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Abstract
Accurate and efficient preparation of quantum state is a core issue in building a
quantum computer. In this paper, we investigate how to prepare a certain single- or
two-qubit target state from arbitrary initial states in semiconductor double quantum
dots with only a few discrete control pulses by leveraging the deep reinforcement
learning. Our method is based on the training of the network over numerous
preparing tasks. The results show that once the network is well trained, it works for
any initial states in the continuous Hilbert space. Thus repeated training for new
preparation tasks is avoided. Our scheme outperforms the traditional optimization
approaches based on gradient with both the higher efficiency and the preparation
quality in discrete control space. Moreover, we find that the control trajectories
designed by our scheme are robust against stochastic fluctuations within certain
thresholds, such as the charge and nuclear noises.

Keywords: Quantum control; Quantum state preparation; Semiconductor double
quantum dots; Deep reinforcement learning

1 Introduction
Future quantum computers promise exponential speed-ups over their classical counter-
parts in solving certain problems like search and simulation [1]. A wide variety of promis-
ing modalities emerges in the race to realize the quantum computer, such as trapped ions
[2, 3], photonic system [4–7], nitrogen-vacancy centers [8], nuclear magnetic resonance
[9], superconducting circuits [10, 11] and semiconductor quantum dots [12–18]. Among
these the semiconductor quantum dots is a powerful competitor for potential scalability,
integrability with existing classical electronics and well-established fabrication technol-
ogy. Spins of electrons trapped in quantum dots structure based on Coulomb effect can
serve as spin-qubits for quantum information [19]. Spin qubits can be encoded in many
ways, such as spin-1/2, singlet-triplet (S-T0) and hybrid systems [20]. In particular, the
spin S-T0 qubit in double quantum dots (DQDs) attracts much attention for the merit
that it can be manipulated solely with electrical pulses [21–23].

It has been proved that several arbitrary single-qubit gates plus an entangling two-qubit
gate are the prototypes of all other logic gates in quantum algorithm implemented on a
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circuit-model quantum computer [1, 24]. In an authentic sense, the implementation of any
single- and two-qubit gates can be reduced to the state preparation problems. Arbitrary
manipulations of a single-qubit can be achieved by successive rotations around the x- and
z-axes on the Bloch sphere. In the context of S-T0 single-qubit in semiconductor QDQs,
the only tunable parameter J is the rotation rate around the z-axis, while the rotation rate
h around the x-axis is difficult to be changed [25].

Various schemes have been proposed to add proper pulses on J to control the qubits
[26–28]. It is typically required to iteratively solve a set of nonlinear equations [29, 30] for
analytically tailoring the control trajectory, so it is a computationally exorbitant and time-
consuming task in practice. There are also several traditional optimal methods based on
gradient that can be used to design the control trajectory, such as stochastic gradient de-
scent (SGD) [31], chopped random-basis optimization (CRAB) [32, 33] and gradient as-
cent pulse engineering (GRAPE) [34, 35]. However, the intensities of their pulses are nearly
continuous, which may leave challenges to the experimental implementation. While the
requirement of discrete pulses will inevitably reduce their performance [36]. In addition,
their efficiency is limited by their iterative nature, which makes the task of designing pulses
a big burden especially when there exist a large number of states waiting to be processed.
Except for these traditional routes, recently the deep reinforcement learning (RL) [37]
shows a wide applicability in quantum control problems [38–51]. For example, how to
drive a qubit from a fixed initial state to another fixed target state with discrete pulses by
leveraging the deep RL [52] has been investigated [36].

Recently, the generation of arbitrary states from a specific state [53] in nitrogen-vacancy
center has been realized with the aid of the deep RL. Then it is intriguing to check if
the deep RL can be used to realize a contrary problem: preparing a certain target state
from arbitrary initial states, i.e., universal state preparation (USP). In practical quantum
computation, it is often required to reset an arbitrary state to a specific target state [54–56].
For example, the initial state of the system always needs to be set to the ground state when
transferring a quantum state through a spin chain [54, 55]. In the realization of quantum
Toffoli or Fredkin gate, the ancilla state must be preprepared to the standard state |0〉
in certain cases [57–59]. Generation of two-qubit entangled state is also required [1] in
completing quantum information processing tasks, such as the teleportation [60, 61]. Note
that the network typically requires being trained again once the preparing task changes
[36, 46]. Thus, the designing task of control pulses could be an exhausting work when there
are lots of different states waiting to be prepared to a certain target state. In this paper, we
investigate this USP problem with the deep RL in such a constrained driving parameters
system. Benefited from a more sufficient learning on numerous preparing tasks, we find
that the USP can be achieved with a single training of the network. Evaluation results show
that our scheme outperforms the alternative optimization approaches both in terms of the
efficiency of pulses designing and preparation quality in discrete control space. In addition,
we find that the average step of control trajectories designed by our USP algorithm is
obviously less than that of alternatives. Moreover, we discuss the robustness of the control
trajectories designed by our USP algorithm against various noises and explore the major
source of errors in control accuracy. We point out that by combining our scheme with Ref.
[53], the driving between arbitrary states can be realized.
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2 Models and methods
At first, we present the models of electrically controlled S-T0 single- and two-qubit in
semiconductor DQDs in Sects. 2.1 and 2.2, respectively. Then we present our USP algo-
rithm in Sect. 2.3.

2.1 Voltage-controlled single-qubit in semiconductor DQDs
The effective control Hamiltonian of a single-qubit encoded by S-T0 states in semicon-
ductor DQDs can be written as [62–65],

H(t) = J(t)σz + hσx. (1)

It is written under the computational basis states: the spin singlet state |0〉 = |S〉 =
(| ↑↓〉 – | ↓↑〉)/√2 and the spin triplet state |1〉 = |T0〉 = (| ↑↓〉 + | ↓↑〉)/√2. Here the ar-
rows indicate the spin projections of the electron in the left and right dots, respectively.
σz and σx are the Pauli matrices. h accounts for the Zeeman energy spacing of two spins.
Considering h is difficult to be changed experimentally [20], here we assume it is a con-
stant h = 1 and set it to be the unit of pulse intensity. We also take the reduced Planck
constant � = 1 and the 1/� as the time-scale throughout. Physically the exchange coupling
J(t) is tunable and non-negative [20]. In addition, if the J(t) is limited to a finite range, so
that not to destroy the charge configuration of the DQDs, the leakage of population to the
non-computational space will be suppressed and we can study the evolution of the system
safely within the Hilbert space spanned by the two bases [29, 30, 38].

Arbitrary single-qubit states can be written as

|s〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (2)

where θ and ϕ are real numbers that define points on the Bloch sphere. For an initial state
|sini〉 on the Bloch sphere, any target state |star〉 can be achieved by successive rotations
around the x- and z-axes of the Bloch sphere. In the context of semiconductor DQDs, h
and J(t) cause rotations around the x-axis and z-axis of the Bloch sphere, respectively.

2.2 Capacitively coupled S-T0 qubits in semiconductor DQDs
Operations on two entangled qubits are often required in quantum information process-
ing. In semiconductor DQDs, interqubit operations can be performed on two adjacent and
capacitively coupled S-T0 qubits. In the basis of {|SS〉, |ST0〉, |T0S〉, |T0T0〉}, the Hamilto-
nian can be written as [21, 23, 28, 63, 66, 67],

H2–qubit =
�

2

⎛
⎜⎜⎜⎝

J1 + J2 h2 h1 0
h2 J1 – J2 0 h1

h1 0 J2 – J1 h2

0 h1 h2 –J1 – J2 + 2J12

⎞
⎟⎟⎟⎠ , (3)

where hi and Ji are the Zeeman energy spacing and exchange coupling of the ith qubit
respectively. J12 ∝ J1J2 refers to the strength of Coulomb coupling between two qubits.
Ji > 0 is required to maintain the interqubit coupling all the time. For simplicity, we take
h1 = h2 = 1 and J12 = J1J2/2 here.
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2.3 Universal state preparation via deep reinforcement learning
Our target is to drive arbitrary initial states to a certain target state with discrete pulses.
The control trajectory is discretized as a piece-wise constant function, i.e., the pulses have
rectangular shapes [34]. While, the conclusion still holds if one take into account the finite
rise time of the pulses that can be available with an arbitrary wave generator [23, 28, 63,
66, 68] in actual experiments: we need just alter the parameters of the pulses generated by
our algorithm slightly as demonstrated in [26] and [29]. So, it is a reasonable simplification
to perform the optimization with ideal, zero rise time pulses.

The strategy used here is to generate this control trajectory with the deep Q network
algorithm (DQN) [69, 70], which is an important member of deep RL. The details of the
DQN are described in Appendix. Here we just refer it as a neural network, i.e., the Main
Net θ .

Our scheme of obtaining a competent Main Net goes as follows: Firstly, a database com-
prised of numerous potential initial quantum states is divided randomly into the training
set, the validation set and the test set. The states in the training set will be used to train the
Main Net in turn. The validation set will be utilized to estimate the generalization error
of the Main Net during the training process. The test set will be employed to evaluate the
Main Net’s final performance after training. Secondly, the random-initialized Main Net is
initially fed with a sampled initial state s from the training set at step k = 1 and then out-
puts the predicted “best action” ak ( i.e., the pulse intensity J(t)). According to the current
state s and the action ak , calculate the next state |s′〉 = exp(–iH(ak) dt)|s〉 and the corre-
sponding fidelity F = |〈star|s′〉|2. The fidelity F indicates how close the next state is to the
target state. Then the next state s′ is fed to the Main Net as the new current state with the
step k ← k +1. The reward will envelopes the fidelity r = r(F) and be used to train the Main
Net. Then repeat the above operations until the episode terminates when k reaches the
maximum step or the fidelity excesses a certain satisfactory threshold. Correspondingly,
the control trajectory is constructed by these predicted actions orderly. After more than
enough episodes of training over different preparing tasks, the Main Net learns to assign
an action-value (also named Q-value) to each state and action pair gradually according to
the correspondence between them and the target state. With accurate Q-values, it is easily
to determinate which action should be chosen in a given state. So that the Main Net can
match every potential state with a reasonable action towards the target state. Finally, the
well-trained Main Net can be used to tailor the appropriate control trajectories for these
initial states databased in the test set and even all other states in the continuous Hilbert
space.

The overview of this training and pulses designing process is pictured in Fig. 1. And a
full description of the training process is given in Algorithm 1.

3 Results
In this section, we compare and contrast the performance of our scheme with two so-
phisticated optimization approaches based on gradient for the USP problem. As demon-
stration, we consider the preparation of a single-qubit state |0〉 and a two-qubit Bell state
(|00〉 + |11〉)/√2. We stress that our USP scheme is applicable to any other target states as
long as it is trained specifically.
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Figure 1 Overview of the USP algorithm to learn control trajectory designing. The details of this algorithm is
described in the main text of Sect. 2.3 and in the pseudocode Algorithm 1

Algorithm 1 The pseudocode for training the USP algorithm
Initialize the Experience Memory D to empty.
Randomly initialize the Main-network θ .
Initialize the Target-network θ– by: θ– ← θ .
Set the ε = 0.
for episode = 0, episodemax do

Initialize the state s = sini according to the training point selected randomly from the
training set.
while True do

With probability 1 – ε select a random action ai, otherwise ai = argmaxa Q(s, a; θ ).
Set the ε = ε + δε, except ε = εmax.
Execute ai and observe the reward r, and the next state s′.
Store experience unit = (s, ai, r, s′) in D.
Select batch size Nbs of experiences units randomly from D.
Update θ by minimizing the Loss function.
Every C steps, set θ– ← θ .
break if F > Fthreshold or step ≥ T/dt.

end while
end for

3.1 Universal single-qubit state preparation
Now we consider the preparation of the single-qubit state |0〉 by using our USP algorithm.
Considering the challenges to implement pulses with continuous intensity, our scheme
takes only several discrete allowed actions on J(t): 0, 1, 2 or 3 with duration dt = π/10. We
stress that these settings are made experimentally and can be further tailored as required.
The maximum total operation time is limited to be 2π , which is uniformly discretized into
20 slices. The Main Net consists of two hidden layers with 32 neurons each. The reward
function should be set to allow a growth in itself as the fidelity increases, thus the Main
Net can be inspirited to pursue a higher fidelity. In practice, we find that the function r = F
works well. For training the Main Net and evaluating the performance of our algorithm,
we sample 128 points on the Bloch sphere uniformly with respective to the θ and the ϕ as
the initial states. Both the training and validation sets contain 32 points, while the test set



He et al. EPJ Quantum Technology            (2021) 8:29 Page 6 of 16

Table 1 List of hyperparameters for USP

Parameters\Target state |0〉 Bell state

Allowed actions a (J(t)) 0, 1, 2, 3 a

Size of the training set 32 256
Size of the validation set 32 256
Size of the test set 64 6400
Batch size Nbs 32 32
Memory sizeM 20,000 40,000
Learning rate α 0.01 0.0001
Replace period C 200 200
Reward discount factor γ 0.9 0.9
Number of hidden layers 2 3
Neurons per hidden layer 32/32 256/256/128
Activation function Relu Relu
ε-greedy increment δε 0.001 0.0001
Maximal ε in training εmax 0.95 0.95
ε in validation and testing 1 1
Fthreshold per episode 0.999 0.999
episodemax for training 33 731
Total time T 2π 20π
Action duration dt π /10 π /2
Maximum steps per episode 20 40

a The allowed actions of two-qubit operations satisfy {(J1, J2)|J1, J2 ∈ {1, 2, 3, 4, 5}}.

consists of the remaining 64 points. The details of all hyperparameters for this algorithm
has been listed in Table 1.

As shown in Fig. 2(a), after about 33 episodes of training, the average fidelity and total
reward over the validation set have no obvious increase as the episode grows up, which
implies the Main Net converges and can be used to implement the USP task.

To evaluate the performance of our algorithm, we compare it with two alternatives: the
GRAPE and the CRAB. Considering that the efficiency of an algorithm is also an important
metric when facing a large number of different preparation tasks, we plot their preparation
fidelities of state |0〉 versus the corresponding runtime of designing the control trajecto-
ries in Fig. 2(b). The average fidelities F̄ = 0.9968, 0.9721, 0.9655 and the average pulses
designing time t̄ = 0.0120, 0.0268, 0.7504 with USP, GRAPE and CRAB, respectively. The
fidelities of the three algorithms are the maximums that can be achieved within the maxi-
mum step. To satisfy the limitation of discrete pulses, for the GRAPE and the CRAB, their
continuous control strengths are discretized into the nearest allowed actions when the
designing process is completed [36]. Although the two traditional algorithms can achieve
high average fidelities after convergence with continuous control pulses, F̄ = 0.9997 for
GRAPE and F̄ = 0.9995 for CRAB, they do not perform well in discrete control space.
Figure 2(b) shows that our USP algorithm outperforms the alternative optimization ap-
proaches both in terms of preparation quality and pulses designing efficiency in discrete
control space. Clearly, CRAB algorithm performs the worst, and GRAPE algorithm is in
the middle. The average steps to achieve the maximum fidelities are 12.297, 14.109, 13.375
with USP, GRAPE and CRAB, respectively. A trajectory with fewer steps required for a
given state preparation task corresponds to a faster control scheme in experiment. Over-
all, the control trajectories generated by our USP algorithm are better than that of the
alternatives.

To show the control trajectory designed by our USP algorithm visually, as an example we
plot one in Fig. 3(a), where the position of the initial state on the Bloch sphere is θ = 2π/7,
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Figure 2 (a) The average fidelity and total reward over the validation set as functions of the number of
episodes in the training process for the single-qubit |0〉 USP. (b) The distribution of state preparation fidelities
F versus pulses designing time for preparing single-qubit |0〉 over 128 sampled tasks in the test set with
different optimization algorithms. The average fidelities F = 0.9968, 0.9721, 0.9655 and the average pulses
designing time t = 0.0120, 0.0268, 0.7504 with USP, GRAPE and CRAB, respectively

ϕ = 3π/7 and the target state is |0〉. It shows that the USP algorithm takes only 6 steps
to complete this task. The reason is that the DQN algorithm favors the policy with fewer
steps due to the discounted reward (See the details of the DQN described in Appendix).
In Fig. 3(b), we plot the corresponding motion trail of the quantum state on the Bloch
sphere during operations. It shows that the final quantum state reaches a position that is
very close to the target state |0〉 on the Bloch sphere and the final fidelity F = 0.9999.

3.2 Universal two coupled S-T0 qubits state preparation
Now we consider the preparation of the Bell state (|00〉 + |11〉)/√2 [1] from arbitrary
initial states. The allowed pulse strengths on each qubit are defined as {(J1, J2)|J1, J2 ∈
{1, 2, 3, 4, 5}}. The reward function is set to be r = F . The architecture of the Main Net
employed in this task is different from the one used for the manipulation of single-qubit
and the detailed hyper-parameters are captured in Table 1. The database used to train and
to test the Main Net contains 6912 points that are defined as {[a1, a2, a3, a4]T }. aj = bcj

refers to the probability amplitude corresponding to the jth basis state. b ∈ {1, i, –1, –i}. cjs
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Figure 3 (a) Control trajectory designed by our USP algorithm. The task is to reset the point θ = 2/7π ,
ϕ = 3/7π on the Bloch sphere to the target state |0〉. The pulses only take discrete values 0, 2 and 3. This reset
task is completed at the sixth step. (b) The corresponding motion trail for the reset task on the Bloch sphere
with the final fidelity F = 0.9999

together define points on a four-dimensional unit hypersphere,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1 = cos θ1,

c2 = sin θ1 cos θ2,

c3 = sin θ1 sin θ2 cos θ3,

c4 = sin θ1 sin θ2 sin θ3,

(4)

where θi ∈ {π/8,π/4, 3π/8}. The normalization condition is satisfied for each quantum
state represented by these points. The database is divided randomly into the training set,
the validation set and the test set with 256, 256 and 6400 points, respectively. As depicted
in Fig. 4(a), the Main Net converges after about 700 episodes of training. With 731 episodes
of training, the average fidelity of the Bell state preparation over all the test points F̄ =
0.9695. The maximum total operation time is taken as 20π and be discretized into 40 slices
with pulse duration dt = π/2. In Fig. 4(b), we plot the distribution of the fidelities of the test
points under control trajectories designed by our USP scheme in this two-qubit preparing
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Figure 4 (a) The average fidelity and total reward over the validation set as functions of the number of
training episodes for two-qubit Bell state USP. (b) The fidelities distribution of 6400 sampled preparation tasks
in the test set for the two-qubit Bell state USP with F̄ = 0.9695

task. The average pulses designing time t̄ = 0.0477 and the average step to complete the
preparation tasks is 24.014. It shows that although the fidelities are distributed unevenly
between the interval [0.91, 1], the overall performance is good.

3.3 USP in noisy environments
In the preceding section, we have studied the USP problem without considering the sur-
rounding environment. However the qubits will suffer from a variety of fluctuations in a
practical experiment, which prevents the accessibility of high precision control over the
system. There exist works studied the corrected gate operations that employ the additional
pulses to counteract the impact of various noises, such as the SUPCODE [26, 29]. However
they treat different noises equally resulting the designed control trajectories are too long
to implement in actual experiment (about 300π of rotation for a single quantum gate).
Thus it is worth exploring which noise will lead to the most serious threat to the control
accuracy. Then designing the compensating pulses to shorten the total control trajectory
using the SUPCODE as well as to improve the physical platform accordingly.

Next we will study the performance of the control trajectories designed by our USP al-
gorithm under two main noises leading to stochastic errors in the system Hamiltonian:
the charge noise and nuclear noise. Considering that they vary on a typical time scale
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(∼100 μs) much longer than a gate duration (∼10 ns), we take them constants during the
preparation task. We point out that these noises are integrated into the system’s evolution
after the control trajectories have been designed by our Main Net, which is trained on a
clean model. This is a reasonable assumption since normally the environment is unpre-
dictable.

The charge noise stems from the imperfection of the external voltage field, while the
nuclear noise comes from the uncontrolled hyperfine coupling with spinful nuclei of the
host material [63, 71, 72]. They can be represented by an additional term δσz (or δσx)
in the Hamiltonian (1) for the single-qubit case or by additional terms δiσz (or δiσx) in
the Hamiltonian (3) for the two-qubit case. Where i ∈ {1, 2} indicate the corresponding
qubit and δ (δi) are the amplitudes of the noises. In addition, for the two-qubit Bell state
preparation, we assume that the amplitudes of the noises on the two qubits are identical.

Average fidelities of the target states |0〉 and Bell state preparation with control trajecto-
ries generated by our USP over all test points versus amplitudes of two noises are plotted in
Fig. 5(a) and (b), respectively. It can be seen from Fig. 5, the average fidelities do not change
significantly and the control trajectories exhibit robustness against considered imperfec-
tions within certain thresholds. We also find that in the analyzed parameter windows the
F in nuclear noise are always higher than that in charge noise with the same amplitudes for

Figure 5 Average fidelities of the target state (a) |0〉 and (b) Bell state preparation with USP over all test
points versus amplitudes of charge and nuclear noises
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both single- and two-qubit cases. It reveals that the charge noise leaves the most impact
to the preparation tasks.

A meaningful point worth stating is that the best average fidelity can even be obtained
in non-zero nuclear noise from Fig. 5(b). That is to say, certain noises can be helpful to
boost the fidelity due to subtle adjustments on parameters. A possible explanation may be
the limitation of the discrete value in our calculation. We believe that there is still a room
for the achievement of better performance by employing more allowed actions and more
deliberate Zeeman energy spacing, just as what these noises do. Of course, more sufficient
training on Main Net is also helpful for the enhancement of the fidelity.

Given the limitations of quantum computing hardwares presently accessible, we simu-
late quantum computing on a classical computer and generate data to train the network.
Our algorithm is implemented with PYTHON 3.7.9, TensorFlow 2.6.0 and QuTip 4.6.2
and have been run on an 4-core 1.80 GHz CPU with 8 GB memory. Details of the run-
ning environment of the algorithm can be found in Availability of data and materials.
The runtime for the training process of USP algorithms are about tens of seconds in the
single-qubit case and about an hour in the two-qubit case.

4 Conclusions
Precise and efficient quantum state preparation is crucial for quantum information pro-
cessing. In this paper, we proposed an efficient scheme to generate appropriate control
trajectories to reset arbitrary single- or two-qubit states to a certain target state with the
aid of deep RL. Our scheme has the advantage that once the network is well trained, it
works for arbitrary initial states and does not require training again. Taking the control
of spin S-T0 qubits in semiconductor DQDs as an example, the evaluation results show
that our scheme outperforms traditional optimization approaches with both preparation
quality and pulses designing efficiency. In addition, the average step required to complete
the preparation tasks of our USP algorithm is obviously less than that of the alternatives,
which implies faster control schemes in experiment. Moreover, we found that the control
trajectories designed by our scheme exhibit robustness against two main noises within
certain thresholds and discovered the charge noise leaves the most impact to the con-
trol precision. Although we only considered the single and two-qubit state preparation in
semiconductor DQDs, this scheme can be extended to a wide variety of quantum control
problems.

Appendix
A.1 Deep reinforcement learning and deep Q network
In this section, we will introduce the deep RL and DQN algorithm, which underlie our
USP scheme.

The deep RL combines the deep learning algorithm that is good at nonlinear fitting and
the RL algorithm that is expert in dynamic programming problems [37, 52, 73]. In RL,
an Agent is generally used to represent an object with decision-making and action ca-
pability, such as a robot. We consider a Markov decision process in which the next state
depends only on the current state as well as the action performed by the Agent and has
no relation with the past states [52]. In the interaction between the Agent and the Envi-
ronment, the current state s of the Environment will be changed to another next state s′,
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after the Agent selecting and performing an action ai chose from the set of allowed actions
a = {a1, a2, . . . , an} at time t. In return, the Environment also gives a feedback, or immedi-
ate reward r to the Agent. A Policy π represents which action the Agent will be chose in
a given state, i.e., ai = π (s). The process is defined as an episode in which the Agent starts
from an initial state until it completes the task or terminates in halfway.

The total discounted reward R gained in an N-steps episode can be written as [52]:

R = r1 + γ r2 + γ 2r3 · · · + γ N–1rN =
N∑

t=1

γ t–1rt , (5)

where γ is a discount factor within the interval [0, 1], which indicates that the immedi-
ate reward r discounts with the steps increasing. The goal of the Agent is to maximize R,
because a greater R implies a better performance of the Agent. Because the discounted r,
the Agent tends naturally to get a bigger reward as quickly as possible to ensure a consid-
erable R. To determine which action should to be chose in a given state, we introduce the
action-value function, which is also named Q-value [74]:

Qπ (s, ai) = E[rt + γ rt+1 + · · · |s, ai] = E
[
rt + γ Qπ

(
s′, a′)|s, ai

]
. (6)

The Q-value indicates the expectation of R, which the Agent will get after it executing an
action ai in a given state s under the policy π , and this value can be obtained iteratively
according to the Q-values of the next state. Because there are multiple allowed actions can
be chosen in each state, and different actions will lead to different next states, it is a time-
consuming task to calculate Q-values in a multi-step process. To reduce the overhead,
there are various algorithms used to calculate approximations of that expectation, such as
Q-learning [74] and SARSA [52].

In Q-learning, the current Q(s, ai) value is obtained by the Q-value of the next state’s
“best action” [74]:

Q(s, ai) ← Q(s, ai) + α[rt + γ max
a′ Q(s′, a′) – Q(s, ai)], (7)

where α is the learning rate, which affects the convergence of this function. The part of
Qtarget(s′, a′) = rt + γ maxa′ Q(s′, a′) is called the Qtarget value. All the Q-values of different
states and actions can be recorded in a so-called Q-Table. With a precise Q-Table, it is
easily to identify which action should be chose in a given state. However, on the one hand,
we need the best action to calculate iteratively the Q-value; on the other hand, we must
know all the Q-values to determine which action is the best. To solve this dilemma of “ex-
ploitation” and “exploration”, we adopt the ε-greedy strategy in choosing action to execute,
i.e., choose the action corresponding to the current maximum Q-value with a probability
of ε to calculate Q-value efficiently, or choose an action randomly with a probability of
1 – ε to expand the range of consideration. At the beginning, since it is not known that
which action is the best one in a certain state, the ε is set to be 0 to explore as many states
and actions as possible. When sufficient states and actions are explored, that parameter
gradually increases with the amplitude of δε until to εmax, which is slightly smaller than 1,
to calculate the Q-values efficiently.
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For an Environment with a large number or even an infinite number of states, the Q-
Table would be prohibitively large. To solve this “dimensional disaster”, we can substitute
this table with a multi-layer neural network. After learning, the network will be capable
to match a suited Q-value to each action after be fed with a certain state. The deep Q net-
work algorithm (DQN) [69, 70] are based on the Equation (7). A network, the Main Net
θ , is used to predict the term Q(s, ai), and another network, the Target Net θ– is used to
predict the term maxa′ Q(s′, a′) in Equation (7) respectively. In order to ensure the abil-
ity of generalization, the data used to train the Main Net must meet the assumption of
independent and identically distributed, i.e. each sample of the dataset is independent of
another while the training and test set are identically distributed. So we adopt the ex-
perience memory replay strategy [70]: the Agent could get an experience unit (s, a, r, s′)
at each step. After numerous steps, the Agent will collect a lot of such units that can be
stored in an Experience Memory D with capacity of Memory size M. In the process of
training, the Agent randomly samples batch size Nbs of experience units from the Experi-
ence Memory to train the Main Net at each time step. Notice that to ensure the stability
of the algorithm only the Main Net is trained in every time step by minimizing the Loss
function:

Loss =
1

Nbs

Nbs∑
i=1

([
r + γ max

a′ Q
(
s′, a′)]

i
– Q(s, a)i

)2
, (8)

where Nbs is the sample batch size through mini-batch gradient descent (MBGD) algo-
rithm [37, 69, 70]. While the Target Net θ– is not updated in real time, instead, it copies
the parameters from the Main Net θ every C steps. A schematic of this DQN algorithm
is shown in Fig. 6.

Figure 6 Schematic for the DQN algorithm. See the main text of the Appendix for details of the algorithm
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