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Abstract
Quantum teleportation is the fundamental communication unit in quantum
communication. Here, a three-level system is selected for storing and transmitting
quantum information, due to its unique advantages, such as lower cost than a
higher-level system and higher capacity and security than a two-level system. It is
known that the key procedure for perfect teleportation is the distribution of
entanglement through quantum channel. However, amounts of noise existing in the
quantum channel may interfere the entangled state, causing the degradation of
quantum entanglement. In the physical implementations of quantum
communication schemes, noise acting on the carriers of successive transmissions
often exhibits some correlations, which is the so called quantum memory channel. In
this paper, a memory channel model during the entanglement distribution phase is
constructed and the uniform expression of the evolution of a two-qutrit entangled
state under different kinds of correlated noise is derived. Finally, Pauli noise and
amplitude damping noise as the typical noise source are considered to analyze the
influence of memory effects of noise on qutrit teleportation. It is expected to show
that three-level teleportation under these two types of channels can generally
enhance the robustness to noise if the Markovian correlations of quantum channel
are taken into consideration.
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1 Introduction
In the past decades, quantum science and technology has been applied in various fields of
information science, such as machine learning [11, 21, 23, 31–33, 49] and network com-
munication [10, 28, 36, 53, 54]. As one of the most important branches in quantum com-
munication, quantum teleportation is always the focus and forefront project in academic
researches. With the help of the shared entanglement and one-way classical communica-
tion, quantum teleportation in principle allows the faithful transfer of unknown quantum
states from one particle to another at a distance, without physical transmission of the ob-
ject itself.

The noise existed in the quantum channel is one of the main issues for reliable tele-
portation of the information. The preshared entangled state that interacted with the
external environment might evolve into a mixed state during transmission, leading to
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the loss of quantum information recovered by the output system. The majority of re-
searches on quantum noise are predicated on the assumption of memoryless channel,
where the noisy transformations are performed on the sequences of quantum carriers
independently and identically [19, 20, 51]. However, the assumption of vanishing cor-
relation or memory in the system-environment interaction is not always justified. With
increasing transmission rates in communication channel, for example, successive trans-
missions happen so rapidly that the environment may retain a memory between individ-
ual transmission. The experimental counterparts of memory effects in quantum com-
munication schemes are limited to the direct transmission of each carrier, such as the
photons travelling through optical fiber can be affected by the birefringence fluctuations
[5, 6] whose characteristic time scales are much longer than the temporal separation be-
tween consecutive light pulses; information transmission in a spin chain channel where
if the chain is not reset after each use of the channel, the first transmission of informa-
tion state could influence the second [8]; and the Bosonic channel considering the loss of
energy en route where the much higher use rate of channel would induce the unwanted
overlaps between consecutive input pulses or interfere with the finite relaxation time of
the local environment, leading to the memory effects of attenuation [39, 40]. Interest-
ingly, several models of memory channels have shown that the quantum or classical ca-
pacity can be enhanced compared to the results of memoryless channels. Therefore, it
is worth considering that how to construct a model of quantum memory channel dur-
ing the entanglement distribution for improving the communication quality of teleporta-
tion.

In recent years, quantum memory channels exhibiting Pauli errors or energy dissipa-
tion during the entanglement distribution have been theoretically studied in the two-
dimensional Hilbert space and it has been discovered that the fidelity of teleportation
under these two types of memory channels can be gradually improved with the increas-
ing of the degree of memory [34, 35]. Nevertheless, to teleport quantum states of a real
particle, such as a single photon, one needs to consider not only the two-level states (po-
larization), but also those multi-level states [25, 38, 50]. For example, the orbital angular
momentum [16, 37], the temporal mode [3, 42], the frequency mode [30], and the spatial
mode [24, 45] of a single photon are all natural attributes of multi-level states, which are
exploited as high-dimensional systems. It is worth mentioning that ref [22] has made an
argument that as the dimension of the constituent qudits increases, the cost of maintaining
a qudit in a fully entangled state also increases and the optimum cost per Hilbert dimen-
sion is attained at the local dimension of d = 3 (d is the dimensionality of Hilbert space).
Therefore, a fully entangled state prepared by a three-level system can have a lower cost
than that prepared by a higher-level system. On the other hand, compared with conven-
tional two-level systems, three-level quantum states in quantum communication possess
both higher capacity and noise resilience [7, 27]. Taken together, it is of great practice sig-
nificance to analyze the characteristics of qutrit teleportation in noisy environments and
investigate whether the noise correlation in quantum channel can improve the communi-
cation quality of noisy teleportation.

In this paper, a model of quantum memory channel during the entanglement distri-
bution is constructed for better understanding the action of memory effects of channel
on qutrit teleportation. Then based on the model, a common representation of the dy-
namical evolution of a maximally two-qutrit entangled state through different kinds of
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noise is derived. Here, Pauli errors and energy dissipation in the channel are paid much
attention. Once the operators describing various noise are given, the evolution of a max-
imally qutrit entangled state can be numerically analyzed. In particular, the Kraus opera-
tors of describing correlated amplitude damping channel cannot be directly represented
like that of correlated Pauli channel [47]. It is creatively derived by solving the Lindblad
equation representing the dynamical evolution of the compound system of two three-level
V-type atoms. Finally, the communication quality of teleportation is evaluated by average
fidelity which is the function of noise intensity and the degree of memory. It is discovered
that qutrit teleportation with Pauli channel (except for phase_flip) or amplitude damp-
ing channel has some robustness to noise when memory effects of quantum channel are
considered.

Overall, our results prove that the communication quality of noisy teleportation in three
dimensions can be enhanced to some extent when considering the two consecutive uses
of channel with partial memory, which providing a new thought for reliable information
transmission with higher capacity and security.

2 Results
Quantum teleportation as the fundamental element of quantum communication plays
a key role in quantum computing [43] and quantum internet [14, 15, 46, 48]. Noise
environment is always the pivotal factor for destroying the quantum properties, noto-
riously coherence and entanglement. However, noise may be amicable to information
transmission when its classical correlations are taken into consideration. Therefore, it
is significant to investigate the memory effects of noisy channel that may exist in real-
istic entanglement distribution for inhibiting the negative effects of noise on teleporta-
tion.

2.1 Dynamical evolution of two-qutrit entangled state under different correlated
noise environment

The channel model for entanglement distribution is constructed under the assumption
that the light pulse will be transferred through a lossy photon channel and a noiseless
channel to the communication party in sequence. The memory effects of lossy photon
channel may emerge when two photons of the entangled photonic state are successively
transmitted through the channel with the separation time scale of two consecutive trans-
missions much lower than the finite relaxation time of local environment interacted with
the external reservoir. The diagram of the channel model is shown in Fig. 1.

Now, assume the preshared two-qutrit entangled photonic state is represented by the
density matrix ρQ, then the dynamical evolution of state ρQ transmitted through the lossy
memory channel which has been derived in the Method can be written as

�⊗2(ρQ) = (1 – μ)
∑

i1,i2

pi2 pi1�
(i2)
q2 ⊗ �(i1)

q1 (ρQ) + μ
∑

i1

pi1�
(i1)
q2 ⊗ �(i1)

q1 (ρQ), (1)

where the parameter μ ∈ [0, 1] is the degree of memory describing the overlap ratio be-
tween two consecutive transmissions of photons. �(i)

qj is an arbitrary CPTP map on system
state with the corresponding probability pi. It is worth noting that the derivation of Eq. (1)
is based on two assumptions, one is the Markovian behavior of lossy photon channel that
is the action of past channel can only influence the current channel use and is irrelevant
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Figure 1 The diagram of the information transmission in the entanglement distribution. The green arrow
represents the transmission of the first photon and the blue arrow describes the transmission of the second
photon after the separation time τ s . The dotted line is the correlation of noise between two uses of the lossy
channel which originates from the much higher rate of consecutive transmission making the local
environment retains a memory. The whole transmission process is the entangled photonic state transmitted
through lossy memory channel produces a two-photon state exhibiting the coherence and the part of
classical correlation and then transmitting the two-photon state through private noiseless channel to the
sender and receiver

to the future channel state; the other is assume that two photons of the entangled pho-
tonic state will subject to the same local environment with much higher use rates of the
lossy channel for determining the mathematical representation of the channel’s Marko-
vian behavior. Next, according to the model of quantum memory channel during the en-
tanglement distribution, the evolution of two-qutrit entangled state under the following
two typical noise environment is demonstrated for analyzing the influence of Markovian
memory channel on qutrit teleportation.

2.1.1 Pauli noise
If the lossy photon channel exhibits Pauli errors, the evolution of maximally two-qutrit
entangled state transmitted through correlated Pauli channel in three dimensions could
be directly characterized by replacing the map �

i1(i2)
q1(q2) with the Weyl operators Unm =∑2

l=0 e2π iln/3|l〉〈(l + m) mod 3|, {n, m} ∈ {0, 1, 2}, which is written as

�⊗2(ρQ) = (1 – μ)
∑

e,f
j,k

pef pjkUef ⊗ UjkρQU†
ef ⊗ U†

jk

+ μ
∑

r,s
prsUrs ⊗ UrsρQU†

rs ⊗ U†
rs.

(2)

The corresponding probability pnm for performing the Weyl operator has defined in ref
[41]. It is noticed that different value of {n, m} corresponds to different types of Pauli
noise, such as trit_flip region, n = 0 and m ∈ {0, 1, 2}; phase_flip region, {n, m} ∈ {0, 1, 2}
and m = 0; trit_phase flip region, {n, m} ∈ {0, 1, 2} and (n, m) = (0, 0); depolarizing noise
region, {n, m} ∈ {0, 1, 2}.

2.1.2 Amplitude damping noise
Amplitude damping channel can be described by a process of energy dissipation of a quan-
tum system to environment. The transition of excitation occurs between excited state and
the ground state with a finite probability. Herein, it is assumed that the transitions between
two excited states are not allowed. The Kraus operators describing amplitude damping
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noise in three dimensions are concluded in ref [2, 17, 18, 44], which are represented in the
standard computational basis:

E0 = |0〉〈0| +
√

1 – P
(|1〉〈1| + |2〉〈2|),

E1 =
√

P|0〉〈1|,
E2 =

√
P|0〉〈2|,

(3)

where P is the magnitude of the energy dissipation. The evolution of two-qutrit maximally
entangled state interacted with the correlated amplitude damping can be calculated by the
Eq. (1), which is shown as

�⊗2(ρQ) = (1 – μ)
∑

i,j

Ei ⊗ EjρQE†
i ⊗ E†

j + μ
∑

k

pkEkkρQE†
kk . (4)

Combined Eq. (3) and Eq. (4), it is found that Ekk in the correlated term cannot be di-
rectly written like the Pauli noise due to the non-unitary property of amplitude damp-
ing. Therefore, the Lindblad equation describing quantum Markov channel is introduced.
A three-level atomic system in V configuration is the typical case for demonstrating the
spontaneous decay of atoms. The Kraus operators Ekk can be derived only if we solve the
Lindblad equation of the compound system of two three-level atomic systems in V-type.
The details of derivation are demonstrated in Methods and the results are given as follows:

E00 =

⎡

⎢⎢⎢⎣

I4 √
1 – P1

I3 √
1 – P2

⎤

⎥⎥⎥⎦

9×9

, (5)

E11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
P1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

O4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

9×9

, (6)

E22 =

⎡

⎢⎢⎢⎢⎣

0 · · · 0
√

P2

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

⎤

⎥⎥⎥⎥⎦

9×9

(7)

with P1 = 1 – e–γ10t , P2 = 1 – e–γ20t . Im is the identity matrix of m × m, On is the null matrix
of n × n. According to the matrix form of E11 and E22, we can directly achieve the Kraus
operators E′

1 and E′
2 describing the amplitude damping noise in the three-level system,

which are described as E′
1 =

√
P1|0〉〈1|, E′

2 =
√

P2|0〉〈2|, P1, P2 are the attenuation coeffi-
cients. E′

0 = |0〉〈0| +
√

1 – P1|1〉〈1| +
√

1 – P2|2〉〈2| can be derived with the completeness
relation

∑2
i=0 E′†

i E′
i = I .

Comparing our results with the Kraus operators of describing amplitude damping noise
in Eq. (3), it can be found that they are equivalent if the two attenuation coefficients are as-
sumed in the same value. Clearly, Eq. (3) can be represented as the special case of the Kraus
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operators describing amplitude damping noise in the three-level system, which means the
mathematical representation we derived about the correlated amplitude damping noise is
general applicably. Finally, putting all known Kraus operators into Eq. (4), the dynamical
evolution of entangled photonic state under the lossy memory channel with the loss of
photons can be calculated.

2.2 Qutrit teleportation based on the noisy quantum channel with memory
effects

Quantum information to be teleported cannot be completely recovered from the receiver
for the presence of noise in quantum channel. The differences between input state and
output state can be quantitatively measured by fidelity [26]. Here, the average fidelity 〈F〉
is introduced for eliminating the effects of the input state, which is the function of the
noise intensity and the degree of memory and can be defined by

〈F〉 =
2
π2

∫ π
2

0

∫ 2π

0

1∏

i=0

dθi dφi+1 sin3–2i θi cos θiF(θ ,φ) (8)

the meanings of mathematical symbols are shown in Methods.
According to Eq. (8), the characteristics of qutrit teleportation under correlated Pauli

channel and amplitude damping channel are investigated. For the sake of convenience,
we stipulate that the name of average fidelity is substituted into fidelity in the following
elaboration.

2.2.1 Transmitting information under correlated Pauli channels
In the case of the maximally two-qutrit entangled quantum state interacted with un-
correlated Pauli-like noise, the fidelity of qutrit quantum teleportation under trit_flip,
phase_flip, trit_phase flip and depolarizing noise is ordinally computed as

〈
Fu

T
〉

=
〈
Fu

P
〉

= 1 –
3
4

(
2P –

3
2

P2
)

,

〈
Fu

TP
〉

= 1 –
3
4

(
2P –

5
4

P2
)

,

〈
Fu

D
〉

= 1 –
3
4

(
16
9

P –
8
9

P2
)

,

(9)

where P is the noise intensity satisfying 0 ≤ P ≤ 1. The relations between fidelity and noise
intensity are shown in Fig. 2, from which we can find that taking no account of the value
of P = 2

3 , the communication quality of qutrit quantum teleportation under trit-flip noise
and phase-flip noise is always superior to classical communication of which fidelity is 1

2 [4].
In addition, the information transmitted through depolarizing channel causes the greater
distortion than phase-flip channel with the noise intensity increasing.
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Figure 2 A diagramming drawing of the relations between fidelity and noise intensity of Pauli channels

Considering the interaction of two-qutrit entangled quantum state with correlated Pauli
noise, the fidelity of qutrit quantum teleportation is calculated as

〈
Fc

T
〉

= 1 –
3
4

(1 – μ)
(

2P –
3
2

P2
)

,

〈
Fc

P
〉

= 1 –
3
4

(
2P –

3
2

P2 – μ

(
P –

3
2

P2
))

,

〈
Fc

TP
〉

= 1 –
3
4

(
2P –

5
4

P2 – μ

(
P –

5
4

P2
))

,

〈
Fc

D
〉

= 1 –
3
4

(
16
9

P –
8
9

P2 – μ

(
10
9

P –
8
9

P2
))

.

(10)

The pictures describing the relations between fidelity, the degree of memory, and noise
intensity under the four types of Pauli noise are exhibited in Fig. 3. It is clear that when
the preshared quantum state is coupled with correlated trit-flip noise, the fidelity 〈Fc

T 〉 will
improve to 1 with the increase of the degree of memory no matter what the noise intensity
is.

Taking advantage of the memory effects of quantum channel, the fidelity of quantum
information that can be reliably teleported through Pauli channel in two-dimensional
Hilbert space is greatly enhanced [35]. However, the results of qutrit teleportation under
correlated Pauli noise are intuitively not so satisfactory.

Here, we estimate whether the memory effects of quantum channel can improve the
transmission quality by numerically analyzing the relationship between noise intensity and
the degree of memory on the condition that the communication quality of qutrit quantum
teleportation gains an advantage over classical communication.
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Figure 3 The relations between fidelity, noise intensity and the degree of memory under trit_flip, phase_flip,
trit_phase flip and depolarizing noise are displayed in sequence

For the especial one, trit_flip channel, the inequation connecting noise intensity and the
degree of memory is

μ > 1 –
1
3

(
1
P

+
3

4 – 3P

)
, ∀P ∈ [0, 1]. (11)

It is obvious that critical state 1 – 1
3 ( 1

P + 3
4–3P ) is always less than or equal to zero so that

the degree of memory always belongs to (0, 1] regardless of the noise intensity, which sig-
nifies that fidelity of qutrit quantum teleportation through correlated trit_flip channel is
constantly higher than that of classical communication with the increase of the degree of
memory whatever the noise intensity is.

In the case of correlated phase_flip channel, the relation can be calculated as the follow-
ing inequations

∀μ ∈ [0, 1], 0 ≤ P <
2
3

, (12)

0 < μ < 1 –
2

3P
,

2
3

≤ P ≤ 1 (13)

which means that the fidelity of qutrit quantum teleportation is irrelevant to the correlated
coefficient μ in the condition of P ∈ [0, 2

3 ), but when P belongs to the interval [ 2
3 , 1], the

qutrit quantum teleportation would be performed better than classical communication if
μ is less than 1 – 2

3P . Nevertheless, with the degree of memory gradually increasing to 1,
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the quantum advantages of communication will disappear, which means the teleportation
quality under correlated phase_flip channel performs worse than that under the memo-
ryless channel.

For correlated trit_phase flip channel and depolarizing channel, we can derive the crit-
ical conditions of the relations between noise intensity and the degree of memory, which
can be respectively described as

μtr–ph = 1 –
2
3

(
1
P

–
1

4 – 5P

)
, (14)

μdep = 1 –
3
5

(
1
P

–
1

5 – 4P

)
. (15)

The constraint graph is drawn in Fig. 4. In order to guarantee the fidelity of qutrit quantum
teleportation is greater than 1

2 , the noise intensity and the degree of memory existed in
correlated trit_phase flip channel and depolarizing channel must separately satisfy the
following criterions

⎧
⎨

⎩
μtr–ph ∈ [0, 1], 0 ≤ P < 0.4734,

μtr–ph > 1 – 2
3 ( 1

P – 1
4–5P ), 0.4734 ≤ P ≤ 0.6667,

(16)

⎧
⎨

⎩
μdep ∈ [0, 1], 0 ≤ P < 0.5,

μdep > 1 – 3
5 ( 1

P – 1
5–4P ), 0.5 ≤ P ≤ 1.

(17)

Combining the constraint graph and the criterion, it can be discovered that the noise in-
tensity can enlarge to a specific threshold with the improvement of the degree of memory
in the condition of higher fidelity of qutrit quantum teleportation than classical communi-
cation. In the other words, three-level quantum teleportation may possess higher capacity

Figure 4 The relations between noise intensity and the degree of memory in correlated trit_phase flip
channel and correlated depolarizing channel
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to tolerate trit_phase flip and depolarizing noise when considering the memory effects of
quantum channel.

To conclude, distributing entanglement through Pauli channel with Markovian memory
can enhance the anti-noise capacity of qutrit teleportation to some extent, except for the
phase flip channel.

2.2.2 Transmitting information under correlated amplitude damping channel
The fidelity of qutrit teleportation under correlated amplitude damping noise is derived
as

〈
Fc

am
〉

=
2
3

+
μ

6
(√

(1 – P1)(1 – P2) +
√

1 – P1 +
√

1 – P2 – 1
)

+
1 – μ

12
(
2P2

1 + 2P2
2 + 2P1P2 – 6P1 – 6P2 + 4

)
.

(18)

Taking the case of μ = 0, the above formula will become

〈
Fu

am
〉

=
2
3

+
1

12
[
(P1 – 1)2 + (P2 – 1)2 + P2

1 + P2
2 + (2P1 – 2)(P2 – 1) – 2P1 – 2P2

]
(19)

which is utilized to describes the influence of uncorrelated amplitude damping noise on
teleportation. It is extremely complicated to numerically analyze the criteria that the fi-
delity of quantum teleportation is higher than that of classical communication. However,
the relations between noise intensity P1, P2 and fidelity 〈Fc

am〉 can be simulated with the
distinct degree of memory μ, which are shown in Fig. 5.

The relations between fidelity and noise intensity in the condition of μ = 0, μ = 0.5, μ = 1
presented in (a), (b), (c) separately possess a general character that the transmission quality
will gradually diminish with the increase of noise intensities P1 and P2. Nevertheless, it is
clear that the fidelity of teleportation under amplitude damping channel with Markovian
memory can be improved when the values of noise intensities P1 and P2 are defined.

Investigating the influence of the memory effects of amplitude damping channel on the
transmission quality of teleportation for convenience, we assume that the two attenuation
coefficients P1 and P2 are identical to P. Then as shown in Fig. 5(d), the fidelity can be
enhanced with the increase of the degree of memory when the value of noise intensity is
fixed except the case of maximal attenuation. On the other hand, the teleportation can
endure more noise with the stronger degree of memory if the fidelity is given. Therefore,
taking Markovian memory of amplitude damping channel into consideration is shown to
be valuable for noisy teleportation to boost its transmission quality.

3 Remarks and conclusion
The realistic communication schemes where temporal rates at which signals are fed into
the communication line are too rapid to allow for a resetting of the channel environment
can lead to the presence of memory effects. Here, the Markovian model in three-level sys-
tems is introduced to construct correlated Pauli channel and amplitude damping channel.
The dynamical evolution of the preshared maximally two-qutrit entangled state under
Pauli channel and amplitude damping channel with Markovian correlations are derived by
Eq. (1) where the operators representing Pauli errors and loss of photons are respectively
based on two different kinds of basis, that is a set of Weyl operators {Unm}, {n, m} ∈ {0, 1, 2}
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Figure 5 The effect of the correlated amplitude damping noise on fidelity of qutrit teleportation. The
relations between fidelity and noise intensities P1, P2 under the circumstances of μ = 0, μ = 0.5, μ = 1 are
presented in (a), (b), (c) respectively. In the condition of the equivalence of noise intensities P1 and P2, the
connections between the fidelity of teleportation and noise intensity with different values of the degree of
memory are established in (d)

and the standard computational basis {0, 1, 2}. Particularly, the mathematical representa-
tion of describing correlated amplitude damping noise is creatively solved by being con-
nected with the Lindblad equation of the spontaneous emission of a three-level atom in
the V configuration, where the transition between two excited states is dipole forbidden.

According to the mechanism of standard quantum teleportation, the relations between
noise intensity and the degree of memory under correlated Pauli channel are numerically
analyzed on the condition that teleportation gives the quantum advantages over classical
communication. Compared with the teleportation under uncorrelated Pauli channel ex-
cept for phase_flip channel, the remaining three types of noisy teleportation with Marko-
vian memory are capable to tolerate stronger noise. Considering the phase_flip modeling
the erosion of quantum information without loss of energy is immune to the Markovian
behavior of quantum channel, it is a method to employ error correction to mitigate its
noise on entanglement distribution in the next stage.

In the case of the preshared two-qutrit entangled state interacted with correlated ampli-
tude damping noise, the relations between fidelity and noise intensity can be constructed
once the exact value of the degree of memory is given. It is expected that teleportation can
withstand stronger noise with the increase of the degree of memory if the fidelity is given
in a valid value.
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Generally speaking, it is proved that qutrit teleportation can achieve stronger robust-
ness to noise when taking account of Markovian memory into quantum channel. We are
looking forwards to apply this method to actual quantum information processing in the
future.

4 Methods
4.1 The model of quantum memory channel during entanglement distribution
In this paper, the quantum channel is modeled as the combination of two classes of chan-
nels, that is a public channel and two private channels. The diagram of this simple channel
model is depicted in Fig. 1. The public channel is assumed to be a lossy photon channel
where the two photons consisting of entangled photonic state are transmitted in sequence
with the separation time scale of two photons much lower than the finite relaxation time of
the channel environment. Two private channels are assumed to be ideally noiseless chan-
nels that act on the two photons independently and identically.

Although two types of channels are presented, only the lossy photon channel affects the
quality of information transmission in the entanglement distribution. Much lower separa-
tion time of two photons transmitted through the lossy optical medium could suppress the
finite relaxation time of local environment interacted with the external reservoir, leading
to the output of the second input photon is affected by both input two photons. It is men-
tioned that such effects exhibit some classical correlations, not the quantum coherence.
To account for such effects, a common memory system M is introduced. Therefore, the
corresponding representation of the quantum memory channel can be described as the
interaction of the carrier ρQ with a common memory system M and local environment ei,
that is

�⊗2(ρQ) = TrME
[
Uq2Me2 Uq1Me1

(
ρQ ⊗ wM ⊗ w⊗2

E
)
U†

q1Me1
U†

q2Me2

]
, (20)

where � is a completely positive and trace-preserving map (CPTP) that transforms states
of the sender’s end of the channel into states on the receiver’s end, ρQ, wM and wE are
entangled photonic state, memory state and local environment state respectively. UqiMei

is the unitary operation that each input photon couples to the memory system and local
environment. The graphical sketch of the Eq. (20) is shown in Fig. 6. It is intuitive that
each channel use is directly or indirectly affected by the previous one which means the
correlated source of noise is presented in the successive uses of channel.

According to existing researches [12, 29], the Eq. (20) can be expressed as the concate-
nation of 2 CPTP maps, that is

�⊗2(ρQ) = TrM
[
�q2M ◦ �q1M(ρQ ⊗ wM)

]
, (21)

where single CPTP map �qiM describing the interaction of a particle of the entangled state
with memory system through the unitary dilation, is shown as

I ◦ �qiM(ρQ ⊗ wM) = I ◦ Trei

[
UqiMei (ρQ ⊗ wM ⊗ wei )U

†
qiMei

]
. (22)

With the assumption that the action of past channel can only affect that of the current
channel and is irrelevant to the future channel state, exhibiting the behavior of Markov
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Figure 6 Pictorial representation of the model of memory quantum channel with the n input sequences

chain, the Eq. (21) can be transformed into the following formula

�⊗2(ρQ) =
∑

i1,i2

pi2|i1 pi1�
(i2)
q2 ⊗ �(i1)

q1 (ρQ), (23)

where {�(i)
qj }i is a set of CPTP maps operating on the jth carrier, pi1 is the initial probability

distribution and pi2|i1 is a conditional probability.
Furthermore, based on the assumption that the two light pulses will experience the same

local environment if the transmission rate of light pulse is much higher than the inverse of
the relaxation time of local environment coupled to the external reservoir, the conditional
probability pi2|i1 representing the effect of action of past channel on the current channel
can be written as

pi2|i1 = (1 – μ)pi2 + μδi1,i1 , (24)

where μ ∈ [0, 1] is the degree of memory. It is noted that μ = 0 means the lossy channel is
memoryless and μ = 1 means a perfect memory channel where no input information will
be revealed to local environment.

Combined with the condition probability described in Eq. (24), Eq. (23) can be rewritten
as

�⊗2(ρQ) = (1 – μ)
∑

i1,i2

pi2 pi1�
(i2)
q2 ⊗ �(i1)

q1 (ρQ) + μ
∑

i1

pi1�
(i1)
q2 ⊗ �(i1)

q1 (ρQ). (25)

Therefore, the dynamical evolution of two-qutrit entangled state under Pauli noise and
amplitude damping noise with Markovian memory can be characterized by Eq. (25) when
the operators of describing both noises are presented.

4.2 The Kraus operators for describing the correlated amplitude damping
channel

The time evolution of a three-level atom in the V configuration is given by the master
equation ρ̇ = –i[H ,ρ] + 	ρ [1], in which ρ is the density matrix of the three-level atom, H
describes the Hamiltonian of the total system, –i[H ,ρ] represents the Hamiltonian part



Xu et al. EPJ Quantum Technology             (2022) 9:4 Page 14 of 17

which is a unitary operation, the damping term 	ρ describing the atom decay by the emis-
sion of a photon is defined as

	ρ =
γ20

2
(2σ02ρσ20 – σ22ρ – ρσ22) +

γ10

2
(2σ01ρσ10 – σ11ρ – ρσ11), (26)

where γ10 and γ20 are the two different spontaneous decay constants that the atom transits
from excited states |1〉 and |2〉 to ground state |0〉 respectively. σij is an atomic transition
operator taking an atom from level |i〉 to |j〉, which is defined as σij = |i〉〈j|. As amplitude
damping channel is used to describe the phenomenon of energy dissipation, it is obvious
that the dynamical evolution of a qutrit state under amplitude damping channel can be
represented by the Lindblad equation ρ̇ = 	ρ .

For characterizing the Markovian correlation of the interaction of a compound system
ρc composed of two qutrit states with correlated amplitude damping noise, it is necessary
to calculate the Lindblad equation of the two-qutrit state, which is ρ̇c = 	cρc. The damping
term is written as

	cρc =
γ20

2
(
2A02ρ

cA20 – A22ρ
c – ρcA22

)
+

γ10

2
(
2A01ρ

cA10 – A11ρ
c – ρcA11

)
, (27)

where Aij = σij ⊗ σij. The method to solve this equation is making use of a special basis of
left, {Li}, and right, {Ri}, damping eigenoperators for a Lindblad superoperator 	̃ [13]. It
is assumed that density matrix of the three-level compound system is defined as

ρc =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ00 ρ01 ρ02 ρ10 ρ11 ρ12 ρ20 ρ21 ρ22

ρ03 ρ04 ρ05 ρ13 ρ14 ρ15 ρ23 ρ24 ρ25

ρ06 ρ07 ρ08 ρ16 ρ17 ρ18 ρ26 ρ27 ρ28

ρ30 ρ31 ρ32 ρ40 ρ41 ρ42 ρ50 ρ51 ρ52

ρ33 ρ34 ρ35 ρ43 ρ44 ρ45 ρ53 ρ54 ρ55

ρ36 ρ37 ρ38 ρ46 ρ47 ρ48 ρ56 ρ57 ρ58

ρ60 ρ61 ρ62 ρ70 ρ71 ρ72 ρ80 ρ81 ρ82

ρ63 ρ64 ρ65 ρ73 ρ74 ρ75 ρ83 ρ84 ρ85

ρ66 ρ67 ρ68 ρ76 ρ77 ρ78 ρ86 ρ87 ρ88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

After converting density matrix ρc in Hilbert space into Fock-Liouville space [41], the
Lindblad superoperator 	̃ is derived as a matrix of 81 × 81 which is related to γ20 and γ10.
Then according to the formula 	̃Ri = λiRi, the symbols λi for eigenvalues and Ri for right
eigenstates are able to be calculated. Here, the values of λi are displayed:

λ = (0)49,
(

–
γ10

2

)

14
,
(

–
γ20

2

)

14
,
(

–
γ10

2
–

γ20

2

)

2
, –γ10, –γ20. (29)

It is worth noting that the subscripts of eigenvalues indicates the frequency of the appear-
ance of each eigenvalue and two eigenvalues without subscripts means they both appear
once. Besides, the left eigenvectors Li as the duals of right eigenvectors can be achieved
on the condition that Tr(LiRj) = δij. Eventually, the dynamical evolution of the three-
level compound systems ρc can be calculated in accordance with the formula �(ρc) =
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∑
i tr(Liρ

c) exp(λit)Ri, which is shown as follows

ρ̃ =

⎡

⎢⎢⎢⎢⎢⎣

ρ̃00 ρ01 ρ02 ρ10 e– γ10
2 tρ11 ρ12 ρ20 ρ21 e– γ20

2 tρ22

ρ03 ρ04 ρ05 ρ13 e– γ10
2 tρ14 ρ15 ρ23 ρ24 e– γ20

2 tρ25

ρ06 ρ07 ρ08 ρ16 e– γ10
2 tρ17 ρ18 ρ26 ρ27 e– γ20

2 tρ28

ρ30 ρ31 ρ32 ρ40 e– γ10
2 tρ41 ρ42 ρ50 ρ51 e– γ20

2 tρ52

e– γ10
2 tρ33 e– γ10

2 tρ34 e– γ10
2 tρ35 e– γ10

2 tρ43 e–γ10 tρ44 e– γ10
2 tρ45 e– γ10

2 tρ53 e– γ10
2 tρ54 e– γ10 +γ20

2 ρ55

ρ36 ρ37 ρ38 ρ46 e– γ10
2 tρ47 ρ48 ρ56 ρ57 e– γ20

2 tρ58

ρ60 ρ61 ρ62 ρ70 e– γ10
2 tρ71 ρ72 ρ80 ρ81 e– γ20

2 tρ82

ρ63 ρ64 ρ65 ρ73 e– γ10
2 tρ74 ρ75 ρ83 ρ84 e– γ20

2 tρ85

e– γ20
2 tρ66 e– γ20

2 tρ67 e– γ20
2 tρ68 e– γ20

2 tρ76 e– γ10 +γ20
2 ρ77 e– γ20

2 tρ78 e– γ20
2 tρ86 e– γ20

2 tρ87 e–γ20 tρ88

⎤

⎥⎥⎥⎥⎥⎦
, (30)

where ρ̃00 = ρ00 + (1 – e–γ10t)ρ44 + (1 – e–γ20t)ρ88.
As mentioned above,

∑
k EkkρQEkk represents the correlated part of the evolution of two-

qutrit entangled state ρQ under amplitude damping channel with Markovian memory,
therefore it is apparent that the Kraus operator Ekk can be achieved on the condition that
∑

i tr(Liρ
c) exp(λit)Ri =

∑
k Ekkρ

cEkk , which has been introduced in ref [52]. Combined
Eq. (28) and Eq. (30), the operators E00, E11 and E22 can be finally obtained.

4.3 Noisy quantum teleportation protocol in three dimensions
In what follows the standard quantum teleportation in three dimensions is presented.

Step 1: The qutrit state to be transmitted from Alice to Bob is defined as

|ψ〉in =
2∑

i=0

αi|i〉 = cos θ0|0〉 + sin θ0 cos θ1eiφ1 |1〉 + sin θ0 sin θ1eiφ2 |2〉, (31)

where 0 < θi ≤ π
2 and 0 < φj ≤ 2π .

Step 2: Suppose a prior shared maximally entangled state among Alice and Bob is
|�〉AB = 1√

3

∑2
j=0 |j〉A ⊗ |j〉B. After distributing the two particles A and B of the pure state

|�〉AB through quantum memory channel to communication parties Alice and Bob re-
spectively, the two-qutrit mixed entangled state M can be obtained with Eq. (1).

Step 3: Taking advantage of entanglement, Alice performs a joint measurement on her
particles and the corresponding measurement basis [9] is |φnm〉 = 1√

3

∑2
k=0 e2π ikn/3|k〉 ⊗

|(k + m) mod 3〉 with {n, m} ∈ {0, 1, 2}. Once learning from Alice that she has received
the measurement result (n, m), Bob performs a corresponding unitary transformation
Unm =

∑2
l=0 e2π iln/3|l〉〈(l + m) mod 3| on his previously entangled particle (particle B) for

recovering the information carried by the initial state |ψ〉in. Then, the final state of Bob’s
particle can be written in ρnm = Unm TrA[|φnm〉〈φnm| ⊗ IB(|ψ〉in〈ψ | ⊗ M)]U†

nm.
Step 4: Quantum information is inevitably distorted by the noisy quantum channel,

the fidelity utilized to estimate the feasibility of the protocol is described as Fnm(θ ,φ) =
〈ψ |ρnm|ψ〉/ Trρnm. It is worth noting that Tr(ρnm)–1 referred as the normalization fac-
tor of fidelity is equal to the probability that the result of measurement is (n, m). Taking
all possible teleported ρnm into consideration, the mean fidelity is estimated by F(θ ,φ) =
∑

nm Fnm(θ ,φ).
In order to analyze the effect of noise on the fidelity of qutrit teleportation, it is necessary

to construct relations between fidelity and noise intensity without regard to the probability
amplitude of the initial state. Therefore, the average fidelity calculated by double integrals
of the mean fidelity is eventually chosen to evaluate the transmission quality of quantum
teleportation protocol [41], which is written in Eq. (8).
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