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Abstract
In this paper, we first define a primitive protocol of secure multiparty computations to
privately compute the logic operator “OR” (SMC_OR). Accordingly, we design a
feasible quantum SMC_OR protocol by using single photons, which can achieve
information-theoretical security in the semi-honest model. Furthermore, we adopt
the proposed quantum SMC_OR protocol to solve an interesting but important
privacy-preserving problem, i.e., finding the maximum value among many secrets.
Finally, we simulate the related quantum protocols in Qiskit and verify the correctness
and the feasibility of the proposed protocols.
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1 Introduction
Nowadays, quantum computations [1, 2] and quantum communications [3, 4] have re-
ceived extensive attention and gained many promising achievements, e.g., quantum tele-
portation [5], quantum cryptography [6] and quantum artificial intelligence [7].

With the further development of quantum computing, classical cryptographic systems
(e.g., RSA) faces enormous threatens and challenges. Fortunately, quantum cryptography
brings new dawn, e.g., the first quantum key distribution protocol (i.e., the BB84 QKD pro-
tocol) [8], which can ensure information-theoretical security [9]. Furthermore, compared
with classical cryptography, the biggest advantage of quantum cryptography is that both
the sender and the receiver can easily detect any outsider’s eavesdropping when transmit-
ting quantum messages through quantum channels.

In classical settings, modern cryptography has many important functionalities and ap-
plications except for the basic encryption and decryption, e.g., ensuring message integrity
and protecting user privacy. Similarly, quantum cryptography, which is a combination of
modern cryptography and quantum mechanics, can theoretically ensure data security and
protect user privacy. Therefore, quantum cryptography has a wide range of research, in-
cluding quantum key distribution (QKD), quantum secret sharing (QSS), quantum secure
direct communication (QSDC), quantum signature (QS), quantum privacy query (QPQ)
and so on. However, except for QKD, there are few feasible quantum cryptographic pro-
tocols, which can be successfully implemented in large-scale networks.
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In this paper, we focus on input privacy in a specific cryptographic task, in which a group
of users try to compute the maximum value among their private inputs. Our primary goal
is to protect user privacy by designing ingenious quantum cryptographic protocols. Fur-
thermore, our secondary goal is to design quantum protocols by employing feasible quan-
tum processing technologies, so that designed quantum protocols can be practically and
effectively implemented. First, we define an interesting but important primitive protocol
of secure multiparty computation, i.e., secure multiparty computation of OR (SMC_OR
for short) and design the corresponding quantum SMC_OR protocol. What’s more, we
present an unconditionally (i.e., information-theoretically) secure quantum protocol for
finding the maximum value among many secrets based on proposed quantum SMC_OR
protocols, where each secret belongs to a different participant.

In classical setting, secure multiparty computation (SMC) is an important subfield of
modern cryptography, which allows a number of mutually distrustful parties to jointly
compute a function without leaking their respective private inputs. The first SMC prob-
lem was presented by Yao [10], i.e., the Millionaires’ problem, in which two millionaires
wish to know who is richer without disclosing their wealth. Privately finding the maxi-
mum value is the general case of the Millionaires’ problem, in which a group of parties
try to compute the maximum value (i.e., the greatest value) among their private inputs.
Accordingly, a naive method to find the maximum value among many private inputs may
adopt pairwise private comparison protocols [11], but this method reveals the rank or-
der of all private inputs. Due to its importance, there appeared other better methods to
privately compute the maximum value based on classical cryptographic algorithms, e.g.,
homomorphic encryption [12] and anonymous veto network [13]. However, the security
of these algorithms is based on unproven computational assumptions, e.g., to prove the
security of proposed algorithms in Ref. [13], the author assumes that the Decision Diffie-
Hellman (DDH) problem is intractable. Furthermore, these computational assumptions
are vulnerable to the attacks by quantum computers due to fast quantum algorithms [9].
Accordingly, these algorithms based on unproven computational assumptions cannot re-
sist quantum attacks. What’s more, compared with the classical related algorithms or pro-
tocols, the biggest advantage of using quantum cryptography to compute the maximum
value is that it can easily detect any outsider’s eavesdropping or any party’s dishonesty.

Finding the maximum value among many secrets has important and wide applications
in privacy-preserving fields, such as sealed-bid auction [14, 15], electronic voting [16, 17]
and federated learning [18, 19]. For example, in sealed-bid auction, an auctioneer can get
the highest bid by finding the maximum value among multiple private bids, so that it can
ensure the anonymity because each bidder does not need to submit his private bid to the
auctioneer. In quantum setting, there were quantum algorithms to find the maximum [20]
or the minimum [21]. However, in these quantum algorithms there is not any privacy pro-
tection. To the best of our knowledge, there is not yet any quantum protocol for privately
finding the maximum value.

Though near-term quantum computing devices have super-fast computing power, few
users can own them due to their expensive costs. Furthermore, the emergence of various
quantum cloud platforms (e.g., IBM quantum experience) makes it possible for ordinary
users to perform quantum computing. In view of this, we introduce a quantum cloud in
our proposed quantum protocols to make the quantum processing capacity required by
all parties reach the minimum requirements, i.e., it only needs to perform single-photon
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operators (Pauli operator and Hadamard gate operator). Furthermore, our proposed quan-
tum protocols take single photons (i.e., BB84 states) as quantum resources and only need
to perform single-photon operators and single-photon measurements, which are similar
to the BB84 QKD protocol. Therefore, it is feasible to implement proposed protocols with
present technologies.

2 Quantum SMC_OR protocol
In this section, we first give an informal definition of a primitive problem of secure multi-
party computations, i.e., secure multiparty computation of OR (SMC_OR for short), and
then present a feasible quantum protocol for SMC_OR, which will be utilized later in
privacy-preserving quantum protocol for finding the maximum value (later called privacy-
preserving QFMV protocol).

Definition 1 (SMC_OR) Suppose that there are m (m > 2) parties: P1, P2, . . . , Pm, each of
which has a private input xi ∈ {0, 1} (i = 1, 2, . . . , m). After executing the SMC_OR protocol,
the protocol outputs x1 ∨x2 ∨· · ·∨xm. Here “∨” denotes a logical OR, i.e., 0∨0 = 0, 0∨1 =
1, 1∨ 0 = 1 and 1∨ 1 = 1. In addition, SMC_OR should satisfy the following requirements:

Correctness. If all parties honestly execute this protocol, then the final output is x1 ∨x2 ∨
· · · ∨ xm, i.e., the output is correct.

Fairness. Roughly speaking, no coalition of dishonest parties can harm any honest party
without being detected. In other words, under no circumstances one party should have an
advantage over another or other parties.

Privacy. Any other party except for the party Pi learns no information about xi except
the final output x1 ∨ . . . xi · · · ∨ xm.

Security Model. In the following protocols, we only consider the honest-but-curious
parties [14, 15], like the semi-honest model [13] in the classical settings, where adversaries
may try to learn as much information as possible from a given protocol execution but
are not able to deviate from the protocol steps. That is, in the semi-honest model, each
participant follows the protocol specification but tries to deduce some private information
about the other participants [13].

Furthermore, we assume that there is a semi-honest quantum cloud, who will prepare
all quantum resources (i.e., single photons) and perform all single-photon measurements,
and other parties with quantum-limited capabilities only need to forward single photons
and perform simple single-photon operators. In addition, we assume that there is an au-
thenticated quantum channel between any Pi and Pi+1 (i = 1, 2, . . . , m and Pm+1 is the quan-
tum cloud). Finally, the quantum cloud is responsible to output x1 ∨ x2 ∨ · · · ∨ xm.

In the semi-honest model, each participant follows the protocol specification but tries
to deduce some private information about the other participants [13]. So, in the following
protocols we mainly consider two privacy goals: (1) Preserving input privacy from anyone
inside the group of participants, including the quantum cloud; (2) Preserving input privacy
from outside passive attackers, i.e., outside eavesdropper.

Quantum SMC_OR Protocol
Step 1. All parties agree on a small integer k, e.g., k = 10, which is related to the proba-

bility of successfully outputting x1 ∨ · · ·xi · · · ∨ xm (i.e., the error probability δ ≈ 1
2k , later

see Theorem 1).
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Step 2. Each party Pi (i = 1, 2, . . . , m) generates a private array Xi of the length k by his
private input xi: If xi = 0, then all Xi[j]s are equal to 0; If xi = 1, then each Xi[j] is equal
to 0 or 1 randomly but there is at least one 1 among all kXi[j]s. That is, if xi = 0, then
Xi[1] ∨ Xi[2] ∨ · · · ∨ Xi[k] = 0; if xi = 1, then Xi[1] ∨ Xi[2] ∨ · · · ∨ Xi[k] = 1.

Step 3. Let t = 2(k + q), where q is a secure parameter. Furthermore, each party Pi (i =
1, 2, . . . , m) randomly generates two t-element arrays Ri and Si, where Ri[j] ∈R {0, 1} and
Si[j] ∈R {0, 1} for j = 1, 2, . . . , t.

Step 4. The quantum cloud prepares t single photons: ph1, ph2, . . . , pht , each of which is
randomly in {|0〉, |1〉, |+〉, |–〉}. Furthermore, the quantum cloud records the initial states
of t single photons. Finally, the quantum cloud sends all t single photons ph1, ph2, . . . , pht

to the party P1 through the authenticated quantum channel.
Step 5. The party P1 executes the following procedures: {

For j = 1 to t do {
If S1[j] = 1, then apply an H gate operator to the jth single photon phj ;
If R1[j] = 1, then apply a Pauli operator Uy to the jth single photon phj. } }

Here, H and Uy are defined by [9],

H =
1√
2

[
1 1
1 –1

]
, (1)

UY = iY =

[
0 1

–1 0

]
. (2)

Step 6. The party P1 sends all t single photons ph1, ph2, . . . , pht to the party P2 through
the authenticated quantum channel.

Step 7. After receiving all photons sent from the party P1, the party P2 executes the
similar procedures of the party P1 and then sends all photons to the next party P3 through
the authenticated quantum channel. In total, the process is repeated m times. Finally, the
party Pm sends t single photons ph1, ph2, . . . , pht back to the quantum cloud.

Please note that after receiving t single photons sent from the previous party, the party
Pi executes the following procedures: {

For j = 1 to t do {
If Si[j] = 1, then apply an H gate operator to the jth single photon phj ;
If Ri[j] = 1, then apply a Pauli operator Uy to the jth single photon phj. } }

Step 8. After receiving all t single photons, the quantum cloud measures each photon
phj in the initial basis for j = 1, 2, . . . , t, and records all measured results.

Step 9. Post-processing: (1) Each party Pi (i = 1, 2, . . . , m) opens his random bits Si[j]s
for j = 1, 2, . . . , t. (2) All parties publicly select out the useful js from j = 1 to t, where the
useful condition of j must satisfy

∑m
i=1 Si[j] mod 2 = 0. Please note that the basis of the

jth photon phj will not change when satisfying the useful condition (please see later cor-
rectness analysis for details). (3) All parties keep the useful events, in which the sequence
number j satisfies the useful condition, and discard the rest (with the probability of 1

2 ).
(4) There are approximate k + q ( i.e., 1

2 t) useful events in total. All parties randomly se-
lect out exactly k useful events as encoding events to compute the final result and the
remaining about q useful events as checking events to check any dishonesty or eavesdrop-
ping. (5) Suppose that there are q checking events. The parties open the corresponding
sequence number js of all q checking events and ask the quantum cloud to announce the
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initial quantum states and the measurement results of q checking events. After that, all
parties open their respective random bits Ri[j]s (only) for all checking events. By all public
Ri[j]s, the initial quantum states and the corresponding measurement results, all parties
can determine whether there is any dishonest party or an outside eavesdropper. That is,
if

∑
i Ri[j] = 0 (

∑
i Ri[j] = 1), the measurement result should be the same (opposite) as the

initial quantum state; otherwise there is a dishonest party or an eavesdropping adversary.
If no dishonesty or eavesdropping was found, the parties continue to execute the next step,
otherwise abort.

Step 10. Suppose that k encoding events kept to compute the final result are corre-
sponding to the l1th, l2th, . . . , lkth photon among all t photons, where lj ∈ {1, 2, . . . , t} and
j ∈ {1, 2, . . . , k}. Then, all parties open the corresponding sequence number js of all k en-
coding events: l1, l2, . . . , lk . Each party Pi (i = 1, 2, . . . , m) computes

X∗
i [lj] =

(
Xi[j] + Ri[lj]

)
mod 2, (3)

for j = 1, 2, . . . , k. Furthermore, each party Pi opens X∗
i [lj]. Please note that X∗

i [lj] = (Xi[j] +
Ri[lj]) mod 2 = Xi[j] ⊕ Ri[lj], which is the one-time pad method to encrypt Xi[j] since Ri[lj]
is random and private.

Step 11. The quantum cloud computes X∗[lj] (j = 1, 2, . . . , k) by

X∗[lj] =
m∑

i=1

X∗
i [lj] mod 2. (4)

Furthermore, the quantum cloud performs the following procedures: {
(1) Let w = 0.
(2) For j = 1 to k do {

If the measured result of the ljth photon phlj is inconsistent with the initial state
of the photon phlj (later we will prove that it implies that

∑m
i=1 Ri[lj] mod 2 = 1),

then w = (X∗[lj] + 1) mod 2; //w =
∑m

i=1 Xi[j] mod 2.
else w = X∗[lj]. //w =

∑m
i=1 Xi[j] mod 2.

If w = 1, Return (w). }
Return (0).}

3 Privacy-preserving QFMV protocol
Similarly, we assume there are m (m > 2) parties: P1, P2, . . . , Pi, . . . , Pm in the following
privacy-preserving QFMV protocol, where each party Pi has a secret Yi ∈ ZN and n = log N
(i.e., Yi is an n-bit integer). Similarly, Yi[j] represents the jth bit of Yi. The goal of the pro-
tocol is to find the maximum value Ymax among all secrets Y1, Y2, . . . , Yi, . . . , and Ym (i.e.,
Ymax ∈ {Y1, Y2, . . . , Ym} but Ymax ≥ Yi for any i), while it must protect the privacy of all non-
maximum secrets.

Step 1. Each party Pi (i = 1, 2, . . . , m) generates an auxiliary array Y ∗
i and sets Y ∗

i = Yi

initially.
Step 2. All parties jointly execute the following procedures: {
For j = 1 to n do {
(1) All parties execute a quantum SMC_OR protocol with the help of the quantum

cloud, where each party Pi (i = 1, 2, . . . , m) privately inputs Y ∗
i [j]. Accordingly, the

quantum cloud outputs and opens W [j], where W [j] = Y ∗
1 [j] ∨ Y ∗

2 [j] ∨ · · · ∨ Y ∗
m[j].
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Figure 1 The Schematic of the proposed QFMV protocol

(2) Each party Pi (i = 1, 2, . . . , m) renews the auxiliary array Y ∗
i according to the

previous output W [j]:
If W [j] > Y ∗

i [j] (i.e., W [j] = 1 and Y ∗
i [j] = 0), then set Y ∗

i = 0 (i.e., let all Y ∗
i [j]s be

equal to 0). // It implies that Yi cannot be the maximum (please see Fig. 1).
(3) j + +. } }
Step 4. After executing n quantum SMC_OR protocols, the protocol finally outputs

{W [1], W [2], . . . , W [n]} as the bit string of the maximum value.

4 Analysis
4.1 Correctness
The core idea of the proposed privacy- preserving QFMV protocol is to calculate bitwise
OR operators of all private bit strings from left to right, i.e., from high to low. Initially, each
bit string Y ∗

i represents a private secret, i.e., Yi. As the calculations progress, increasingly,
all parties, except one whose input is the maximum value, can determine that their private
inputs are less than the maximum value, and accordingly, they will input 0 in later quantum
SMC_OR protocols. That is, only the party with the maximum value retains all bits in his
private bit string, while other parties renew their bits to ensure that each bit of them is
less than or equal to the corresponding bit of the maximum value. So, it can finally output
all bits of the maximum value. Here, we give a simple example, as shown in Fig. 1. From
the example, we can see that the correctness of the proposed QFMV protocol is mainly
guaranteed by quantum SMC_OR protocols. So, we further analyze the correctness of
the quantum SMC_OR protocol as Theorem 1. In the following theorem, suppose that
the number of one among m private inputs (i.e., x1, x2, . . . , xm) in the quantum SMC_OR
protocol is p, where p ≤ m.

Theorem 1 If p = 0 or 1, then the quantum SMC_OR protocol is perfectly correct; If p ≥ 2,
then it may give a wrong output 0, but the error probability δ ≈ 1

2k , which is very small and
negligible when k is large enough, e.g., k = 10.
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Figure 2 The transmitting schematic of the single
photon

Proof (1) On the one hand, from Eqs. (1) and (2), we can easily get the following equations:

H2 = U2
Y = I, (5)

HUY H = –UY , (6)

HUY = –UY H . (7)

Furthermore, we consider all possible operators on a specific photon, e.g., phj, as shown
in Fig. 2.

Suppose that the initial state of the photon phj is |ψ〉j. By previously prescribed proce-
dures, when the photon phj finally comes back to the quantum cloud, its final state |φ〉j

will be changed as

|φ〉j = URm[j]
Y HSm[j] · · ·UR2[j]

Y HS2[j]UR1[j]
Y HS1[j]|ψ〉j. (8)

By Eqs. (5)–(7), we can further get

|φ〉j = (–1)lU
∑

i Ri[j]
Y H

∑
i Si[j]|ψ〉j. (9)

Here, l = 0 or l = 1. Furthermore, if j satisfies the useful condition, then
∑

i Si[j] = 0 mod 2,
so

|φ〉j = (–1)lU
∑

i Ri[j]
Y |ψ〉j. (10)

In addition, it gives

UY |0〉 → |1〉,
UY |1〉 → –|0〉,
UY |+〉 → |–〉,
UY |–〉 → –|+〉. (11)

By Eqs. (10) and (11), we further know that for any useful event, the final state will remain
the same as the initial state except for a global phase if the number of performing UY is
even, otherwise it will change, but it keeps the same basis.
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In turn, if the measured result of the jth photon phj by the quantum cloud is inconsistent
with the initial state of the photon phlj , then

∑m
i=1 Ri[j] mod 2 = 1, and

∑m
i=1 Ri[j] mod 2 = 0

otherwise. That is, the single Ri[j] is private, but the quantum cloud knows the summation
of

∑m
i=1 Ri[j] mod 2.

Furthermore, by Eqs. (3) and (4), we can get

X∗[lj] =
m∑

i=1

X∗
i [lj] mod 2

=
m∑

i=1

(
Xi[j] + Ri[lj]

)
mod 2

=
m∑

i=1

Xi[j] mod 2 +
m∑

i=1

Ri[j] mod 2. (12)

If
∑m

i=1 Ri[j] mod 2 = 1,
∑m

i=1 Xi[j] mod 2 = (X∗[lj] + 1) mod 2, and
∑m

i=1 Xi[j] mod 2 = X∗[lj]
otherwise. So, the equation of w =

∑m
i=1 Xi[j] mod 2 is always true. In turn, the quantum

cloud can deduce the value of
∑m

i=1 Xi[j] mod 2 (i.e., w) by the public information and his
recorded results.

(2) On the other hand, we further consider the following different cases that m inputs
x1, . . . xi, . . . , xm have p ones (i.e., p is the number of ones in all xis).

In the case of p = 0 (i.e., all xis are equal to 0):
Accordingly, all Xi[j]s are equal to 0. That is, w =

∑m
i=1 Xi[j] mod 2 = 0 for all j. Since

x1 ∨ x2 ∨ · · · ∨ xm = 0, the output is correct.
In the case of p = 1:
There is just one Xi∗ that Xi∗ �= 0, so there is at least one j, such that w =

∑m
i=1 Xi[j] mod 2 =

Xi∗ [j] = 1. That is, x1 ∨ x2 ∨ · · · ∨ xm = w = 1. Therefore, the output is correct.
In the case of p = 2:
Suppose that xi1 = 1 and xi2 = 1. Accordingly, Xi1 �= 0 and Xi2 �= 0. Then, the total number

of appropriate Xi1 and Xi2 is (2k –1)(2k –1). Furthermore, the final output w = 1 if Xi1 �= Xi2 ,
otherwise w = 0 (i.e., Xi1 = Xi2 ). The number of possible Xi1 (i.e., Xi1 �= 0) is (2k – 1). So, the
error probability (i.e., Xi1 = Xi2 ) is equal to

δ =
(2k – 1)

(2k – 1)(2k – 1)
,

δ =
1

(2k – 1)
. (13)

Obviously, when k is large enough, δ ≈ 0. For example, if k = 6, δ = 0.01587; if k = 10,
δ = 0.00098.

In the case of p = 3:
We consider the following error combinations: k rows (corresponding to j = 1, 2, . . . , k)

and p columns (corresponding to p array Xis), where each column has at least one “1” (i.e.,
the corresponding Xi �= 0) and each row has zero “1” or two “1”s, i.e., w =

∑m
i=1 Xi[j] mod 2 =

0. However, x1 ∨ x2 ∨ · · · ∨ xm = 1. Furthermore, by the possible 1s in each row, we can
deduce that the error probability satisfies the following condition:

δ <
(C0

3 + C2
3)k

(2k – 1)(2k – 1)(2k – 1)
,
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δ <
4k

(2k – 1)(2k – 1)(2k – 1)
≈ 1

2k . (14)

Similarly, when k is large enough, δ ≈ 0. For example, if k = 6, δ < 0.01638; if k = 10, δ <
0.00098.

By analogy, we can easily deduce that other more general cases for any p:

δ <
(C0

p + C2
p + C4

p + · · · + C2
p/2�
p )k

(2k – 1)p ,

δ <
(2p–1)k

(2k – 1)p ≈ 1
2k . (15)

Please note that C0
p + C1

p + C2
p + · · · + Cp

p = 2p and Ci
p = Ci–1

p–1 + Ci
p–1. Therefore, when k is

large enough, δ is negligible. That is, the proposed quantum SMC_OR protocol is approx-
imatively correct. �

4.2 Security
According to the proposed QFMV protocol, all parties jointly compute the bitwise OR
operators of their respective private inputs (see Fig. 1). So, the security of the proposed
QFMV protocol is guaranteed by that of the proposed quantum SMC_OR protocol. In
the following theorem, we will prove that our proposed quantum SMC_OR protocol is
information-theoretically secure in the semi-honest model.

Theorem 2 The proposed quantum SMC_OR protocol is information-theoretically secure,
when all parties honestly execute the protocol.

Proof Before publishing the random bit Si[j], each party Pi performs two quantum oper-
ators URi[j]

Y HSi[j] on the jth photon phj, that is, he encrypts each transmitted qubit (e.g.,
the single-photon phj) by using two random and secret bits (i.e., privately performing two
quantum operators URi[j]

Y HSi[j] on the photon phj). Similarly, it is a perfect quantum en-
cryption [22], which is information-theoretically secure.

By Ref. [22], the quantum protocol is information-theoretically secure if for every input
state ρin, the output state ρout is a totally mixed state. The relation of the input state ρin

and the output state ρout is as follows:

ρout =
∑

k

pkUkρinU†
k =

1
2t I. (16)

Here ρin is the density matrix of all possible t-qubit input states and Uk is the correspond-
ing unitary operator applied to the input state.

For simplicity, we only analyze an arbitrary photon, e.g., phj, in our protocol. Accord-
ingly, we can get

ρin(phj) =
[

1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

]

=
1
4

[(
1 0
0 0

)
+

(
0 0
0 1

)
+

1
2

(
1 1
1 1

)
+

1
2

(
1 –1

–1 1

)]
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=
1
2

(
1 0
0 1

)
=

I
2

, (17)

Ri[j], Si[j] ∈R {0, 1}. (18)

So, after the party Pi performing the corresponding operators, the output state should be
in

ρout(phj) =
1
4

[
U0

Y H0
(

1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

)]

+
1
4

[
U0

Y H1
(

1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

)]

+
1
4

[
U1

Y H0
(

1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

)]

+
1
4

[
U1

Y H1
(

1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

)]

=
1
4

[(
1
4
|0〉〈0| +

1
4
|1〉〈1| +

1
4
|+〉〈+| +

1
4
|–〉〈–|

)]

+
1
4

[(
1
4
|+〉〈+| +

1
4
|–〉〈–|

)
+

1
4
|0〉〈0| +

1
4
|1〉〈1|

]

+
1
4

[(
1
4
|1〉〈1| +

1
4
|0〉〈0| +

1
4
|–〉〈–| +

1
4
|+〉〈+|

)]

+
1
4

[(
1
4
|–〉〈–| +

1
4
|+〉〈+| +

1
4
|1〉〈1| +

1
4
|0〉〈0|

)]

=
1
4

[|0〉〈0| + |1〉〈1| + |+〉〈+| + |–〉〈–|)]

=
1
4

[(
1 0
0 0

)
+

(
0 0
0 1

)
+

1
2

(
1 1
1 1

)
+

1
2

(
1 –1

–1 1

)]

=
1
2

(
1 0
0 1

)
=

I
2

. (19)

From Eq. (19), we can see that the output of the single-photon phj after the party Pi per-
forming private operators is just a totally mixed state. So, anyone including the quantum
cloud or the next party Pi+1 cannot get any private information about the party Pi’s bits
Ri[j] and Si[j]. That is, it is a perfect quantum encryption.

After completing the tests of q checking events, each party Pi computes and opens
X∗

i [lj] = (Xi[j] + Ri[lj]) mod 2, where Ri[lj] is completely random and private. Clearly, it is a
classical one-time pad.

In short, perfect quantum encryption and classical one-time pad can ensure the
information-theoretical security of the proposed quantum protocols in the semi-honest
model.

Furthermore, a dishonest party (e.g., Pi–1) can perform a collusion attack to eavesdrop
on partial private information of the party Pi with the next party Pi+1 as follows:

After the dishonest party Pi–1 receives all t single photons, he prepares t two-photon
Bell states and sends t photons of Bell states to the party Pi instead of the original t sin-
gle photons. Without loss of generality, we only analyze a Bell state of two photons, e.g.,
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|00〉ab+|11〉ab√
2 . For example, the dishonest party Pi–1 sends the photon b to the party Pi in-

stead of the real photon phj, while he keeps the photon a in hands. Accordingly, the party
Pi performs the following operators URi[j]

Y HSi[j] on the photon b:

U0
Y H0 |00〉ab + |11〉ab√

2
=

|00〉ab + |11〉ab√
2

, (20)

U0
Y H1 |00〉ab + |11〉ab√

2
=

|0+〉ab + |1–〉ab√
2

, (21)

U1
Y H0 |00〉ab + |11〉ab√

2
=

|01〉ab – |10〉ab√
2

, (22)

U1
Y H1 |00〉ab + |11〉ab√

2
=

|0–〉ab + |1+〉ab√
2

. (23)

Later, the party Pi sends the photon b to the next party Pi+1. To implement the collusion
attack, the party Pi+1 does nothing except send the photon b to the party Pi–1. Finally, the
party Pi–1 performs a Bell-basis measurement on the two photons (a, b) so that it can
deduce partial private information of the party Pi. For example, if his measured result is
|00〉ab+|11〉ab√

2 , then he can deduce that Ri[j] = 0 and Si[j] = 0.
In particular, to resist this collusion attack, we add the tests of q checking events in our

proposed protocol. Obviously, checking events can ensure the honesty of all parties and
resist the outsider’s eavesdropping, which is similar to the decoy technology in QKD [23].

On the other hand, if the dishonest parties perform this attack, the final output must be
wrong. So, in order to verify whether the final output is the maximum value among many
secrets, we can add a commit protocol in the initial phase as follows:

Each party Pi (i = 1, 2, . . . , m) randomly selects an integer Ri ∈ ZN and computes Ci =
H(Ri ⊕ H(Ri ⊕ Yi)), where Yi is his secret and H(·) is a hash function with strong collision-
resistant. Then the party Pi submits Ci to the quantum cloud by the classical channels.
That is, the party Pi commits Yi to the quantum cloud, but no one can get Yi only from Ci

without Ri.
Later, when the quantum cloud outputs the maximum value Ymax, the party Pmax with

the maximum value Ymax opens his secrets Ymax and Rmax. Finally, the quantum cloud can
verify its correctness by determining whether the following equation is true or not:

Cmax = H
(
Rmax ⊕ H(Rmax ⊕ Ymax)

)
. (24)

If there is no any party to claim the maximum value, it shows the output result is wrong.
According to the above analysis, if all parties honestly execute the protocol, it will out-

put the final result rightly. In turn, any eavesdropping or dishonesty can be easily detected
by public comparisons in checking events. Accordingly, no coalition of dishonest parties
can harm any honest party without being detected. Furthermore, all parties in our proto-
col are perfect peer and execute the same procedures. Therefore, the proposed quantum
SMC_OR protocol can achieve the fairness.

In addition, like most existing multiparty quantum computations, our proposed quan-
tum SMC_OR protocol needs authenticated quantum channels, which can ensure the au-
thenticity of quantum resources and participant identities. In principle, we may combine
quantum authentication technologies [24] with classical authentication technologies [25]
to implement various authentications in quantum channels. �
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Figure 3 Quantum circuits of an instance of SMC_OR

4.3 Performance
The proposed quantum SMC_OR protocol takes single photons as quantum resources
and accordingly needs single-photon-based operators (i.e., UY and H) and measurements.
Suppose that there are m parties. Then, it needs to transmit 2(k + q)m qubits. So, the com-
municational complexity is O(km). Furthermore, we assume that the bit length of each
secret in the proposed QFMV protocol is n. So, it needs to call the proposed quantum
SMC_OR protocol n times. Accordingly, our proposed QFMV protocol’s communica-
tional complexity is O(kmn).

Furthermore, we simulate the proposed quantum SMC_OR protocol in Qiskit of IBM
(Qiskit-0.23.2; Python-3.8.6; OS-Linux). First, we verify the correctness of this protocol
in different instances, i.e., the different parameters: k, p and m. For example, k = 7, p = 5
and m = 11. The detailed circuits of this instance are shown in Fig. 3. Then, we focus on
the error rate (i.e., the error probability δ) of proposed SMC_OR protocol with different
values of k and p.

The curve charts in Fig. 4 show the relationships between the error rate and the param-
eter p when k takes different values. In our simulation experiments, suppose that there are
10 parties and they jointly compute the SMC_OR protocol 60000 times for each k, where
each input is random in each time. From Fig. 4, we can see that the error rate mainly de-
pends on the values of k when p ≥ 2, and it is approximatively equal to 0 when k = 10.
In short, our simulation experiments verify the correctness and the feasibility of the pro-
posed quantum SMC_OR protocol.

At present, we do not consider quantum noise and loss of photons in our proposed
quantum protocols. Obviously, we can increase the number of transmitting single photons
(i.e., t) in practical applications and adopt classical error-correction technology to avoid
these problems. In addition, when the parties are far apart, we may deploy a quantum
repeater at each party, which is used to forward private and unknown states of photons
based on teleportation.
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Figure 4 Curve charts of the error rate with different parameters

In a word, it is feasible to implement our proposed quantum protocols with the present
quantum technologies.

5 Conclusion
In this paper, we first designed a feasible quantum protocol with the help of a quantum
cloud to privately compute the logic operator “OR”, which takes single photons as quantum
resources and only needs to perform single-photon operators and measurements. Further-
more, we first presented a novel quantum approach to privately find the maximum value
among many secrets based on the proposed quantum SMC_OR protocol.

In our proposed quantum protocols, we build a perfect quantum encryption and com-
bine the perfect quantum encryption with the classical one-time pad to perfectly protect
the privacy of each input. Therefore, there are good application prospects of our pro-
posed protocols in emerging computations, e.g., outsourcing quantum cloud computing
and quantum federated learning. Especially, as a building block, quantum SMC_OR pro-
tocol can be utilized to privately compute more complex Boolean functions.

In a word, the proposed quantum protocols show that we can also design sophisticated
and flexible cryptographic protocols based on quantum physics as mathematic cryptog-
raphy, not just QKD. In future work, we will further focus on the feasibility of proposed
quantum protocols, e.g., considering weak coherent pulses instead of single photons.
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