣/c

)
. (6)

2.2.1 Paraxial optics
We assume that N  1 atoms in a harmonic trap have a cylindrically symmetric, normal
density distribution

ρ(r) = N
e–(x2+y2)/2σ 2⊥–z2/2σ 2

z

(2π )3/2σ 2
⊥σz

(7)

with the width σ⊥ and length σz (standard deviations). Consistent with the assumption of
closely spaced energy levels |g〉 and |s〉 (ωc 	 ωe), we have kc 	 ke such that |kc – ke| � 1/σz .
The radiation emitted in the phase-matched direction ke 	 kc‖ẑ is collected by paraxial
optics which feeds it into a waveguide with a single transverse mode and a continuum of
1D modes k, see Fig. 1(b). The atomic ensemble is placed at the focus of the collecting op-
tics with the beam waist w0. The corresponding field modes that couple to the waveguide
are then the Gaussian modes

vk(r) =

√
�ωk

2ε0AL
υk(r), (8a)

υk(r) ≡ ζk

q∗
k(z)

exp

[

ik
(

z +
x2 + y2

2q∗
k(z)

)]

(8b)

= i
w0

w(z)
exp

[

ikz –
x2 + y2

w(z)2 + i
k(x2 + y2)

2R(z)
– iφGouy

]

,

where A = πw2
0/2 is the cross-section at the focus z = 0 and L is the quantization length,

ζk = kw2
0/2 is the Rayleigh length and qk(z) = z + iζk is the complex beam parameter,

w(z) = w0

√
1 + z2/ζ 2

k is the transverse beam size at position z, R(z) = z + ζ 2
k /z is the radius

of curvature of the phase front, and φGouy = arctan(z/ζke ) is the Gouy phase.
Our aim is to maximize the collection of radiation emitted by the atoms by the parax-

ial optical elements. If we, however, attempt to calculate the overlap between the single-
photon field of Eq. (6) and the resonant k = ke Gaussian mode of Eq. (8a)–(8b) as a volume
integral | ∫ d3r v∗

ke
(r)E(r)|2, it will diverge inside the atomic ensemble, where ρ(r′) �= 0, due

to the |r – r′|–1 term.

2.2.2 Photon number in the forward Gaussian modes
An alternative, more tractable approach that we use here is to calculate directly the total
number of photons n(t) emitted into the 1D continuum {k} of the forward Gaussian modes
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vk(r) all having the same waist w0 at z = 0. We have

n(t) =
∑

k

∣
∣ak(t)

∣
∣2, (9)

ak(t) = i
∑

j

g∗
k (rj)

∫ t

0
dt′bj

(
t′)ei(ωk –ωe)t′ ,

where gk(rj) = ℘eg
�

vk(rj) is now the coupling strength of atom j at position rj to the k’s Gaus-
sian mode of Eq. (8a)–(8b).

In Appendix B we show that for a single atom placed at the origin, rj = 0, the amount of
radiation collected by the Gaussian paraxial optics,

n(t) =
ς

2A
	

∫ t

0
dt′∣∣b

(
t′)∣∣2, (10)

is proportional to the ratio of the atomic absorption cross-section ς = 3λ2
e /2π to the cross-

section A = πw2
0/2 of the focused Gaussian beam at the atomic position. For many atoms

N with the density distribution of Eq. (7), we have

n(t) =
|℘eg |2

2π�ε0cA

∫ ∞

0
dωkωk

N∑

j,j′
υ∗

k (rj)υk(rj′ )
∫∫ t

0
dt′ dt′′bj

(
t′)b∗

j′
(
t′′)ei(ωk –ωe)(t′–t′′)

=
|℘eg |2

2π�ε0cA

∫ ∞

0
dωkωk

∫∫

d3r d3r′ρ(r)υ∗
k (r)ρ

(
r′)υk

(
r′)

×
∫∫ t

0
dt′ dt′′br

(
t′)b∗

r′
(
t′′)ei(ωk –ωe)(t′–t′′). (11)

Substituting here Eq. (5) with cr(0) = eiφ(r)/
√

N , where φ(r) is a spatial phase profile of the
stored spin-wave, we have

n(t) =
|℘eg |2

2π�ε0cA
1
N

∫∫ t

0
dt′ dt′′β

(
t′)β

(
t′′)

∫ ∞

0
dωk ωk�kei(ωk –ωe)(t′–t′′), (12)

�k ≡
∣
∣
∣
∣

∫

d3rρ(r)υ∗
k (r)eikc·r+iφ(r)

∣
∣
∣
∣

2

.

We can proceed along the Weisskopf–Wigner approximation [13, 17] by replacing ωk and
�k by their resonant values ωe and �ke and pulling them out of the frequency integral,
which, upon extending the lower limit of integration, reduces to 2πδ(t′ – t′′). We then
obtain

n(t) =
ς

2A
|ξ |2N	B(t), (13)

where B(t) ≡ ∫ t
0 dt′β2(t′) contains the time-dependence of the photon envelope, while the

overlap integral is

ξ ≡ 1
(2π )3/2σ 2

⊥σz

∫

d3r exp

(

iφ(r) –
x2 + y2

2σ 2
⊥

–
z2

2σ 2
z

)
ζke

qke (z)
exp

(

–ike
x2 + y2

2qke (z)

)

, (14)
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where we used that ke 	 kc (kc‖ẑ). Note that in Eq. (13) the geometric factor is

ς

2A
|ξ |2 =

6|ξ |2
(kew0)2 ≡ G. (15)

Equations (13)–(14) are the central equations of this paper. Our aim is to find the optimal
value for the Gaussian beam waist w0 that maximizes the probability of collecting the
photon n(∞) ∝ GN emitted by an ensemble of N trapped atoms with the given width and
length σ⊥, σz (standard deviations) of the density distribution.

3 Optimal photon collection
We now present the results of our calculations for three different cases of the initial spatial
phase distribution in the atomic cloud centered at the beam focus.

3.1 Uniform spatial phase
Assume that the initial atomic spin-wave has a uniform spatial phase

φ(r) = 0 ∀r. (16)

Consider first the case of the atom cloud with the spatial dimensions much smaller than
the Rayleigh length, σ⊥, σz � ζke . The mode function appearing in Eq. (14) can then be
approximated as

ζke

qke (z)
exp

(

–ike
x2 + y2

2qke (z)

)

	 exp

(

–
x2 + y2

w2
0

+ i
z

ζke

)

,

where we have used that near the focus the beam waist is w0, the beam radius of curvature
R tends to infinity, while the Gouy phase can be linearized as φGouy 	 z/ζke . Equation (14)
reduces to a Gaussian integral and we obtain

|ξ |2 	 w4
0

(2σ 2
⊥ + w2

0)2 exp

[

–
(

2σz

kew2
0

)2]

=
w̄4

0
(2σ̄ 2

⊥ + w̄2
0)2 exp

[

–
(

2σ̄z

w̄2
0

)2]

, (17)

where the dimensionless quantities are defined as σ̄z,⊥ ≡ keσz,⊥ and w̄0 ≡ kew0. The opti-
mal beam waist that maximizes the geometric factor G = 6|ξ |2/w̄2

0 is

w̄max
0 =

√
2
3

[

σ̄ 2
⊥ + P(σ̄⊥, σ̄z) +

σ̄ 4
⊥ + 6 σ̄ 2

z
P(σ̄⊥, σ̄z)

]

, (18)

P(σ̄⊥, σ̄z) =
[
σ̄ 6

⊥ + 36 σ̄ 2
⊥σ̄ 2

z + 3
√

6 σ̄ 2
z
(
σ̄ 8

⊥ + 22 σ̄ 4
⊥σ̄ 2

z – 4 σ̄ 4
z
)]1/3.

In the limit of σz → 0, the photon collection efficiency is maximized for wmax
0 =

√
2σ⊥,

with |ξ |2 → 1/4 and thus G 	 3/4 σ̄ 2
⊥. This is of course an intuitive result meaning that the

waist of the Gaussian beam should be equal to the width of the atomic ensemble. As will be
seen below, this result also applies to the atomic ensembles with sufficiently large width,
which is, however, not optimal for photon collection by the paraxial Gaussian optics.
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When the atomic cloud is larger than the Rayleigh length, the integral of Eq. (14) can be
evaluated as

ξ ∗ =
ζke

(2π )3/2σ 2
⊥σz

∫

dz
e

– z2
2σ2z

q∗
ke

(z)

∫

dx dy exp

[

–
(
x2 + y2)

(
1

2σ 2
⊥

– i
ke

2q∗
ke

(z)

)]

=
ζke

(2π )1/2σz

∫

dz
e

– z2
2σ2z

z – iζke – ikeσ
2
⊥

= i
√

π

8
kew2

0
σz

e
(kew2

0/2+keσ2⊥)2

2σ2z erfc
(

kew2
0/2 + keσ

2
⊥√

2σz

)

= i
√

π

8
w̄2

0
σ̄z

e
(w̄2

0/2+σ̄2⊥)2

2σ̄2z erfc
(

w̄2
0/2 + σ̄ 2

⊥√
2σ̄z

)

. (19)

In Fig. 2(a1), we show the optimal values of w̄max
0 that maximize G for various values of

σ̄z, σ̄⊥. The corresponding maxima for G are shown in Fig. 2(b1). We notice that for a
wide range of values of σ̄z, σ̄⊥ the optimal waist of the Gaussian beam is again w̄max

0 	√
2σ̄⊥ and the corresponding maximum for the geometric factor is |ξ |2 	 1/4 and thus

G = 6|ξ |2/(w̄max
0 )2 	 3/4 σ̄ 2

⊥. Only for sufficiently narrow and not too long ensembles, σ̄⊥ �

Figure 2 Optimal waist of the Gaussian beam w̄max
0 divided by the width of the atomic ensemble

√
2σ⊥

(upper panels a) and the corresponding maxima of the geometric factor G ≡ 6|ξ |2/(w̄max
0 )2 for N = 103 atoms

(lower panels b) versus the dimensionless width and length σ̄⊥,z = keσ⊥,z of the atomic cloud, for the cases of
the spatial phase φ(r) of the atomic spin wave given by: Eq. (16), uniform phase, (a1), (b1); Eq. (20), Gouy
phase compensation, (a2), (b2); and Eq. (23), full spatial phase compensation, (a3), (b3). For the values of σ̄⊥,z

where w̄max
0 	 √

2σ̄⊥ we also have |ξ |2 	 1/4 and thus G 	 3/4σ̄ 2⊥
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10 (σ⊥ ∼ λe) and σ̄z � 200 (σz � 30λe), we obtain a significantly better photon collection
efficiency n(∞) ∝ GN � 5 (assuming N = 103 atoms) into the appropriately focused (w0 =
wmax

0 ) Gaussian beams.

3.2 Spatial phase compensating the Gouy phase
Recall that the Gouy phase φGouy(z) = arctan(z/ζke ) of the Gaussian beam varies with z.
We may therefore further improve the photon collection efficiency if we imprint onto the
stored atomic spin-wave a spatial phase that would compensate the Gouy phase,

φ(r) = –φGouy(z). (20)

This can be achieved, e.g., by using spatially varying electric or magnetic fields or ac Stark
shifts induced by off-resonant lasers [18]. Now the integral of Eq. (14) can be evaluated as

ξ ∗ =
ζke

(2π )3/2σ 2
⊥σz

∫

dz
e

– z2
2σ2z

|q∗
ke

(z)|
∫

dx dy exp

[

–
(
x2 + y2)

(
1

2σ 2
⊥

– i
ke

2q∗
ke

(z)

)]

=
ζke

(2π )1/2σz

∫

dz
e

– z2
2σ2z

|q∗
ke

(z)| · q∗
ke

(z)
q∗

ke
(z) – ikeσ

2
⊥

=
ζke

(2π )1/2σz

∫

dz
e

– z2
2σ2z

–iφGouy(z)

z – iζke – ikeσ
2
⊥

. (21)

Alternatively, we can write

ξ ∗ =
i

(2π )3/2σ 2
⊥σz

∫

dz
w0

w(z)
e

– z2
2σ2z

∫

dx dy exp

[

–
(
x2 + y2)

(
1

w(z)2 +
1

2σ 2
⊥

– i
ke

2R(z)

)]

=
iw0√
2πσz

∫

dz
e

– z2
2σ2z w(z)R(z)

2R(z)σ 2
⊥ + w(z)2R(z) – ikew(z)2σ 2

⊥
. (22)

We numerically maximize |ξ |2/(w̄0)2 for different values of σ̄z , σ̄⊥, and show the resulting
w̄max

0 in Fig. 2(a2) and the corresponding maxima for G in Fig. 2(b2). Note that while the
overall behavior of the geometric factor is similar to the previous case of uniform spatial
phase, we nevertheless obtain good photon collection efficiency n(∞) ∝ GN � 5 (N = 103)
even for longer atomic clouds σ̄z � 300 (σz � 50λe) since we compensate for the Gouy
phase that changes the sign across the focal point z = 0. In other words, when a photon
emitted from a highly elongated atomic ensemble, σz  ζk (σ̄z  w̄2

0/2), with a uniform
spatial phase φ(r) = 0 is collected into a focused Gaussian mode, the photon amplitudes
originating from the regions of z < 0 and z > 0 interfere partially destructively, while for
the spatial phase φ(r) = –φGouy(z) this interference is constructive.

3.3 Full spatial phase compensation of a Gaussian beam
We finally examine the case of the spatial phase of the atomic spin wave having the same
spatial dependence as that of a focused Gaussian beam,

φ(r) = k
x2 + y2

2R(z)
– φGouy(z), (23)
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which would correspond to a photon from a Gaussian mode stored in an atomic ensemble,
e.g., via stopping a dark-state polariton in the EIT regime [3]. For the integral of Eq. (14)
we then obtain

ξ ∗ =
i

(2π )3/2σ 2
⊥σz

∫

d3r exp

(

–
x2 + y2

2σ 2
⊥

–
z2

2σ 2
z

)
w0

w(z)
exp

(

–
x2 + y2

w2

)

= i
w0√
2πσz

∫

dz e
– z2

2σ2z
w(z)

w(z)2 + 2σ 2
⊥

. (24)

For a small atomic cloud, w(z) 	 w0, we have the analytic result |ξ |2 = w4
0/(w2

0 + 2σ 2
⊥)2,

which is the same as in Eq. (17) in the limit of σz → 0. For larger cloud sizes, we again
maximize numerically |ξ |2/w̄2

0 for different values of σ̄z, σ̄⊥, obtaining w̄max
0 and the corre-

sponding maxima for G which are shown, respectively, in Fig. 2(a3) and (b3). Even though
w̄max

0 	 √
2σ̄⊥ for even smaller values of σ̄⊥ as compared to case 2 above, the maximum

for the photon collection efficiency n(∞) ∝ GN has nearly the same dependence on σ̄z,
σ̄⊥ as that with only the Gouy phase compensation. The physical reason for this result is
that the curvature of the phase front of a Gaussian mode plays only a minor role in narrow
atomic ensembles yielding the largest photon collection efficiency.

4 Discussion and conclusions
Cold, trapped atoms can strongly interact with radiation of different frequencies and
therefore be used for coherently interfacing microwave and optical systems and compo-
nents. When converting atomic excitations to photons, an important consideration for
efficient collection of radiation is the directionality of the emitted photons. A well-known
approach for efficient photon collection is to place the atoms or other emitters into a res-
onant cavity with sufficiently strong coupling so that the Purcell enhancement of the pho-
toemission rate into the cavity mode largely exceeds the free-space spontaneous decay
rate with the photon emitted in a random direction [14]. In contrast, using wave-mixing
or stimulated Raman processes, a coherent spin wave of a large atomic ensemble can be
converted into a photon emitted predominantly into the phase-matched direction with
well-defined temporal and spatial profile [7, 19].

In this paper, we have addressed the question of how to optimally collect this photon
created from the atomic spin wave by a stimulated Raman process. Assuming an atomic
ensemble with Gaussian density distribution – typical for cold atoms in harmonic traps –
we have found that the emitted photon is best mode-matched by a Gaussian optical mode
with the waist equal to the width of the atomic ensemble, provided it is not too small
(larger than the wavelength) [see Fig. 2(a)]. For narrower ensembles, the optimal waist of
the Gaussian beam should be larger, but the photon collection efficiently decreases for
highly elongated ensembles [see Fig. 2(b)]. The main reason for this is the reduction of the
spatial overlap between the atomic cloud and the tightly focused Gaussian beam whose
transverse width rapidly increases away from the focus. Hence, compact, i.e. narrow and
short, atomic ensembles offer the best mode matching with appropriately focused Gaus-
sian beams. But since increased probability of directional photoemission also requires a
large number of atoms N and large optical depth of the ensemble [see Eq. (13)], compact
atomic ensembles will have high density, which necessitates considerations of atom-atom
interactions and multiple scattering [20].
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Appendix A: Single-photon wavefunction
The wavefunction of the emitted single-photon field can be defined via [13, 14, 17]

E(r, t) ≡ 〈0|〈G|Ê(r)|�(t)
〉

=
∑

k

uk(r)ak(t)e–iωk t

= i
∑

k

uk(r)
∑

j

g∗
k (rj)

∫ t

0
dt′bj

(
t′)e–iωk (t–t′)–iωet′ . (A.1)

For simplicity, we assume an isotropic dipole moment ℘eg · ε̂ = ℘eg/
√

3 ∀|ε̂| = 1 and use
the basis of the plane waves, leading to

E(r, t) = i
℘eg√

3(2π )3ε0

∑

j

∫ t

0
dt′bj

(
t′)e–iωet′

∫ ∞

0
dk k2ωke–iωk (t–t′)

∫

4π

d�keik·(r–rj),

(A.2)

where we replaced the summation over the modes by an integration,
∑

k → 2 V
(2π )3

∫
d3k =

2 V
(2π )3

∫ ∞
0 dk k2 ∫

4π
d�k with the factor of 2 accounting for the two orthogonal photon

polarizations σ = 1, 2 for each k (ε̂k,σ ⊥ k). The integration over the 4π solid angle with
d�k = sin θ dθ dϕ leads to 4π

sin(k|r–rj|)
k|r–rj| = –i 2πc

ωk |r–rj| (e
ik|r–rj| – c.c). We substitute this into the

above equation, assume that during the photon emission k is peaked around the atomic
resonance ke = ωe/c and pull k2

e out of the integral, and extend the lower limit of integration
over k to –∞, as in the Weisskopf–Wigner approximation [13, 17]. We then have

∫ ∞

–∞
dk

(
eik|r–rj|–ick(t–t′) – e–ik|r–rj|–ick(t–t′))

=
2π

c
δ
(
t′ – t + |r – rj|/c

)
+

2π

c
δ
(
t′ – t – |r – rj|/c

)
.

Upon substitution into Eq. (A.2) the second term is always zero, and we finally obtain

E(r, t) =
℘egk2

e√
32πε0

∑

j

e–iωe(t–|r–rj|/c)

|r – rj| bj
(
t – |r – rj|/c

)
. (A.3)

For a single atom at the origin, rj = 0, we have an isotropic spherical wave

E(r, t) =
℘egk2

e√
32πε0

ei(ker–ωet)

r
b(t – r/c),

while the intensity of the emitted radiations at position r and time t is given by I(r, t) =
ε0c
2 |E(r, t)|2 = �ωe

4πr2
1
2	|b(t – r/c)|2.

For an ensemble of N  1 atoms with density ρ(r), such that
∫

d3rρ(r) = N , the emitted
field is then given by Eq. (6) of the main text.

Appendix B: Single-atom emission into the Gaussian modes
Consider the photon emission by a single atom placed at the origin, rj = 0, and therefore
gk(0) = i ℘eg

�

√
�ωk

2ε0LA . In Eq. (9), replacing the summation over the modes by an integration
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according to
∑

k → 2 L
2πc

∫ ∞
0 dωk (factor of 2 is for the two orthogonal polarizations of the

photon), and substituting ak(t) with a single atom contributing, bj → b, we have

n(t) =
|℘eg |2

2π�ε0cA

∫ ∞

0
dωkωk

∫ t

0
dt′b

(
t′)ei(ωk –ωe)t′

∫ t

0
dt′′b∗(t′′)e–i(ωk –ωe)t′′ . (B.1)

We can proceed using the Weisskopf–Wigner approximation as follows

n(t) =
|℘eg |2

2π�ε0cA

∫∫ t

0
dt′ dt′′b

(
t′)b∗(t′′)

∫ ∞

0
dωkωkei(ωk –ωe)(t′–t′′)

	 |℘eg |2ωe

2π�ε0cA

∫∫ t

0
dt′ dt′′b

(
t′)b∗(t′′)

∫ ∞

–ωe

dω′
keiω′

k (t′–t′′)

	 |℘eg |2ωe

2π�ε0cA

∫∫ t

0
dt′ dt′′b

(
t′)b∗(t′′)

∫ ∞

–∞
dω′

keiω′
k (t′–t′′)

=
|℘eg |2ωe

�ε0cA

∫∫ t

0
dt′ dt′′b

(
t′)b∗(t′′)δ

(
t′ – t′′)

=
|℘eg |2ωe

�ε0cA

∫ t

0
dt′∣∣b

(
t′)∣∣2 =

ς

2A
	

∫ t

0
dt′∣∣b

(
t′)∣∣2, (B.2)

where ς = 3λ2
e /2π is the resonant absorption cross section of the atom. This is a very

simple and intuitive result: For an initially excited atom, |b(t′)|2 = e–	t′ , we have that n(t →
∞) = ς/(πw2

0), i.e., the amount of radiation collected by the Gaussian paraxial optics is
proportional to the ratio of the atomic absorption cross-section to the cross-section of
the focused Gaussian beam at the atomic position.
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