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Abstract
Authentication plays a critical role in the security of quantum key distribution (QKD)
protocols. We propose using Polynomial Hash and its variants for authentication of
variable length messages in QKD protocols. Since universal hashing is used not only
for authentication in QKD but also in other steps in QKD like error correction and
privacy amplification, and also in several other areas of quantum cryptography,
Polynomial Hash and its variants as the most efficient universal hash function families
can be used in these important steps and areas, as well. We introduce and analyze
several efficient variants of Polynomial Hash and, using deep results from number
theory, prove that each variant gives an ε-almost-�-universal family of hash
functions. We also give a general method for transforming any such family to an
ε-almost-strongly universal family of hash functions. The latter families can then,
among other applications, be used in the Wegman–Carter MAC construction which
has been shown to provide a universally composable authentication method in QKD
protocols. As Polynomial Hash has found many applications, our constructions and
results are potentially of interest in various areas.

Keywords: Quantum key distribution; Polynomial Hash; ε-almost-strongly universal;
Polynomial congruence

1 Introduction
Key establishment protocols, in which cryptographic keys are securely exchanged be-
tween parties over a public channel, usually use methods from public-key cryptography,
like Diffie–Hellman key exchange (DH) and elliptic-curve Diffie–Hellman (ECDH); see
[1] for a comprehensive treatment of the key establishment protocols in cryptography.
However, the security of such schemes relies on the computational hardness of certain
mathematical problems (namely, the discrete logarithm problem, the elliptic-curve dis-
crete logarithm problem, and the integer factorization problem) which can be solved on a
sufficiently powerful quantum computer running Shor’s algorithm. Quantum key distri-
bution (QKD), which relies on the foundations of quantum mechanics, provides a higher
level of security than such schemes. QKD is provably secure even against an adversary
with unbounded computational power and is also becoming increasingly feasible to im-
plement. QKD has found many surprising applications, its commercialization has been
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successful, and QKD networks are now deployed in some metropolitan areas [2]. There
are many excellent surveys on QKD (see, e.g., [3–5]).

Studying the security of QKD has become a topic of great importance (see [6, 7] for two
excellent surveys). QKD requires a quantum channel and a classical channel. The classi-
cal channel needs to be authenticated to avoid man-in-the-middle (MITM) attacks. For
the authentication of the communications on the classical channel, the original message
authentication codes (MACs) proposed by Wegman and Carter [8], its variants [9], or
other efficient constructions [10] are used. All these MACs use universal hash functions
in their constructions. In the Wegman–Carter paradigm [8] the message is first hashed
with an ε-almost-strongly universal hash function and then encrypted with a one-time
pad. The application of the Wegman–Carter paradigm in QKD was originally proposed
by Bennett and Brassard [11, 12] in the BB84 protocol (their well-known QKD scheme
developed in 1984) and by Bennett et. al. [13], and since then has been studied extensively
(see, e.g., [9, 10, 14–18]). The Wegman–Carter MAC construction is described as follows.
The legitimate parties share a secret hash function chosen uniformly at random from an
ε-almost-strongly universal (ε-ASU) family of hash functions, and a secret encryption
key (a sequence of random one-time pads). A message is authenticated by first hashing
it with the shared hash function and then encrypting the resulting hash value with the
shared encryption key (shared one-time pad). The resulting encrypted hash value, called
an authentication tag, is transmitted together with the message (as a pair). Upon receiv-
ing this pair, the legitimate party recomputes and validates it. Such a MAC algorithm is
information-theoretically (unconditionally) secure, that is, even an adversary who has un-
bounded computational power cannot forge the MAC with probability greater than the
collision probability of the hash function family [8].

Because, in the authentication of the classical channel, the legitimate parties need to
share some initial small secret information in advance as described above, QKD is some-
times called a quantum key growing (rather than quantum key distribution) protocol. The
Wegman–Carter MAC construction has been shown in [18] to be universally composable
(UC) [19–21], and therefore it is sufficient for authentication in QKD systems. One way
to make QKD protocols more efficient and applicable is to construct efficient ε-ASU hash
function families because these families are the main ingredient in the Wegman–Carter
construction (and in many other universal hashing based MACs).

In this paper, following [22–24] we propose using Polynomial Hash (PH) and its variants
for authentication of variable length messages in QKD systems. Since universal hashing is
used not only for authentication in QKD but also in other steps in QKD like error correc-
tion and privacy amplification [7, 13, 25–30], and also in several other areas of quantum
cryptography (that we will briefly mention in the last section), Polynomial Hash and its
variants as the most efficient universal hash function families can be used in these im-
portant steps and areas, as well. Polynomial Hash is a well-known ε-almost-�-universal
(ε-A�U) family of hash functions which has found various important applications, for
example, Galois/Counter Mode (GCM) [31] (which is used in IPsec, SSH, and TLS) and
Poly1305 [32] (which is used in Google Chrome’s TLS, and later was added to OpenSSH)
use this scheme. See also [33–43] for various other applications of Polynomial Hash. We
introduce and analyze several efficient variants of Polynomial Hash and, using deep results
from number theory, prove that such variants are also ε-A�U and so can be used in var-
ious applications. Furthermore, we propose a general method by which any ε-A�U hash
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function family can be transformed to an ε-ASU family. Therefore, the Polynomial Hash
variants constructed in this paper can all be transformed to ε-ASU families which makes
them useful for various applications including authentication of variable length messages
in QKD.

The rest of this paper is organized as follows. In Sect. 2, we review some results on equa-
tions over fields and rings, in particular some rather underappreciated results of Konyagin
[44, 45], using which we obtain upper bounds for the number of solutions of polynomial
congruences over the ring of integers modulo n,Zn. In Sect. 3, we formally define universal
hashing and its variants and prove a general result for transforming ε-A�U families to ε-
ASU families. In Sect. 4, we construct and analyze several efficient variants of Polynomial
Hash and compare our results with available results.

2 Equations over fields and rings
Throughout the paper, n is a positive integer, p is a prime, Zn is the ring of integers modulo
n defined as Zn = {0, . . . , n – 1}, F is a field, and Fq is the finite field with q elements, where
q is a prime power. Also, Fp is the prime field. Note that Fp = Zp = {0, . . . , p – 1}.

Finding (the number of ) solutions of univariate and multivariate polynomial equations
over fields and rings is a fundamental problem in mathematics, computer science, and
related areas with many applications in various domains. In this paper, by a polynomial we
mean a univariate polynomial. As a classical example, one can mention the Fundamental
Theorem of Algebra which gives the exact number of solutions of polynomial equations
over the field of complex numbers.

Theorem 2.1 (Fundamental Theorem of Algebra) Let f (x) be a non-zero polynomial of
degree d ≥ 0 with complex coefficients. Then the equation

f (x) = 0

has, counting multiplicities, exactly d complex solutions. Equivalently, the field of complex
numbers is algebraically closed.

There are about a hundred proofs(!) of the Fundamental Theorem of Algebra [46]. See
[46] for “one of the most elegant and certainly the shortest” proof.

By a solution of the polynomial congruence

f (x) ≡ 0 (mod n)

we mean an integer in Zn that satisfies the congruence. So, every polynomial congruence
modulo n has at most n solutions. Similarly, every multivariate polynomial congruence in
k variables modulo n has at most nk solutions.

A natural question is whether the Fundamental Theorem of Algebra can be applied to
the ring Zn (that is, to polynomial congruences modulo n)? The answer is no; there is no
direct analog of the Fundamental Theorem of Algebra for polynomial congruences. Let us
see some examples. The following result, proved by D. N. Lehmer [47], gives an explicit
formula for the number of solutions of linear congruences:
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Theorem 2.2 (Lehmer’s Theorem) Let a1, . . . , ak , b ∈ Z. The linear congruence

a1x1 + · · · + akxk ≡ b (mod n)

has a solution 〈x1, . . . , xk〉 ∈ Z
k
n if and only if � | b, where � = gcd(a1, . . . , ak , n). Furthermore,

if this condition is satisfied, then there are �nk–1 solutions.

Note that the generalization of Lehmer’s Theorem to higher degree multivariate polyno-
mial congruences is a challenging problem. In fact, even the quadratic version addressed
by Cohen [48] has much more complicated formulas.

By Lehmer’s Theorem, the linear congruence ax ≡ b (mod n), where a and b are integers,
has zero, one, or more solutions (in fact, zero or gcd(a, n) solutions). As another example,
the quadratic congruence x2 ≡ 1 (mod 8) has four solutions 1, 3, 5, and 7. These examples
show that the Fundamental Theorem of Algebra is not applicable to polynomial congru-
ences. But when the modulus is prime, we have the following result due to Lagrange which
gives an upper bound for the number of solutions (see, e.g., [49]).

Theorem 2.3 (Lagrange’s Theorem) Given a prime p, let

f (x) = adxd + · · · + a1x + a0

be a polynomial with integer coefficients such that ad �≡ 0 (mod p) (said to be of degree d).
Then the polynomial congruence

f (x) ≡ 0 (mod p)

has at most d solutions.

Lagrange’s Theorem can be extended from the prime field Zp to arbitrary fields (not
necessarily finite) as the following (see, e.g., [50]):

Theorem 2.4 Let F be a field and f (x) be a non-zero polynomial of degree d ≥ 0 with
coefficients in F. Then the polynomial equation

f (x) = 0

has, counting multiplicities, at most d solutions in F. Therefore, it has at most d distinct
solutions in F.

It would be useful to compare the above results:

Remark 2.5 The following observations are useful, specially when discussing the Polyno-
mial Hash and its variants:

• Setting F = Zp in Theorem 2.4 we obtain Lagrange’s Theorem but not in full
generality. In fact, in Theorem 2.4 when F = Zp, the coefficients of the polynomial
must be in Zp, but in Lagrange’s Theorem the coefficients are arbitrary integers.
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• While Theorem 2.4 works on arbitrary fields (including the field of complex
numbers), it does not imply the Fundamental Theorem of Algebra. In fact, the
Fundamental Theorem of Algebra gives the exact number of complex solutions of
polynomial equations over the field of complex numbers, but Lagrange’s Theorem and
Theorem 2.4 just give upper bounds for the number of solutions over the prime field
and arbitrary fields, respectively.

• The proof of the Fundamental Theorem of Algebra is totally different from the proof
of Lagrange’s Theorem and Theorem 2.4. In fact, the proof of the Fundamental
Theorem of Algebra is usually given as a result in complex analysis and “the shortest”
proof [46] still requires two pages, but the proofs of Lagrange’s Theorem and
Theorem 2.4 are usually given as results in number theory and field theory and can be
written in just a few lines (see, e.g., [49, 50]).

Note that Lagrange’s Theorem does not hold for composite moduli. For example, the
quadratic congruence x2 ≡ 1 (mod 8) has four solutions 1, 3, 5, and 7. Surprisingly, Van-
diver [51] obtained, for ‘restricted’ solutions, exactly the same upper bound as in La-
grange’s Theorem and Theorem 2.4 in the much more general setting of commutative
rings with identity (that we call Vandiver’s Theorem), but, unfortunately, his result, while
is quite interesting, seems to have been forgotten. Let R be a commutative ring with iden-
tity. Two elements u, v ∈ R are said to be absolutely distinct if u – v is not zero and not a
zero divisor.

Theorem 2.6 (Vandiver’s Theorem) Let R be a commutative ring with identity. Let

f (x) = adxd + · · · + a1x + a0

be a polynomial with coefficients in R such that ad �= 0. Then the polynomial equation

f (x) = 0

has at most d absolutely distinct solutions.

Taking R = Zn, Vandiver [51] derived the following version for Zn. Two integers a and
b are said to be absolutely incongruent modulo n if a – b is coprime to n.

Theorem 2.7 (Vandiver’s Theorem for Zn) Given a positive integer n, let

f (x) = adxd + · · · + a1x + a0

be a polynomial with integer coefficients such that ad �≡ 0 (mod n). Then the polynomial
congruence

f (x) ≡ 0 (mod n)

has at most d absolutely incongruent solutions.
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Note that setting n = p, a prime, in Vandiver’s Theorem for Zn, we re-obtain Lagrange’s
Theorem since any two distinct elements of Zp are absolutely incongruent modulo p.

The rest of this section is devoted to generalizing Lagrange’s Theorem to composite
moduli (or, equivalently, generalizing Vandiver’s Theorem for Zn to cover all solutions).
For generalization to prime power moduli, an upper bound for the number of solutions
can be obtained using the following result (see, e.g., [49]).

Theorem 2.8 Suppose α > 1 is an integer and s is a solution of the polynomial congruence

f (x) ≡ 0 (mod pα–1).

Then we have the following cases:
• If f ′(s) �≡ 0 (mod p) then s can be lifted in a unique way from pα–1 to pα . That is, there is

a unique t ∈ Zpα which generates s and which satisfies the polynomial congruence

f (x) ≡ 0 (mod pα).

• If f ′(s) ≡ 0 (mod p) then:
– If f (s) ≡ 0 (mod pα), s can be lifted from pα–1 to pα in p distinct ways.
– If f (s) �≡ 0 (mod pα), s cannot be lifted from pα–1 to pα .

Given a positive integer n, let

f (x) = adxd + · · · + a1x + a0

be a polynomial with integer coefficients such that ad �≡ 0 (mod n) (said to be of degree d).
Denote by Nd(a0, a1, . . . , ad, n) the number of solutions of the polynomial congruence

f (x) ≡ 0 (mod n).

Lemma 2.9 If G := gcd(a0, a1, . . . , ad, n) > 1 then

Nd(a0, a1, . . . , ad, n) = GNd(a0/G, a1/G, . . . , ad/G, n/G).

Proof The proof easily follows from the basic properties of congruences. �

Therefore, by Lemma 2.9, it suffices to consider the number of solutions of the above
polynomial congruence with gcd(a0, a1, . . . , ad, n) = 1. For simplicity, we denote the num-
ber of such solutions by N(d, n).

Using Lagrange’s Theorem and Theorem 2.8, we can obtain the following upper bound
for N(d, pα).

Theorem 2.10 Let α ≥ 1 be an integer. Then

N
(
d, pα

) ≤ dpα–1.
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Proof Clearly, if N(d, p) = 0 then N(d, pα) = 0, for all integers α ≥ 1. So, let N(d, p) > 0.
Then, using Theorem 2.8, corresponding to each solution of the polynomial congruence
modulo p there will be 0, 1, or p solutions modulo p2. So, using Lagrange’s Theorem and
Theorem 2.8, N(d, p2) ≤ dp. Similarly, corresponding to each solution of the polynomial
congruence modulo p2 there will be 0, 1, or p solutions modulo p3. Therefore, N(d, p3) ≤
dp2. Repeating this process, the result follows. �

Is there a better upper bound for N(d, pα)? Yes(!), and the best upper bound for N(d, pα)
is widely attributed to Stewart [52], and to Schmidt and Stewart [53]. But we have discov-
ered that Konyagin [44, 45] (in Russian and back in 1979) has already obtained a stronger
and more general upper bound for N(d, pα) (that we call Konyagin’s Theorem). We re-
mark that all these bounds were obtained using advanced tools in number theory and
their proofs are rather long and complicated.

Theorem 2.11 (Konyagin’s Theorem) Let α ≥ 1 be an integer. Then

N
(
d, pα

) ≤ d
α(p – 1)

pα .

Furthermore, if d ≥ 2 and p ≥ d1+1/(d–1), then

N
(
d, pα

) ≤ pα(1–1/d).

So far, we have very good upper bounds for the number of solutions of polynomial con-
gruences modulo prime powers. Now, we generalize these upper bounds to arbitrary mod-
uli. For this we need the following tool (see, e.g., [49]).

Theorem 2.12 Let f (x) be a polynomial with integer coefficients. Also, let n1, . . . , nr be pos-
itive integers, pairwise coprime, and let n = n1 · · ·nr . Then the polynomial congruence

f (x) ≡ 0 (mod n) (1)

has a solution if and only if each of the polynomial congruences

f (x) ≡ 0 (mod ni) (i = 1, . . . , r) (2)

has a solution. Moreover, if v(n) and v(ni) denote the number of solutions of (1) and (2),
respectively, then

v(n) = v(n1) · · · v(nr).

When modulus n is square-free, we obtain the best upper bound for N(d, n) using La-
grange’s Theorem and Theorem 2.12 as follows.

Theorem 2.13 Let n be square-free with r distinct prime factors. Then

N(d, n) ≤ dr .
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Proof Let n has the prime factorization n = p1 . . . pr , where pi ’s are distinct primes. By
Lagrange’s Theorem, N(d, pi) ≤ d for all i. Since pi ’s are pairwise coprime, using Theo-
rem 2.12 we have

N(d, n) =
r∏

i=1

N(d, pi) ≤ dr . �

Similarly, when modulus n is an arbitrary positive integer, we obtain the best upper
bound for N(d, n) using Konyagin’s Theorem and Theorem 2.12 as follows.

Theorem 2.14 Let n > 1 has the prime factorization n =
∏r

i=1 pαi
i , where pi’s are prime and

αi ≥ 1 for all i. Then

N(d, n) ≤ ndr
∏r

i=1 αi(pi – 1)
.

Furthermore, if d ≥ 2 and pi ≥ d1+1/(d–1) for all i, then

N(d, n) ≤ n
∏r

i=1 pαi/d
i

.

Proof By Konyagin’s Theorem, we have

N
(
d, pαi

i
) ≤ d

αi(pi – 1)
pαi

i ,

for all i. Since pαi
i ’s are pairwise coprime, using Theorem 2.12 we have

N(d, n) =
r∏

i=1

N
(
d, pαi

i
) ≤

r∏

i=1

d
αi(pi – 1)

pαi
i =

ndr
∏r

i=1 αi(pi – 1)
.

Similarly, if d ≥ 2 and pi ≥ d1+1/(d–1) for all i, then by Konyagin’s Theorem and Theo-
rem 2.12, we have

N(d, n) =
r∏

i=1

N
(
d, pαi

i
) ≤

r∏

i=1

pαi(1–1/d)
i =

n
∏r

i=1 pαi/d
i

. �

3 Universal hashing and its variants
Universal hash function families, introduced by Carter and Wegman [54], guarantee a low
number of collisions in expectation when a hash function is chosen uniformly at random
from the universal hash function family. These hash function families have many impor-
tant applications in computer science and cryptography (see [55] for a comprehensive list
of references). We begin by describing universal hashing and its variants in detail [54, 56–
60]. For a set X , we write x ←X to denote that x is chosen uniformly at random from X .

Definition 3.1 Let H be a family of functions from a finite domain D to a finite range R,
and let ε be a constant such that 1

|R| ≤ ε < 1.
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• The family H is a universal family of hash function if the probability, over a random
choice of a hash function from H , that two distinct elements of D collide (i.e., have the
same hash value) is at most 1/|R| (that is, distinct elements of D do not collide too
often). Formally, H is universal if for any two distinct x, y ∈ D, we have
Prh←H [h(x) = h(y)] ≤ 1

|R| . Also, H is an ε-almost universal (ε-AU) family of hash
functions if for any two distinct x, y ∈ D, we have Prh←H [h(x) = h(y)] ≤ ε. Note that an
ε-AU family, for a sufficiently small ε, is close to being universal.

• Suppose R is a finite additive Abelian group. The family H is a �-universal family of
hash functions if, given a randomly chosen hash function from H , the difference of the
hash values of any two distinct elements of D is uniformly distributed in R. Formally,
H is �-universal if for any two distinct x, y ∈ D, and all b ∈ R, we have
Prh←H [h(x) – h(y) = b] = 1

|R| , where ‘–’ denotes the group subtraction operation. Also,
H is an ε-almost-�-universal (ε-A�U) family of hash functions if for any two distinct
x, y ∈ D, and all b ∈ R, we have Prh←H [h(x) – h(y) = b] ≤ ε. When R = Z

k
2 = {0, 1}k for

some k, the operation ‘–’ can be replaced by ‘⊕’ (XOR), and H is also called ε-almost
XOR universal (ε-AXU) or ε-otp-secure.

• The family H is a strongly universal (or 2-wise-independent) family of hash functions
if, given a randomly chosen hash function from H , the hash values of any two distinct
elements of D are independent and uniformly distributed in R. Formally, H is strongly
universal if for any two distinct x, y ∈ D, and all a, b ∈ R, we have
Prh←H [h(x) = a, h(y) = b] = 1

|R|2 . Also, H is an ε-almost-strongly universal (ε-ASU)
family of hash functions if for any two distinct x, y ∈ D, and all a, b ∈ R, we have
– Prh←H [h(x) = a] = 1

|R| (that is, given a randomly chosen h from H , h(x) is uniformly
distributed in R), and

– Prh←H [h(x) = a|h(y) = b] ≤ ε (that is, given a randomly chosen h from H , h(x) is
hard to guess even if h(y) is known).

Equivalently, H is ε-ASU if for any two distinct x, y ∈ D, and all a, b ∈ R, we have
– Prh←H [h(x) = a] = 1

|R| , and
– Prh←H [h(x) = a, h(y) = b] ≤ ε

|R| .

Because many universal hash functions only work on fixed length messages, it is often
necessary to extend the domain of the hash function to work on longer messages. Wegman
and Carter [8] introduced a construction which recursively hashes messages to a desired
length. Let H be an ε-AU family of hash functions, which maps blocks of length 2l to
blocks of length l. At each round of tree hash, the message is split into blocks of length
2l and each block is hashed with some h ∈ H . The length of the message is halved each
round, so the runtime is logarithmic in the size of message, and after n rounds of tree hash,
the collision probability is 1 – (1 – ε)n [61]. However, due to the recursive nature of tree
hash, it is not suitable for devices with limited memory. Instead, an iterative method can
be constructed by composing hash functions.

Theorem 3.2 ([59]) For i = 1, 2, let Hi : Ai → Bi be almost-universal families of hash func-
tions where B1 = A2, and define H = {h(m) = h2(h1(m))|h1 ∈ H1, h2 ∈ H2}. Then H has the
following property:

• If H1 is ε1-AU and H2 is ε2-AU, then H is (ε1 + ε2 – ε1ε2)-AU.
• If H1 is ε1-AU and H2 is ε2-A�U, then H is (ε1 + ε2 – ε1ε2)-A�U.
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• If H1 is ε1-AU and H2 is ε2-ASU, then H is (ε1 + ε2 – ε1ε2)-ASU.

The last two parts of this result can be used to pair an efficient ε-AU hash family
with an ε-A�U or ε-ASU hash family to create an efficient ε-A�U or ε-ASU fam-
ily. We can also use this result to create a Merkle–Damgård like paradigm for univer-
sal hash functions. Let H : A × B → B be ε-AU and let b ∈ B. Then the family Hl =
{hl(ml, hl–1(. . . h2(m2, h1(m1, b)) . . . )|h1, . . . , hl ∈ H} can hash messages of length l for any
positive l, and is l(2ε – ε2)-AU. This construction was used by Minematsu and Tsunoo
[62], and a more general proof on its collision bound was given by Duval and Leurent [63].

Often the collision probability of a hash function may be larger than desired. For this
reason, there are several techniques for reducing the collision probability of a hash func-
tion family. If H is an ε-AU family of hash functions, then by hashing a message with two
independent keys and concatenating the results, the probability of collision is lowered to
ε2, at the expense of doubling the computational work, the length of the hash value, and
the size of the key. The well-known Toeplitz extension, which has been used in several
MAC algorithms (c.f. [56, 64]), reduces the key size needed for this technique. Rather
than generating independent keys x = 〈x1, x2, . . . , xk〉, x′ = 〈x′

1, x′
2, . . . , x′

k〉, we generate the
values x1, . . . , xk+1 and use the keys x1 = 〈x1, x2, . . . , xk〉 and x2 = 〈x2, x3, . . . , xk+1〉. We can
easily extend this procedure to concatenate n hash values to get a collision probability of
εn. While the computation and hash length still increase by a factor of n, the size of the
key only increases by n values. Not only does this save key material, it reduces memory
accesses, thus potentially improving performance.

Now, we prove a general result for transforming ε-A�U families to ε-ASU families.
Because for authentication in QKD systems we need efficient ε-ASU families, our result
implies that constructing such families boils down to constructing efficient ε-A�U fam-
ilies. Our result is a generalization of the following result by Etzel et al. [65] which seems
to have remained underappreciated.

Theorem 3.3 Let the family

H = {hk : D → R|k ∈ K}

be a �-universal family of hash functions, where K is the key space and R is a finite additive
Abelian group. Then the family

H ′ =
{

h′
k,w : D → R|k ∈ K , w ∈ R

}
,

where

h′
k,w(x) = hk(x) + w,

and ‘+’ denotes the group addition operation, is strongly universal.

In order to generalize the above result, we also need the following result (see [66]):

Theorem 3.4 Let G be an Abelian group, and let ξ1, ξ2, . . . , ξt be independent random vari-
ables which take on values in G. If one of ξi is uniformly distributed in G, then the sum
ξ1 + ξ2 + · · · + ξt is also uniformly distributed in G.
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More generally, Sherstnev [66] gave necessary and sufficient conditions on the distribu-
tions of independent random variables ξ1, ξ2, . . . , ξt , taking on values in an Abelian group
G, under which the sum ξ1 + ξ2 + · · · + ξt is uniformly distributed in G.

Now, we are ready to prove our result.

Theorem 3.5 Let the family

H = {hk : D → R|k ∈ K}

be an ε-almost-�-universal family of hash functions, where K is the key space and R is a
finite additive Abelian group. Then the family

H ′ =
{

h′
k,w : D → R|k ∈ K , w ∈ R

}
,

where

h′
k,w(x) = hk(x) + w,

and ‘+’ denotes the group addition operation, is ε-almost-strongly universal.

Proof For any two distinct x, y ∈ D, and all a, b ∈ R, we have

Prh′
k,w←H′

[
h′

k,w(x) = a, h′
k,w(y) = b

]

= Prh′
k,w←H′

[
hk(x) + w = a, hk(y) + w = b

]

= Prh′
k,w←H′

[
hk(x) – hk(y) = a – b, w = a – hk(x)

]

= Prh′
k,w←H′

[
hk(x) – hk(y) = a – b

] · Prh′
k,w←H′

[
a = w + hk(x)

]
.

Since H is ε-almost-�-universal, we have

Prh′
k,w←H′

[
hk(x) – hk(y) = a – b

] ≤ ε.

Also, by Theorem 3.4 we have

Prh′
k,w←H′

[
a = w + hk(x)

]
=

1
|R| .

Consequently,

Prh′
k,w←H′

[
h′

k,w(x) = a, h′
k,w(y) = b

] ≤ ε

|R| .

Hence, the result follows. �

4 Polynomial Hash and its variants
An ε-A�U family of hash functions which has received much attention is Polynomial
Hash (PH), which is used for hashing variable length messages. The idea is that we put
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the message blocks as the coefficients of a polynomial and then evaluate the polynomial
at the secret key, where all operations are done in a specific field or ring. In this section,
we introduce and analyze several efficient variants of Polynomial Hash and then compare
our results with available results. As Polynomial Hash has found many applications, our
constructions and results might be of interest in various areas.

4.1 Five variants
Here we introduce five variants of Polynomial Hash (other variants are also possible de-
pending on applications) and analyze their universality using results from Sect. 2.

Polynomial Hash Over Ring of Integers Modulo n (PH-IM): In this family, message blocks
mi are all in Zp1 , where p1 is the smallest prime divisor of n, the key x is in Zn, and all
operations are performed in Zn. Formally,

Definition 4.1 (PH-IM) Given an integer n > 1 with the smallest prime divisor p1, we
define

PH-IM :=
{

hx : Zd+1
p1 → Zn|x ∈ Zn

}
,

where

hx(m) :=
d∑

i=0

mixi (mod n),

for every message m = 〈m0, m1, . . . , md〉 ∈ Z
d+1
p1 and every key x ∈ Zn.

Theorem 4.2 Let n > 1 has the prime factorization n =
∏r

i=1 pαi
i , where pi’s are prime and

αi ≥ 1 for all i. Then we have the following cases:
• The family PH-IM is dr

∏r
i=1 αi(pi–1) -almost-�-universal.

• If n is square-free, then the family PH-IM is dr

n -almost-�-universal.
• If d ≥ 2 and pi ≥ d1+1/(d–1) for all i, then the family PH-IM is

1
∏r

i=1 pαi/d
i

-almost-�-universal.

Proof We only prove the last part; the proofs for other parts are similar. Let m =
〈m0, m1, . . . , md〉 ∈ Z

d+1
p1 and m′ = 〈m′

0, m′
1, . . . , m′

d〉 ∈ Z
d+1
p1 be any two distinct messages.

Put a = 〈a0, a1, . . . , ad〉 = m – m′. For every b ∈ Zn we have

hx(m) – hx
(
m′) = b ⇐⇒

d∑

i=0

aixi ≡ b (mod n).

Since m �= m′, there exists some i0 such that ai0 �= 0. Now, we need to find the maxi-
mum number of solutions of the above polynomial congruence over all choices of a =
〈a0, a1, . . . , ad〉 ∈ Z

d+1
p1 \ {0} and b ∈ Zn. Note that since ai’s are in Zp1 and at least one of

them is not zero, we have gcd(a0, a1, . . . , ad, n) = 1. Now, by Theorem 2.14, if d ≥ 2 and
pi ≥ d1+1/(d–1) for all i, then the polynomial congruence

d∑

i=0

aixi ≡ b (mod n),
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has at most

n
∏r

i=1 pαi/d
i

solutions. Consequently, for part (iii) we have

Prhx←PH-IM
[
hx(m) – hx

(
m′) = b

] ≤ n
n

∏r
i=1 pαi/d

i

=
1

∏r
i=1 pαi/d

i

. �

Polynomial Hash With Probability At Least 1/2 Zero Collision (PH-ZC): Let p be an odd
prime and k be a positive even integer not divisible by p. Denote the set of even elements
of Zp by E and the set of odd elements of Zp by O. In this family, message blocks mi are all
in E or are all in O, the key x is in Zkp, and all operations are performed in Zkp. We define
the family over E; the definition and the result over O are similar. Formally,

Definition 4.3 (PH-ZC) Given an odd prime p and a positive even integer k not divisible
by p, we define

PH-ZC :=
{

hx : Ed+1 → Zkp|x ∈ Zkp
}

,

where

hx(m) :=
d∑

i=0

mixi (mod kp),

for every message m = 〈m0, m1, . . . , md〉 ∈ Ed+1 and every key x ∈ Zkp.

Theorem 4.4 The family PH-ZC is d
p -almost-�-universal. Furthermore, with probability

at least 1/2 the collision probability is exactly zero.

Proof Let m = 〈m0, m1, . . . , md〉 ∈ Ed+1 and m′ = 〈m′
0, m′

1, . . . , m′
d〉 ∈ Ed+1 be any two dis-

tinct messages. Put a = 〈a0, a1, . . . , ad〉 = m – m′. For every b ∈ Zkp we have

hx(m) – hx
(
m′) = b ⇐⇒

d∑

i=0

aixi ≡ b (mod kp).

Since m �= m′, there exists some i0 such that ai0 �= 0. Now, we need to find the maxi-
mum number of solutions of the above polynomial congruence over all choices of a =
〈a0, a1, . . . , ad〉 ∈ Ed+1 \ {0} and b ∈ Zkp. Since mi’s are all even, ai’s are also all even. For
every b ∈ Zkp, if b is odd then the polynomial congruence

d∑

i=0

aixi ≡ b (mod k),

has no solution, but if b is even then it has at most k solutions. On the other hand, by
Lagrange’s Theorem, for every b ∈ Zkp the polynomial congruence

d∑

i=0

aixi ≡ b (mod p),
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has at most d solutions. Now, using Theorem 2.12 the polynomial congruence

d∑

i=0

aixi ≡ b (mod kp),

has no solution if b is odd, and has at most kd solutions if b is even.
Consequently, we have

Prhx←PH-ZC
[
hx(m) – hx

(
m′) = b

] ≤ kd
kp

=
d
p

.

Note that although d
p is an upper bound for the collision probability, but when b is odd and

possibly in other cases (so with probability at least 1/2) the collision probability is exactly
zero. Hence, the result follows. �

Polynomial Hash Over Prime Fields (PH-PF): In this family, each message block mi and
the key x are in Zp, and all operations are performed in Zp. Formally,

Definition 4.5 (PH-PF) Given a prime p,

PH-PF :=
{

hx : Zd+1
p → Zp|x ∈ Zp

}
,

where

hx(m) :=
d∑

i=0

mixi (mod p),

for every message m = 〈m0, m1, . . . , md〉 ∈ Z
d+1
p and every key x ∈ Zp.

Theorem 4.6 The family PH-PF is d
p -almost-�-universal.

Proof Same as above, just use Lagrange’s Theorem or Theorem 2.4. �

Remark 4.7 It is important to note that we do not have to restrict the message blocks to
be in Zp or Zn. In fact, the message blocks can be arbitrary non-negative integers as long
as no two messages have all their corresponding blocks congruent modulo p or modulo
n. See Theorem 4.9 for an example of such constructions in the case of Zp but the same
technique is also applicable to Zn.

Polynomial Hash Over Prime Fields With Arbitrary Message Blocks (PH-PA): Let A be
a subset of Zd+1≥0 such that no two elements of A have all their corresponding coordinates
congruent modulo p. In this family, each message m is in A, the key x is in Zp, and all
operations are performed in Zp. Formally,

Definition 4.8 (PH-PA) Given a prime p,

PH-PA := {hx : A → Zp|x ∈ Zp},
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where

hx(m) :=
d∑

i=0

mixi (mod p),

for every message m = 〈m0, m1, . . . , md〉 ∈ A and every key x ∈ Zp.

Theorem 4.9 The family PH-PA is d
p -almost-�-universal.

Proof Same as above, just use Lagrange’s Theorem. Note that when we find the difference
of the two polynomials, at least one of the coefficients is non-zero modulo p (by the def-
inition of the set A) so the assumption of Lagrange’s Theorem is satisfied. Also, note that
Theorem 2.4 is not applicable here because message blocks are not necessarily in Zp. �

Polynomial Hash Over Finite Fields (PH-FF): In this family, each message block mi and
the key x are in Fq, and all operations are performed in Fq. Formally,

Definition 4.10 (PH-FF) Given the finite field Fq with q elements, where q is a prime
power,

PH-FF :=
{

hx : Fd+1
q → Fq|x ∈ Fq

}
,

where

hx(m) :=
d∑

i=0

mixi,

for every message m = 〈m0, m1, . . . , md〉 ∈ F
d+1
q and every key x ∈ Fq.

Theorem 4.11 The family PH-FF is d
q -almost-�-universal.

Proof Same as above, just use Theorem 2.4. �

Corollary 4.12 Using Theorem 3.5, any ε-A�U family, in particular the families studied
in this paper, can be transformed to ε-ASU families which makes them useful for vari-
ous applications including authentication of variable length messages in QKD. This can be
done by adding a uniform value w ← R to the hash functions, where R is the range of the
corresponding hash functions.

4.2 Comparison and remarks
The above techniques and results on the Polynomial Hash and its variants and comparing
them with what were known before, reveals some remarks:

• Polynomial Hash is widely attributed to Wegman and Carter [8], Dietzfelbinger et. al.
[67], den Boer [68], Bierbrauer et. al. [69], and Taylor [70]. But we have discovered
that it has been already introduced by Mehlhorn and Vishkin [71] back in 1984 (of
course, Wegman and Carter [8] already studied the degree one case).
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• So far, only the families PH-PF and PH-FF have been introduced in the literature but,
unfortunately, there is a growing number of papers that explicitly or implicitly have
used the Fundamental Theorem of Algebra to prove the ε-almost-�-universality of
these families. As discussed in detail in Remark 2.5, the Fundamental Theorem of
Algebra works only over the field of complex numbers not over the prime field or
finite fields, so is not applicable to the families PH-PF and PH-FF. Instead, those
papers should have used Lagrange’s Theorem or Theorem 2.4 as we did.

• Polynomial Hash has been already used to provide a very efficient universal hash
function family, for authentication in QKD [22–24] but it has not been explained why
that is the case. In fact, the efficiency of Polynomial Hash comes from at least the
following observations:
– The evaluation of a polynomial f (x) of degree d,

f (x) = adxd + · · · + a1x + a0

needs only d multiplications and d additions since, by Horner’s rule, f (x) can be
written as

f (x) = a0 + x
(
a1 + x

(
a2 + x

(
a3 + · · · + x(ad–1 + xad) · · · ))).

Therefore, hashing a message of length d + 1 using Polynomial Hash needs only d
multiplications and d additions, while hashing the same message using most other
universal hash function families needs more computations, for example, hashing it
using MMH∗ [56, 72, 73] (which is one of the most well-known universal hash
function families) needs d + 1 multiplications and d + 1 additions.

– Unlike most other universal hash function families (e.g., MMH∗ and its variants)
which hash fixed length messages (that is, once the key is chosen we can only hash
message of the same length as the key) Polynomial Hash can be used for hashing
variable length messages because each message block becomes the coefficient of
the polynomial, and so is independent of the key.

• Even though the collision bounds of the hash families introduced in this paper are
quite strong, even if for some application we pick a family with a slightly weaker
collision bound thanks to the everlasting security of QKD [5, 6, 74] if authentication
remains unbroken during the execution of the QKD protocol, then the resulting key is
information-theoretically secure; breaking authentication after the protocol has
output the key will not change the security of the generated key.

• As universal hashing is used not only for authentication in QKD but also in other
steps in QKD like error correction and privacy amplification [7, 13, 25–30], our
constructions and results might lead to improvements in QKD protocols, among
other areas.

• Universal hash functions have been recently used in studying quantum secure direct
communication (QSDC) [75] (see also, [76–80]), quantum secret sharing (QSS)
(either directly [81, 82] or via a security proof based on QKD [83]), quantum
conference key agreement (QCKA) [84–86], and quantum authentication [87–89].
Therefore, our efficient and secure constructions and results might lead to
improvements in these directions as well.
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• Our study of Polynomial Hash over Zn and its variants also demonstrate various
benefits which do not hold in the case of the two well-known variants of Polynomial
Hash. In particular,
– We do not have to restrict the message blocks to be in Zp or Zn. In fact, the

message blocks can be arbitrary non-negative integers (unlike the two well-known
versions). See Remark 4.7 and Theorem 4.9 for the details.

– In some of these variants with probability at least 1/2 the collision probability is
exactly zero (see Theorem 4.4).

– We do not need large prime numbers or finite field arithmetic anymore (that is, all
arithmetic is done in Zn).

– It is also possible to introduce, generalize, and analyze other variants of Polynomial
Hash (for specific applications) using results from Sect. 2.

– Although in QKD the legitimate parties need to share some initial small secret
information in advance for the authentication of the classical channel, each round
of QKD provides substantially larger fresh key materials, part of which can be used
for authentication in the next round of QKD. Furthermore, keys generated in each
round of QKD are completely independent of all prior keys and messages [5, 6, 74].
Therefore, even if any of our schemes uses more key materials at the expense of
other benefits, the protocol compensates it in the next round.

– We connected Polynomial Hash and QKD with deep results in number theory.
This may motivate more work in these areas.
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