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Abstract

We theoretically analyze the phase sensitivity of an SU(1, 1) interferometer with
various input states by product detection in this paper. This interferometer consists of
two parametric amplifiers that play the role of beam splitters in a traditional
Mach-Zehnder interferometer. The product of the amplitude quadrature of one
output mode and the momentum quadrature of the other output mode is measured
via balanced homodyne detection. We show that product detection has the same
phase sensitivity as parity detection for most cases, and it is even better in the case
with two coherent states at the input ports. The phase sensitivity is also compared
with the Heisenberg limit and the quantum Cramér—Rao bound of the SU(1, 1)
interferometer. This detection scheme can be easily implemented with current
homodyne technology, which makes it highly feasible. It can be widely applied in the
field of quantum metrology.

Keywords: Phase sensitivity; SU(1, 1) interferometer; Product detection

1 Introduction

Quantum parameter estimation has recently drawn considerable attention for its funda-
mental and technological applications [1-12]. One of the most common and powerful
tools in the field of precision metrology is optical interferometry, because of its extreme
phase sensitivity. However, the phase sensitivity A¢ of an interferometer with solely clas-
sical resources is bounded by 1/+/7, which is well known as the shot noise limit (SNL),
where 7 is the average photon number. During the past few decades, it has been shown
that this limit can be surpassed by taking advantage of quantum resources. By using parti-
cle entanglement as a resource for sensitivity enhancement [13, 14], there has been much
progress toward reaching the more fundamental Heisenberg limit (HL), which is charac-
terized by a phase sensitivity scale of 1/x.

One possibility for beating the SNL is to inject non-classical light into a traditional in-
terferometer, such as a Mach—Zehnder interferometer. A number of theoretical proposals
have shown that the phase sensitivity can go below the SNL using non-classical light, such
as squeezed states [15, 16], two-mode squeezed states [17], Fock states [18] and NOON
states [19-21].
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Another possibility for beating the SNL is to use a new class of interferometers, which
is described by the SU(1, 1) group, unlike the Mach—Zehnder interferometer by the SU(2)
group. This type of interferometer, which was first proposed by Yurke et al. [22], is shown
in Fig. 1. It is configured as a Mach—Zehnder interferometer, except that the beam splitters
are replaced by parametric amplifiers (PAs), such as optical parametric amplifiers or four-
wave mixers. It has been pointed out that a phase sensitivity with vacuum inputs scaling as
1/[n( + 2)]"/? can be achieved with intensity detection, where i = 2 sinh® g is the average
photon number inside the interferometer and g is the PA interaction strength. Although
the phase sensitivity reaches the HL, 7 is small due to the limited interaction strength g.

Recently, a new theoretical scheme utilizing coherent states as inputs showed that the
phase sensitivity can be largely enhanced in the interferometer as a result of the large
input photon number [23]. Marino et al. [24] also studied the effect of loss on the phase
sensitivity of the SU(1, 1) interferometer with intensity detection. Sparaciari et al. [25, 26]
analyzed the phase sensitivity in SU(1, 1) interferometers initially fed by Gaussian states.
It is found that incident coherent states could lead to Heisenberg scaling. Hu et al. [27]
investigated the effect of phase diffusion on the performance of an SU(1, 1) interferometer.
You et al. [28] revisited the phase sensitivity in an SU(1, 1) interferometer considering the
different phase configurations. More recently, Zhang et al. [29] addressed the quantum
stochastic phase estimation with SU(1, 1) interferometer.

Experimental realizations of the SU(1, 1) interferometer have been reported in optical
systems [30, 31], spinor Bose—Einstein condensates (BECs) [32-36], a hybrid atom-light
interferometer [37, 38], and a circuit quantum electrodynamics system [39]. Most recently,
an alternative “pumped-up” approach was proposed [40] where all the particles can be
involved in the quantum parameter estimation. It can be implemented in spinor BECs and
hybrid atom-light systems. In this manuscript, we consider the SU(1,1) interferometer
which is realized in optical system.

One goal of precision metrology is to achieve the HL. For this purpose, several different
detection schemes have also been thoroughly investigated, including intensity detection
[23], homodyne detection [41] and parity detection [42]. It has been pointed out that an
SU(1,1) interferometer with coherent and squeezed vacuum states as inputs can approach
the HL with both homodyne and parity detection. Another kind of scheme, product de-
tection, which was first proposed in Ref. [17], can achieve the HL scaling with two-mode
squeeze states as inputs in a traditional Mach—Zehnder interferometer. Mathematically,
product detection is described by P=(a+a")(b-b")/2i, where & (&) and b (b") are the
annihilation (creation) operators for the two output modes. We adjust the relative phases
of the local oscillators in homodyne detection such that the photocurrents of detectors a
and b are proportional to the expectation values of the amplitude quadrature (@ + af)/+/2
and the momentum quadrature (b - b")/+/2i. In this way, product detection can be easily
implemented by homodyne technique. Compared with parity detection, product detec-
tion does not require a photon-number resolving detector, which makes it much more
feasible.

In this paper, we consider a single-mode squeezed state |/) = D(a)S(r)|0) as input,
where 8(r) = elra

operator [43], r = |r|e?" is the squeezing parameter, o = |a|e® is the displacement am-

~ri)/2 g the squeezing operator, D(a) = eled'~aa) ig the displacement

plitude, and r* and «* are the conjugate of r and «, respectively. Specifically, when r = 0,
it reduces to a coherent state, and when « = 0, it is a squeezed vacuum state. Using this
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method, we can easily go back to some specific inputs, such as a coherent state mixed with
squeezed vacuum state [41, 42]. We show that with the coherent state and the squeezed
vacuum state as inputs, the phase sensitivity with product detection can approach the HL
(as in Ref. [42]) when the average photon number of the coherent and squeezed vacuum
states are comparable. Furthermore, we discuss the condition for achieving the optimal
phase sensitivity with different input states. Finally, we also compare the phase sensitivity
with another quantum limit, the quantum Cramér—Rao bound (QCRB) [44], which quan-
tifies the ultimate limit on the performance of the phase-estimation strategies for a given
quantum state.

This paper is organized as follows: We first present the propagation of the input fields
through the SU(1, 1) interferometer in Sect. 2. We then discuss the HL in an SU(1, 1) inter-
ferometer and compare the phase sensitivity with the HL and the QCRB in Sect. 3. After
comparing different detection schemes in Sect. 4, we conclude with a summary.

2 Product detection on SU(1, 1) interferometer
2.1 Model
Figure 1 shows the model of an SU(1, 1) interferometer, in which two PAs play the role of
beam splitters in a traditional Mach—Zehnder interferometer. We consider single-mode
squeezed states as inputs. 4 () and b (Z,T) are the annihilation (creation) operators corre-
sponding to the modes a and b, respectively. After the first PA, one output beam accumu-
lates a phase shift ¢. The output beams are measured via homodyne detection. The phase
information can be inferred from the measured signal.

This interferometer can be modeled by the transformation between input and output
modes by V, = Ty T T, Vo, where Vj = (a4, ai, by, b})T and V;, = (@, 1y, bo, l;(T))T. T1, Ty,
and T, describe the first PA, the phase shift and the second PA, respectively:

Mirror

Homodyne Detection
(Amplitude quadrature)

Pump

D(B)S(1)]0),
Homodyne Detection
(Momentum quadrature)

Mirrot

Figure 1 (Color online) Schematic diagram of SU(1, 1) interferometer. Two parametric amplifiers (PAs) take
the place of two beam splitters in the traditional Mach-Zehnder interferometer. gy (g») and 6, (6) describe
the strength and phase shift introduced by the parametric processes, respectively. g; and bi (i=0,1,2) denote
two modes in the different processes. The pump field between the two PAs has a 7t phase difference
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where y; = coshgj, v; = —" sinhgj, g; and 6, are the strength and phase shift introduced by
the PA processj (j = 1,2) [45, 46]. The phase sensitivity of this device by product detection
can be obtained through an error propagation analysis,

(AP)

=, (4)
|0(P)/3¢|

where the brackets denote the quantum mechanical expectation values, the product oper-
ator is defined as P = (4, + &;)(Z)z - 13;)/ 2i,and (AP) =,/ (P?) — (P)? is the standard devia-
tion of the product operator. Usually, the SU(1, 1) interferometer is operated in a balanced
configuration in which the second PA will “undo” what the first one does [24]. In such a
case, we have 6, =0,6, = w,and g; = g» = ¢g. Thus if ¢ = 0, then a, = a¢ and i)g = l;o. We will
focus on a balanced configuration throughout this paper. The input states can be generally
expressed by D(a)8(r,)|0)x ® D(B)S(r4)|0),, where o = |a|e?, B = |Blei®, r, = r1€%1, and
rp = r2€/%2. Various input states can be obtained from this generality.

2.2 Phase sensitivity
Product detection was firstly proposed in Ref. [17]. It can approach the HL scaling. Here
we will study the phase sensitivity with various input states and compare them with the
corresponding HL and QCRB.

The corresponding HL [24] is related to the total average photon number inside the
interferometer Niotal = (&1&1 + 131131), which is given by

Ntotal = (NPA + 1)(Na +Nb +Nsa +Nsb) +NPA (5)

— 2/ Npa(Npa +2)y/NNj cos (6, + 6),

where Npy = 2sinh®g, N, = |a|?, N = |B|%, and Nyp) = sinh? r(5). Thus, Niera not only
depends on the strength of the process g, but also on the phase of the input states 6, and
0, [46]. Thus, the HL is as follows:

1

Ay = .
N, total

(6)

2.2.1 Vacuum input states |0), ® |0),

With vacuum inputs, the optimal phase sensitivity is found to be A¢gp = 1/
/Npa(Npa + 2), while the corresponding HL is A¢yy = 1/Npa. The QCRB in this case
is also 1/4/Npa(Npa + 2) [42]. Figure 2 compares the phase sensitivity A¢y with the SNL,

Page 4 of 13
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Figure 2 (Color online) Optimal phase sensitivity
via product detection as a function of g with a
vacuum as inputs. The blue line represents the HL,
the dashed purple line represents the shot noise
limit (SNL), the dot-dashed red line represents the
quantum Cramér-Rao bound (QCRB), the dotted
green line represents the phase sensitivity via

product detection in the ideal case, the dashed red 0.01 PD,L=0.05 ~
line represents the phase sensitivity via product — — PD,L=0.10 =~
detection with photon loss L = 0.05, and the dashed 00 05 10 15 20 25 3.0

brown line represents the phase sensitivity via
product detection with photon loss L =0.10

HL, and QCRB, as functions of g. We assume that the interferometer is seeded with pure
Gaussian states throughout the paper. As g increases, the phase sensitivity A¢ becomes
closer to the HL and it can saturate the QCRB. As shown in Ref. [42], intensity detec-
tion, homodyne detection, and parity detection can saturate the QCRB as well. From an
experimental perspective, intensity detection is much more preferred in this case.

2.2.2 One coherent input state |a), ® |0)
With only one coherent state at the input ports, the first PA works as a phase insensitive
amplifier. The phase sensitivity with product detection at ¢ = 0 is given by

1+2N, +2N,cos26,
oo )

"V k(1 +N, + N,cos26,)?

where k = Npa(Npa +2). The optimal phase sensitivity is obtained at 6, = 0. When N, > 1,
the optimal phase sensitivity can be simplified to

1
VN, +1)

This agrees with the parity detection result [42]. Both detection schemes cannot saturate
the QCRB. The corresponding HL is A¢yp = 1/[(Npa + 1)N, + Npa]. The QCRB can be
found as 1/[k (2N, + 1) + 2N,(Nps + 2)]'/? in Ref. [42]. As shown in Fig. 3, the optimal
phase sensitivity can beat the SNL, but it does not surpass the HL. With the increase in

Agpopt = )

g, the phase sensitivity via product detection becomes closer to the QCRB, as shown in
Fig. 3(a). As N, increases, the phase sensitivity can be approximated as 1/+/NpaNiotal- It
is improved by a factor of 1//Nps compared with the SNL as shown in Fig. 3(b). The
enhancement arises from the amplification of the parametric process.

2.2.3 Two coherent input states |a), ® |B)p

With two coherent states at the input ports, the first PA works as a phase sensitive ampli-
fier. The amplification will depend on the relative phase between the two input beams. For
simplicity, here we assume that two coherent input states have the same photon number,
N, = Np,. The phase sensitivity at ¢ = 0 is obtained by

A¢ = /1 + 4N, + 2N, (cos 26, — cos 26;)
X [4Na (sin 6, sin B, sinh? g — cos 6, cos 6}, cosh? g) 9)

+ N, (2 + cos 20, — cos 26,) sinh 2g + sinh 2g]_1.
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Figure 3 (Color online) Optimal phase sensitivity ‘ (@) ‘ HL‘ ‘ PD‘L_O
via product detection as a function of (a) g and 10 7 . SNL PD.L0.05 1
(b) N,y with one coherent input state. The blue line s - QCRB — — PD,L=0.10 ]

represents the HL, the dashed purple line represents
the shot noise limit (SNL), the dot-dashed red line
represents the quantum Cramér—Rao bound
(QCRB), the dotted green line represents the phase
sensitivity via product detection in the ideal case, 0.001
the dashed red line represents the phase sensitivity

via product detection with photon loss L = 0.05, and

0.100

Ag

0.010

the dashed brown line represents the phase g
sensitivity via product detection with photon loss L
=0.10
0.501
S
< o.10}
0.051

Under the condition 6, = 0 and 6, = 7, the optimal phase sensitivity is achieved (here we
assume that N, > 1):

Aopt = {2N,[(Noa + 2)(Vic + 1) +1c] + 1} 72, (10)

The corresponding HL is given by

1
2N, (Npp +1 + ﬁ) +NpA.

Apm, = (11)
According to the general formalism for the QCRB of Gaussian states by Gao et al. [47],
Adqcrs is given by

-2 (12)

A¢QCRB = {K + 4'Na[l( +1+ \/E(NPA + 1)]}
Figure 4 shows that the optimal phase sensitivity can beat the SNL, but not the HL, and it
is very close to the QRCB.

2.2.4 Coherent state mixed with squeezed vacuum state |a), ® S'(rb)|0) b
With the coherent state and the squeezed vacuum state as inputs, the phase sensitivity at

¢ = 0is given by

(13)

~ 4(1 + 4N, cos? 0,)(cosh 2ry + cos ¢, sinh 2r,)
| sinh? 2g(1 + 4N, cos2 0, + cosh 2r, + cos ¢, sinh 27,)2

Under the condition ¢, = 7 and 6, = &, the optimal phase sensitivity is achieved

1+4N,
A¢opt = i B . (14')
k(coshr + 2N, coshr + 2N, sinhr)?
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Figure 4 (Color online) Optimal phase sensitivity ‘ @) ‘ HL‘ ‘ PD‘L—O
via product detection as a function of (a) g and 10 7 . SNL PD.L<0.05
(b) Ng with two coherent input states. The blue line o7 . - QCRB — — PD,L=0.10

represents the HL, the dashed purple line represents

the shot noise limit (SNL), the dot-dashed red line S 0.100
represents the quantum Cramér—Rao bound 0.010¢
(QCRB), the dotted green line represents the phase 0.001k
sensitivity via product detection in the ideal case, 109%

the dashed red line represents the phase sensitivity : : : : : : :
via product detection with photon loss L = 0.05, and
the dashed brown line represents the phase a
sensitivity via product detection with photon loss L
=0.10

0 2 g 6 8 10
Na
Figure 5 (Color online) Optimal phase sensitivity " " "
via product detection as a function of g with the 10 HL PDL=0 |
coherent state mixed with the squeezed vacuum N SNL PDL=0.05
N b S>o - QCRB — — PD,L=0.10 |

state. The blue line represents the HL, the dashed
purple line represents the shot noise limit (SNL), the
dot-dashed red line represents the quantum
Cramér—-Rao bound (QCRB), the dotted green line
represents the phase sensitivity via product
detection in the ideal case, the dashed red line
represents the phase sensitivity via product
detection with photon loss L = 0.05, and the dashed g
brown line represents the phase sensitivity via

product detection with photon loss L =0.10. The

parameter values are as follows: r = 2, || >~ tanh(2g)e'/2

We assume that N, > 1 and denote r, by r, the optimal phase sensitivity is reduced to
1/[k (N,e* + coshre”)]V2. This result is similar to parity detection [42]. The corresponding
HL is 1/[(Npa + 1)(N, + N;) + Npa], where N; = sinh? r. Meanwhile, the QCRB is given by
1/[2N,(Npa +2) + N2, sinh?(2r)/2 + k (2N, coshre” + cosh® r)]V/2. As pointed out in Ref. [42],
when || >~ tanh(2g)e’/2, the phase sensitivity can approach the HL. We plot the phase
sensitivity A¢op as a function of the interaction strength g in Fig. 5. The phase sensitivity
is always below the SNL and close to the HL.

2.2.5 Two squeezed vacuum states S(ra)|0)a ® S(rp) |0),
For simplicity, we consider the case in which r; = r, = 7. When ¢, = ¢ = 0 or 7, the optimal

phase sensitivity at ¢ = 0 is achieved

1

JVK@N, + 1) (15)

A¢Opt =
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Figure 6 (Color online) Optimal phase sensitivity ‘ () ‘ A o PDLe0
via product detection as a function of (a) g and (b) r 10 V0 SNL PD.L=0.05 1
with two squeezed vacuum states. The blue line 1M e - QCRB — — PD,L=0.10 ]

represents the HL, the dashed purple line represents
the shot noise limit (SNL), the dot-dashed red line
represents the quantum Cramér—Rao bound
(QCRB), the dotted green line represents the phase
sensitivity via product detection in the ideal case,
the dashed red line represents the phase sensitivity
via product detection with photon loss L = 0.05, and

the dashed brown line represents the phase g
sensitivity via product detection with photon loss L
=0.10 ;

0.500

g 0.100

0.050

0.010

0.005E . . .

0.0 0.5 1.0 1.5 2.0

The corresponding HL is 1/[2(Npa + 1)N; + Npa]. The QCRB is 1/[(1 + Npa)? cosh4r —
1]Y2. The optimal phase sensitivity depends not only on the strength g, but also on the
squeezing parameter r, as shown in Fig. 6(a) and (b). Figure 6(a) shows that the phase
sensitivity with product detection cannot approach the HL as g increases, while it can
easily go below the SNL. When r decreases to zero, phase sensitivity goes back to the
case with vacuum inputs, as shown in Fig. 6(b). When r goes to infinity, phase sensitivity
would follow the SNL scaling (not shown in Fig. 6). The phase sensitivity is improved by
a factor of 1/+/cosh2r compared to the case of vacuum inputs, which comes from noise
reduction of the squeezed vacuum states. In this case, the phase sensitivity cannot saturate

the QCRB.

3 Discussion

3.1 Comparison between various detections

We have studied the behavior of the phase sensitivity of an SU(1, 1) interferometer with
various input states via product detection. Table 1 summarizes the phase sensitivity for
different input states with product detection, parity detection and homodyne detection.
It also shows the QCRB for different input states.

With vacuum states as inputs, product detection, parity detection and intensity detec-
tion all can saturate the QCRB. However, homodyne detection is not available in this case,
because the expectation value of the amplitude quadrature operator is always zero, which
is independent of phase shift ¢. From the viewpoint of experimental implementation, in-
tensity detection is greatly preferred because of its simplicity.

In the case with one coherent state as the input (see Fig. 7(a)), product detection
achieved the same phase sensitivity as parity detection, and it was slightly better than
homodyne detection and intensity detection. All four detection schemes cannot saturate
the QCRB. Furthermore, when N, becomes larger than one, all four detections show the
characterization of the SNL scaling, except they included an improvement factor of 1/./k,
which comes from the amplification of the parametric process. When the input photon
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Table 1 Phase sensitivities with various detections and QCRB of an SU(1, 1) interferometer with
different input states

Input states Product Intensity Parity Homodyne QCRB
10) ® |0) 1,172 /12 /K172 Not available 1/k172
[42]
o) ® |0) VikWNg+DIV2 AQE L n® VIkWNg+ D12 1/keNg)? 1/IcQRNg + 1) +
2N, (Npa + 21172

le™y @ | 1/{2N,4[(Npa + 1/QicNg)'? Ref. [42] ~ 1/[4kNg1Y? 1/{4NG[(Npa +
AWk +1)+ VK +K+ 11+
K] +K}V2 K}]/Z

lor) ® 5(10) 1/Ik (Nge” + Aoneg,t  1V/Ik(Nae” + /IkNge? 12 1/12Ng(Npa +2) +
cosh re")]1/2 cosh? N2 N3, sinh?(2r)/2 +

K (2Ng coshre” +

cosh? 1’2
3(110) ® S(n[0) VIkQNs+ D12 Adlyoeg,’  1/I@Ns+ 1172 Notavailable  1/[(1 + Npa) x

cosh 4r - 112

*See Section Appendix.
T is set to be real in this line; it is complex elsewhere.
#See Section Appendix.
§See Section Appendix.

o (@) 0®I0) _ __ progyet | o (b) |2)®IB)
;;\\ ————— Intensity
.\\\'\:N ------ Homodyne ] 1
< 1 \\:'}3:\,. Parity FY
< S trea, <
010 o, 0.100
":‘Qa.:_:‘:
0.1 Na=1 T, 0010 Ny=1,Bl=laf
. . . . . . . 0.001L . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
g 9
100¢ T T T T 100¢ T T T T
¥(c) [®3(r)|0) |d) 8(nI0)®3(r)|0)
100 N, 10F N
1 . ~\~~~~~~~ 1 . '~ —
RSN e, TTeel - SN RS -
g 0.100F Seney el g 0400 e TTeeell_
0.010} el T 0.010 T T
N,=1,r=2 T r=2 T
0.001¢ T 0.001 T
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
g9 9
Figure 7 (Color online) Optimal phase sensitivity as a function of g with different detections in the presence
of various input states: (a) one-coherent state |a) ® |0), (b) two-coherent state ) ® | 8), (c) coherent and
squeezed-vacuum state o) ® S(r)|0), (d) two-squeezed-vacuum state 5(r)|0) ® S(r)|0). The blue line
represents the product detection, the dashed purple line represents the intensity detection, the dot-dashed
red line represents the homodyne, and the dotted green line represents the parity detection

number is small, product detection is preferred. Otherwise, homodyne detection is the
best choice since only one output light beam is measured.

With two coherent states as inputs, the conditions for achieving the optimal phase
sensitivity are different as shown in Fig. 7(b). For product detection, the input states is
|ae™) ® |a). The condition for parity detection and homodyne detection is |xe™’?) ® |a),
where we assume « is real. From Ref. [42], we know that parity detection is much worse
than homodyne detection. On the other hand, product detection can approach the QCRB,
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as shown in Fig. 4, and is better than homodyne detection. Therefore, with two coherent
states as inputs, product detection is the best scheme. However, all four schemes cannot
approach the HL.

To take advantage of the large photon number of the coherent state and the noise reduc-
tion of the squeezed vacuum state, coherent states mixed with squeezed vacuum states as
inputs have been studied [41, 42]. In this case (see Fig. 7(c)), product detection and par-
ity detection behave similarly. Both schemes can beat the SNL and perform better than
homodyne detection. Under the specific condition |«| >~ tanh(2g)e’/2, the phase sensitiv-
ity can approach the HL. Compared to parity detection, product detection is much easier
to implement with current homodyne technology. Therefore, it is better to estimate the
phase via product detection in this situation.

With both squeezed vacuum states as inputs, the optimal phase sensitivity with product
detection and parity detection are the same as depicted in Fig. 7(b). Compared with the
case of vacuum states as inputs, it is improved by a factor 1/+/cosh2r as a result of the
noise reduction of the squeezed vacuum states.

In general, product detection behaves similarly to parity detection. With both coherent
states as inputs, product detection performs better than parity detection. Moreover, it
does not require a photon-number resolving detector, which makes it much more feasible
than parity detection. It can be easily realized with current homodyne technology.

From Figs. 2, 3, 4, 5, and 6, it is easy to find that the HL can be either above or below the
QCRB. In fact, these results are not contradictory. Because HL and QCRB are obtained
from different aspects. HL is related to the total mean photon number inside the interfer-
ometer while QCRB is dependent on quantum estimation theory which sets the ultimate
limit for a set of probabilities that originated from measurements on a quantum system
and gives a detection-independent phase sensitivity. For any detection (e.g. intensity de-
tection, homodyne detection, parity detection), the corresponding phase sensitivity is not
able to beat the QCRB, but it may reach below the HL.

3.2 Effect of photon loss on the phase sensitivity with product detection
In optical experiment, photon loss is inevitable. Therefore, it is necessary to investigate the
effect of photon loss on the performance of an SU(1, 1) interferometer with product detec-
tion. Particularly, we concentrate mainly on the photon loss of modes a; and b, inside the
interferometer. Consider modes a; and b; experience photon loss L; and L, respectively.
For simplicity, we assume that L; = L, = L. Under this situation, one can obtain

aos = 1 - Lay + VLa),
bl = /1= Lby + VLbY, (16)

where Ezlloss (l;lfss) is the annihilation operator of the mode a () after experiencing photon
loss, a) and Z;Y are the annihilation operators corresponding to the vacuum states.

Combining Egs. (1), (2), (3), (4), and (16), one can obtain the phase sensitivity via product
detection with photon loss. To compare between the ideal and the loss situations, we plot
the phase sensitivities via product detection with photon loss L = 0.05 and L = 0.10 in
Figs. 2, 3, 4, 5, 6, and 7, respectively. It is easily found that photon loss degrades the phase
sensitivity via product detection. Nevertheless, with a small loss, the phase sensitivity via
product detection is still able to reach below the SNL in some case.
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3.3 Comparison with the previous works

Although both the previous researches [25-29] and our work consider the performance of
quantum interferometer, there still is significant difference between them. First of all, un-
like these previous papers mainly involving the QCRB, the intensity detection, or the ho-
modyne detection, our work concentrates on the product detection which is still missing
in an SU(1, 1) interferometer. Secondly, we compare product detection with other three
detections (intensity, parity, homodyne). We present which detection strategy can lead to
the better sensitivity in the presence of different state inputs. It is found that product de-
tection is the optimal detection scheme with two-equal-coherent-state input. From this
point of view, our results make sense for the optimal choice of meansurement scheme in

phase estimation.

4 Conclusion

In summary, we investigated the product detection on an SU(1,1) interferometer with
pure Gaussian states as inputs. We have shown that product detection can approach the
HL when the coherent beam and squeezed vacuum beam have roughly equal photon num-
bers. Compared to parity detection, product detection has a slightly better optimal phase
sensitivity with two coherent states as the input, and has the same or a similar phase sen-
sitivity as those of the other four inputs. Product detection always has better phase sen-
sitivity than homodyne detection when non-vacuum states are seeded. We also show the
QCRB with various input states. It is difficult for the QCRB to be saturated with product
and parity detection and with homodyne detection when non-vacuum states are seeded.
The search for the optimal scheme that can saturate the QCRB continues.

Appendix
A.1 Phase sensitivity A¢!

onecoh
Phase sensitivity with intensity detection with one-coherent-state input is given by

A} = [esch*(2g) (sec®(¢/2) (2N, + 1) cosh(8g) — 1) + 2N, csc*(¢/2))

onecoh —

—8(2N, + 1)]"*[2v2(, + D] 17)

The corresponding optimal phase is found to be

¢(I)necoh,opt =-2 arctan{ [csch2(4g)(\/2Na((2Na + 1) cosh(8g) — 1) - 2Nﬂ)]1/2

x (4N, +2)72}. (18)

A2 Phase sensitivity A ..,
Phase sensitivity with intensity detection with coherent and squeezed-vacuum state input
is given by

Ag! = _{sech4g csc? ¢(32 (coshg + cosh(3g))2 csch?gcos ¢ (4e_2’Nu + cosh(4r)

cohsqz
- 1) -8 cothzgcos(2¢>)(4 sinh?(2g) (4Na cosh(2r) + cosh(4r) — 1)

— 8N, (cosh(4g) + 3) sinh(2r)) — 64N, (3 cosh(4g) + 5) coth® g cosh(2r)
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+ 64N, (3 cosh(4g) + 1) coth® g sinh(2r) — 2(4cosh(4g) + 3 cosh(8g) +9)

x cschtg sinh2(2r))}1/2 { 16(2Na + Cosh(2r)) }71. (19)

A.3 Phase sensitivity Ady, ..,
Phase sensitivity with intensity detection with two-squeezed-vacuum state input is given
by

o b 2 2 _
AQiyosqr = Wi csch(2g) sech(2r)(csch (2g)(sec (¢/2)(c0sh(8g) cosh(4r) 1)

+ 2sinh®(2r) csc®(¢/2)) — 4-cosh(4g) cosh(4r) + 4)1/2.

(20)

The corresponding optimal phase is found to be

q’)tlwosqmpt = 2arctan | [csch2(4g)(sech(4r)(\/ 2sinh?(2r)(cosh(8g) cosh(4r) — 2)

+1) - 1)]"1v2). (21)
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