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Abstract

A simple argument is presented that explicitly shows how to construct an arbitrary
quantum gate acting on orbital angular momentum (OAM) of single photons. The
scheme can be applied to implement subspace multiplexing, where a single
high-dimensional OAM qudit represents effectively a stack of multiple independent
lower-dimensional qudits. A special subclass of unitaries composed of single-photon
controlled gates is studied in detail and notable examples of the general approach
are discussed. The generalization of the simple argument leads to the parallelization
scheme, which results in the savings of resources. The presented schemes utilize only
conventional optical elements and apply not only to single photons but also to
classical light.

Keywords: Orbital angular momentum; Arbitrary unitary; Single-photon gates;
Quantum computation

1 Introduction

The orbital angular momentum (OAM) of a photon amounts to quantized twists of the
photon’s wave function [1, 2] and has served in a multitude of experiments as a high-
dimensional quantum carrier of information—for given d one can always consider a d-
dimensional subspace of OAM spanned by eigenstates |0),..., |d — 1), where the informa-
tion is encoded in a superposition of these eigenstates. The OAM of photons has been
experimentally utilized in quantum teleportation [3], high-dimensional quantum key dis-
tribution [4], generation of high-dimensionally entangled quantum states [5, 6], as well as
in more fundamental experiments that study the correspondence principle for a very high
number of OAM quanta [7].

To make OAM of photons a full-fledged degree of freedom suitable for information
transmission and processing, it is necessary to be able to manipulate the information con-
tained in the OAM states as required by a given application. Mathematically speaking, one
should be able to apply an arbitrary unitary operation to the quantum state of OAM. In
this paper, we present a very simple argument that demonstrates that any unitary can be
implemented using only conventional optical elements. We also introduce a scheme that
allows to construct a single-photon controlled-gates, where either the control or the target
qudits are played by the path degree of freedom of the photon. The direct generalization
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of these schemes leads one to the study of the parallelization scheme where a series of
simultaneously applied identical local unitaries is replaced with only a single instance of
the unitary supplemented with pre- and post-processing stages.

The schemes studied in the text amount to networks of interferometers. In real exper-
imental conditions, the stability of interferometers is in general an important issue that
hinders further development of this technology and over the years reliable holographic
techniques have been developed [8] and successfully demonstrated [9-11] that overcome
the stability problem. Being aware of that, the aim of the present paper is not just to present
an alternative point of view, based on interferometers, but also to emphasize some of the
algebraic properties related to the orbital angular momentum. One such property of the
resulting setups is periodicity in OAM, which can in principle be used for multiplexing
multiple OAM quantum states lying in different subspaces into a single large superposi-
tion.

The OAM eigenstates are represented by wavefunctions whose form in cylindrical co-

ordinates (7, ¢, z) takes on the form
(bk(rv‘byz) = (F,¢,Z|k> O(eik¢r (1)

where k is an integer. This wavefunction undergoes simple transformations when the cor-
responding photon is subjected to the action of various conventional optical elements.
Throughout the paper, we consider only the following toolkit of optical elements: mir-
rors, beam splitters, Dove prisms, phase shifters, and simple holograms in the form of
spiral phase plates. Most notably, no complicated phase profiles resulting from numeri-
cal simulations are used that would require the use of costly spatial light modulators. The
summary of actions of the individual elements on OAM states can be found in Ref. [12].
The manuscript is structured as follows. At first, we demonstrate in Sect. 2 that con-
ventional optical elements are sufficient to construct an arbitrary unitary gate in OAM
of single photons. To exemplify this approach, we present an implementation of high-
dimensional Pauli gates and their integer powers. Such gates are used for example in
the construction of Heisenberg-Weyl observables, which in turn find applications in the
quantum state tomography [13, 14]. After that we turn our attention to the single-photon
controlled-gates in Sect. 3, where the OAM plays the role of the control qudit and the
path degree of freedom of the same photon represents the target qudit. The opposite case
with the two roles exchanged then follows from the latter by using a swap operator. We
conclude the list of interferometric networks in Sect. 4, where the parallelization scheme
is studied. It allows to replace a series of identical local unitaries by a single setup that
contains significantly reduced number of optical elements. To give a specific example, we
present explicit setups for parallelized Pauli gates. The general schemes can be simplified
using the polarization of photons. Also, the schemes exhibit periodicity that is discussed

in Sect. 5. We summarize our results in Sect. 6.

2 Arbitrary unitaries in OAM

2.1 General case

One of the core results of the quantum computation theory is that there exist universal sets
of operations, out of which any other unitary operation can be constructed. For the case of
operations acting on the OAM of a single photon, such universal sets have been presented
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in Refs. [15, 16]. Here we put forward a very simple argument that shows explicitly that
such a universal set can be constructed only from conventional optical elements.

Let us denote by U the abstract d-dimensional unitary operation and let Uy and Up
be its implementations for the OAM and the path degrees of freedom, respectively. The
idea underlying our argument is this: to build Up one first transforms the incoming OAM
eigenstates into the path encoding and then applies Up, for which general implementation
schemes are known [17-19] that use only beam splitters and phase shifters. At the end,
the propagation modes are transformed back into the OAM eigenstates. The transition
between the OAM and path encodings is performed by a d-dimensional OAM sorter S.
The sorter turns an OAM eigenstate |m)o with m quanta of OAM and propagating along
the zeroth path |0)p into the fundamental mode |0)o that propagates along the m-th path
|m) p, such that

S(Im)ol0)p) = 10)o|m)p. 2)

The OAM sorter can be implemented in multiple ways [9, 10, 20, 21]. Here we employ the
interferometric implementation that consists merely of beam splitters, Dove prisms, and
holograms [22—25] and whose structure is shown in Sect. 2.2. The whole scheme is then
compactly represented by the formula

L[()ZSi1 -Up-S. (3)

In the scheme, the use is made of O(d?) beam splitters, O(d?) phase shifters, O(d) Dove
prisms, and O(d) holograms as can be deduced from the structure of the OAM sorter [25,
26] and the Reck et al. scheme [17]. The detailed analysis of the number of optical elements
can be found in Appendix A and the effect of losses is briefly studied in Appendix B.

Despite the “obviousness” of the universal scheme in Eq. (3), the author of these lines
has not found any publication so far that would mention it. The scheme offers some ad-
vantages when compared to alternative approaches. It works in a deterministic and in
principle lossless way, unlike the approach based on the decomposition of a general uni-
tary into a linear combination of powers of X and Z gates [1]. There is also no need to
assume a limit of many elements as in Ref. [15], no complicated theoretical framework is
necessary to demonstrate universality as in Ref. [16], and there is also no need to perform
numerical Fourier-optics optimization algorithms as in Ref. [8].

2.2 High-dimensional Pauli gates

The brute-force scheme of Eq. (3) can be simplified considerably for specific unitary oper-
ations. One class of such operations are the Pauli operators, prominent examples of local
quantum gates. The d-dimensional Pauli X gate and Z gate are defined by [13]

Xa(lg9)) = |(g + 1) modd), (4)
Za(lq)) = ”|q), (5)
where w = exp(27i/d), and where {|q) }Z;& form the computational basis. It turns out that to

implement the Z gate as well as its integer powers Z a single optical element is sufficient—
a Dove prism rotated through an angle of k7w /d performs the required transformation. The
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Figure 1 The interferometric implementation of the X gate together with its integer powers. (@) The OAM
exchanger EXy of order k is built from two holograms and a Leach interferometer [22] with one Dove prism
rotated through 7 /(2k). Optical elements: holo—hologram, Dove—Dove prism, BS—50:50 beam splitter.

(b) The inverse of the OAM exchanger, EX;1 , has almost the identical structure to that of EXy only the Dove
prism is rotated through -7t /(2k). For convenience, we use two slightly different symbols to denote the
inverse of the OAM exchanger, as shown in the figure. (c) The X gate for d = 8. (d) The X gate from (c) is
constructed from two OAM sorters, marked by shaded rectangles in the figure, from which redundant
exchangers are removed. These exchangers can be grouped into blocks of increasing size, which are enclosed
in dashed-line rectangles. The unused paths as well as redundant exchangers are drawn in faded color. The
remaining exchangers can be reordered in order to get rid of the path permutations. (e) The same principles
apply when constructing the integer powers X of the X gate. When the exponent k is a power of two, i.e,
k=27, the path permutation has a repetitive structure and the whole setup is effectively split into k identical
subsetups. (f) For a general exponent k the path permutation has a more complicated structure. (g) The
number of exchangers that have to be retained in the final setup increases with the exponent k until it attains
the form k = d/2, in which case no exchangers can be removed

approach of Eq. (3) is thus not necessary in this case. However, for the X gate the situa-
tion is more complicated and the detailed analysis, based on utilizing Eq. (3), is presented
below.

The implementation scheme of the d-dimensional X gate acting on OAM was given in
Refs. [26, 27]. In what follows, we generalize results of Ref. [26] and construct a setup for a
k-th power of the X gate, X* gate, in a way that is more efficient than a mere concatenation
of k setups corresponding to the X gate. It turns out that the most resource-demanding
case is that of k = d/2, for which the scaling of resources is linear O(d). An alternative
approach in Ref. [14] for constructing X gates scales like O(d log,(d)).

We make use of OAM exchangers, depicted in Fig. 1(a), which are passive two-input
two-output optical devices [25] composed of a Leach interferometer [22] and two holo-
grams. The sorting properties of an OAM exchanger EXj of order k are determined by
the value of k and so is the case for the inverse operation EX,:1 shown in Fig. 1(b). The

X gate can be built out of OAM exchangers in an arbitrary dimension. Nonetheless, here
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we focus only on dimensions of the form d = 2™, for which the X gate can be constructed
as a series of OAM exchangers of orders 2X for k = 0,..., M — 1, followed by the reversed
series of the same structure. The modification of the original scheme for dimension d = 8
is presented in Fig. 1(c) and the generalizations for higher dimensions follow analogously
the depicted pattern. This pattern can be obtained by starting from the naive implementa-
tion in Eq. (3), where the OAM sorters are constructed as binary-tree networks of OAM
exchangers [22, 25]. This case is explicitly shown in Fig. 1(d), where the path-encoded
implementation Up of the X gate corresponds to the path permutation that connects the
output ports of the sorter S on the left with the input ports of the inverted sorter S~! on
the right. Due to the structure of the path permutation, many exchangers EXy from S are
followed by their inverses EX;' from S~!. All these exchangers can be obviously removed
without any effect on the final state. The resulting optical network is identical to that in
Fig. 1(c).

The X gate is a specific example of a cyclic permutation of the basis states. We can obtain
all other cyclic permutations by taking powers of the X gate. Specifically

X5(19)) = |(q + k) mod d), (6)

where k € N. Due to the cyclic property of the X gate, it holds that X** = (X*)~1. Conse-
quently, it suffices to study only powers k < d/2 as the implementation of X* for k > d/2
is obtained as the implementation for X%~* operated backwards. We proceed analogously
to the case of the X gate. We again start from the general scheme in Eq. (3) and remove all
the exchangers that do not affect the final state. In Figs. 1(e), (f), and (g) the explicit form
of X* gate is shown for d = 8 and k = 2, 3,4, respectively.

In order to understand how the scheme in Eq. (3) can be simplified for general dimen-
sion d = 2 and general power 1 < k < d/2 one notes that the permutations of propagation
paths can be expressed as a series of path crossings of increasing size,! see the middle part
of Fig. 1(d). When £k is a power of two, i.e., k = 2", the path permutation has a repetitive
structure, cf. Fig. 1(e) and (g). In such cases, the setup effectively decomposes into k sub-
setups of the same structure and smaller size. For example, the setup of X2 in Fig. 1(e) in
dimension d = 8 can be viewed as two smaller setups for X in dimension d = 4. In general,
the setup of X* for power k = 2" in dimension d = 2 can be seen as k subsetups imple-
menting X gate in dimension d’ = d/k = 2™~ These setups are sandwiched between two
OAM sorters with k output paths. This way we obtain the simplified scheme for general
dimensions d and powers k that are both powers of two. To characterize the general struc-
ture of the setup for X¥ when the power k is not a power of two, such as the case of X>
in Fig. 1(f), is more subtle. For details and the number of required optical elements see
Appendix A.2.

3 Single-photon controlled gates in OAM and path

The scheme of the preceding section makes use of the path degree of freedom to imple-
ment an arbitrary unitary in OAM of a single photon. In this section, we invoke path once
more and consider a photon whose state is a superposition of d OAM modes |k)o propa-
gating along # different paths |p)p. For such states one can study a class of unitaries that

1The reason why the path permutations themselves in Fig. 1 are not cyclic permutations is that there is an additional
permutation that comes from the construction of the OAM sorter S and its inverse S~ [25].
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consists of controlled gates where the two degrees of freedom play the role of control and
target qudits. Single-photon controlled gates acting on spatial modes of light were studied

in special cases e.g. in Refs. [28, 29].

3.1 OAM as a control
The general action of a controlled operation CU on input states where the OAM and path
play the roles of the control and the target qudit, respectively, reads

CUIk)olp)p = 1K) o(Ur|p)p), )

where U is a fixed unitary acting on the path degree of freedom. The quantum circuit
that corresponds to this operation is depicted in Fig. 2(a). An experimental setup that
implements this controlled operation can be constructed as follows. First we note that

any unitary operation U can be diagonalized, such that

u=-m"-D-M, (8)
(a) OAM as a control (b) implementation
OAM
0, ..., d-1
path — U’C I
0, ..., n-1
(d) path as a control (c) folded scheme
iz
Pi
b
Pn-1 U7L-1
@...pBs (...mwP

Figure 2 Single-photon controlled gates. (@) The quantum-circuit representation of a controlled gate CU,
where the upper line represents a d-dimensional OAM qudit and the lower line represents an n-dimensional
path qudit. (b) The schematics of an actual experimental setup for (a) where individual horizontal lines
amount to real propagation paths. The scheme relies on the eigendecomposition of the unitary U as
explained in the main text. In each path as many as d different OAM eigenstates can propagate
simultaneously. (c) The folded version of (b) reduces the number of optical elements at the cost of using
polarization as an additional degree of freedom. A photon enters in the horizontal polarization from the left
and leaves the setup in the vertical polarization at the bottom. (d) The schematics of the controlled gate
where the control qudit is played by the path modes and individual gates U* act on OAM
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where M is a unitary matrix and D is a diagonal matrix composed of eigenvalues of U. Due
to the unitarity, the eigenvalues are of the form A; = e for some real phases ¢;. From the
eigendecomposition formula it directly follows for an arbitrary integer power k that

uk=m"-DF M. (9)

The key observation is that M is fixed for all the powers and the diagonal matrix D* has
only complex phases e”*% on its diagonal. These phases can be compared with the action
of a Dove prism (DP) rotated through angle o, when applied to an eigenstate with k quanta
of OAM

DP, |k)o = exp(—ik2a)| — k)o. (10)

The extra minus factor in the outgoing OAM eigenstate can be corrected for by an addi-
tional mirror.

From the above relations one sees that the controlled unitary CU can be implemented
as shown in Fig. 2(b). First, an operator M is applied only to the path degree of freedom of
the incoming photon; then a series of Dove prisms is utilized, where a Dove prism rotated
through ¢;/2 is placed on the j-th path; and finally an inverse operator M" concludes the
operation. That is

n-1
cu=m". (@ DP(pi/z) - M. (11)
j=0

We thus obtain a passive network of optical elements, where M can be implemented in
various ways, such as Reck et al. scheme [17] and its alternatives [18, 19]. Standard Dove
prisms have an undesirable impact on the polarization of propagating photons [30]. Mod-
ifications of the Dove prism geometry can nevertheless mitigate this impact considerably
[31].

There is one additional feature of the controlled-unitary setup of Fig. 2(b) — suppose
that a given unitary U is to act on eigenmodes of the form |m k) for 0 < k < d where m is
a fixed integer. The implementation is in this case identical to that in Fig. 2(b) except that
the Dove prism in the j-path is rotated through ¢;/(2m). This general property was noted
in Ref. [27] for the special case of the X gate.

Some savings in resources are possible when a polarization is utilized as an auxiliary
degree of freedom. The setup of Eq. (11) has a symmetric structure, where the M operator
is applied both before and after the stack of Dove prisms. One can get rid of the second
operator to obtain a folded scheme [26, 27], where M is implemented by the backward
passage of a photon through the setup for M, see Fig. 2(c). The forward and backward
passage is controlled by the polarization of the photon. Provided that the initial polariza-
tion is H, the photon traverses both the M module and the Dove prisms as in the original
scheme. Then a series of half-wave plates rotates H into V' and then all terms in the pho-
ton’s wavefunction travel backward through M. At the end, the terms are reflected out
of the setup by an additional series of polarizing beam splitters positioned in front of M.
Using the Reck et al. scheme [17], the unfolded scheme can be implemented with n(n—1)
beam splitters, n(n — 1) phase shifters, and # Dove prisms. The folded scheme requires
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n(n + 3)/2 beam splitters (both non-polarizing and polarizing), n(n — 1)/2 phase shifters,
and #n Dove prisms. Note that the universal scheme of Eq. (3) in the preceding section can

be turned into a folded version in a very analogous way.

3.2 Examples
Let us discuss now some special cases of the general scheme (11). The simplest case is
when U is itself diagonal. A notable example of such a unitary is the high-dimensional
controlled-Z gate, where the n-dimensional Pauli Z, gate is characterized by Eq. (5). As
follows from Eq. (11), the CZ gate can be implemented as a mere stack of n properly rotated
Dove prisms, where the prism in the p-th path is rotated through 7 p/n [12, 25].

Another special example is the OAM equivalent of the polarizing beam splitter. Such
a beam splitter is represented by a high-dimensional controlled Pauli X gate, a high-
dimensional generalization of the CNOT gate. The eigendecomposition of the high-
dimensional X gate (4) reads X = F' - Z - F, where Z is given in Eq. (5) and F is the high-
dimensional path-only Fourier transform. In the notation of Eq. (11) we have thus M = F.
As mentioned above, the integer powers of X gate correspond to cyclic permutations with
different strides. Thanks to this property the setup of the CX gate can be viewed as a sorter
of OAM eigenstates. An experimental implementation of such an OAM sorter based on
the aforementioned Fourier relation of X and Z gates was proposed in Ref. [32]. The same
idea was then rediscovered 11 years later independently by two groups [33, 34].

Yet another notable example is the Leach interferometer [22] depicted in Fig. 1(a), which
is usually used as a parity sorter [23, 35]. In this case, operator M corresponds to a sin-
gle symmetric beam splitter and the diagonal matrix reads D = diag(1, exp(ic)), where o

depends on the intended sorting properties of the Leach interferometer [25].

3.3 Path as a control
For completeness, let us briefly mention the complementary situation to Eq. (7) where the
path is now the control qudit and OAM is the target qudit

CUlk)olp)p = (UP1k)o)Ip)p- (12)

This case can be formally represented by an abstract quantum circuit akin to that in
Fig. 2(a), where the roles of control and target qudits are exchanged. On a more practical
level, the transformation of Eq. (12) can be understood as # independent setups, one setup
in each path, see Fig. 2(d). The easy approach how to implement such a controlled opera-
tion is to use a swap operator, discussed in detail in the following section, that exchanges
the role of the path and OAM and sandwich the setup of Fig. 2(b) between two such swaps.
The advantage of such a scheme, when compared to the naive scheme of Fig. 2(d), is the
reduction in the amount of resources. In the general case, one requires O(d*#) elements
to implement the naive scheme, whereas roughly O(d* + nlog(n)) elements are required
by the scheme based on swaps and Fig. 2(b). Analogously to the previous section, also in
the present scenario we can construct the folded scheme. The polarizing beam splitters
and half-wave plates reroute the terms of the photon wave function such that the initial
polarization H is midway through the setup changed into V and the setup is propagated
backward.
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The circuit of Fig. 2(d) can also be seen from the multiple-photon point of view where
each path is occupied by exactly one photon. Even in such a case the setup can be im-
plemented by sandwiching the scheme of Fig. 2(b) between two swaps, where individual
photons share some propagation paths. This point of view leads us to study the paral-
lelization of the scheme in the following section, where the same local unitary is applied

to multiple photons.

4 Parallelization
4.1 General case
In the domain of classical computation, a truly large-scale deployment is allowed by vari-
ous parallelization techniques and the same can also be expected in the quantum domain.
In general, a large complex computational task is split into smaller parts, each of which is
computed by a separate computational core. The simplest case is when the task consists
of multiple identical subtasks. One arrives at the scenario of Fig. 3(a), where each subtask
is represented by a local unitary Uy acting on one photon. The resulting collection of uni-
taries Uop can be viewed as a single parallelized operation Ug’ ar) acting on many photons.
Such a stack of identical gates is henceforth referred to as the naive approach.

It is noteworthy to point out that the same setup of multiple local unitaries emerges in
a qualitatively different scenario when a single photon propagates in a superposition of
multiple paths and one wants to apply operation U only to its internal degree of freedom,
such as OAM. In the experimental realization, U is implemented as a series of identical
setups with one setup U in each path, see Fig. 3(b). This is reminiscent of the scheme in
Fig. 2(d) except that the unitary in each path is the same.

In the naive approach, I,IgJ a) requires a number of elements that scales linearly with the
number of systems. The same task of simultaneous application of U on n paths can be
nevertheless achieved with just a single device, as shown in Fig. 3(c). The key role in this

approach is played by the swap operator, whose action on input states reads

SWAP(|m)olp)p) = Ip)olm)p, (13)

(a) n quantum systems (b) I quantum system (c) parallelized scheme

Sy Uy H— U H— Po Py —H H— Do
S, Up H— U H— P: pr —H | u H— D
S, 0 G 0 swap| | u | |swapfi—».

Sn—/ U — Uy — Pni Pn1—H H

~
agpuf) i (]é]mr)

Pn-1

{8 BEEE
T

Figure 3 Parallelization schemes. Some computational tasks require the application of the same unitary
operation to multiple path modes. (a) One can consider n different quantum systems S;, each in a separate
path and subjected to a local unitary Up. (b) A qualitatively different scenario is that of a single quantum
system that propagates along a superposition of multiple paths p; and is subjected to an operation U that
acts only on its internal degree of freedom (such as OAM). (c) The series of identical devices Up acting on the
internal degree of freedom can be replaced by a parallelized scheme of Eq. (14)
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where |m)o denotes internal mode m and |p)p stands for the p-th propagation mode. In
the scheme, a swap first exchanges the roles of internal and path modes. The path-encoded
implementation Up of the desired unitary U is then applied to the photon(s). This opera-
tion transforms the path modes according to U and leaves the internal modes unaffected.
Even though this property may not be satisfied in general, in many cases this is indeed the
case as Up can be constructed only with beam splitters and phase shifters [17], which leave
e.g. OAM, polarization, or frequency of photons unaffected.? In the third stage, a swap is
applied again in order to give the internal and path modes their original meaning. As a
result, the internal modes in each path are transformed according to U. This procedure is
summarized by the formula

u®*™ = SWAP™ - Up - SWAP, (14)

which we henceforth refer to as the parallelized scheme. The parallelized scheme is clearly
a generalization of the approach used to construct an arbitrary unitary in OAM in Sect. 2.
The sorter from Eq. (2) can be understood as a special case of the swap operator in Eq. (13)
for p = 0.

Even though the relation (14) holds for any internal degree of freedom, it is not obvious
how to implement efficiently the SWAP operator in a general case. For the case of OAM
and path we can utilize the efficient design of Ref. [25] whose detailed structure is pre-
sented in Sect. 4.3. The path-encoded unitary Up can be implemented using Reck et al.
scheme [17] and the parallelized setup of Eq. (14) is thus made of only conventional optical
elements. Moreover, each beam splitter in the Reck et al. scheme has to be supplemented
by two extra mirrors, such that the sign of OAM eigenstates is unaffected by the reflection
off the beam splitter’s interface [25].

4.2 Scaling of resources

The simultaneous n-fold application of unitary Uy can be in the naive approach imple-
mented with # separate setups. To quantify the improvement brought by the use of the
parallelized scheme of Eq. (14), we introduce the ratio of the number of beam splitters

required by the parallelized and naive schemes

(par)
r(n,d) := M

WNo@) (15)

The smaller this ratio, the better the parallelized scheme is when compared to the naive
implementation. One can consider similar ratios also for other optical elements, with sim-
ilar results to those presented below. Some general statements about the efficiency of the
improved scheme can be derived even for an unspecified unitary operation. According to
Reck et al. scheme at most Np(d) = d(d — 1)/2 beam splitters are necessary to implement
an arbitrary path-encoded unitary U. For large enough dimensions the ratio reck scales
as

1
TReck(#1,d > 1) ~ Z’ (16)

%In the universal scheme in Sect. 2 this was not an issue as all the paths contained only the fundamental internal OAM
mode.
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which can be interpreted such that the parallelized scheme uses effectively only one setup
for Up instead of n identical setups for Up. The parallelized scheme thus scales in this gen-
eral case linearly better than the naive approach. For more details refer to Appendix A.3.

For specific classes of unitaries one obtains different scaling estimates. The extreme case
is represented by unitaries that correspond to mere permutations of modes. For those, we
get Np(d) = 0 as no beam splitters are necessary to permute paths. The ratio for both n > d
and n < d cases then scales as

log, (d) N log, ()

2n 4d (17)

Fperm. (1, d) ~
Except for extreme cases the parallelized scheme is again more efficient than the stack of n
independent setups. The aforementioned complexity estimates are based on the assump-
tion that no simplification of the resulting setup is possible. Nevertheless, the scaling may
differ when the implementation of the parallelized scheme can be simplified by remov-
ing superfluous elements. We exemplify this reduction in Sect. 4.3 for integer powers of
the high-dimensional X gate, which form a special class of permutations. Another situ-
ation when the above general estimates do not hold is when other than the brute-force
implementation from Eq. (3) is used to construct Up. For instance, the d-dimensional
Fourier transform of the OAM eigenstates of a single photon can be implemented using
only No(d) ~ Jd log(d) beam splitters [12]. Even though the Fourier transform is a much
more complex operation than a mere permutation, the scaling of the corresponding num-
ber of beam splitters is basically identical to (17).

Additional savings in resources are possible when a polarization is utilized in the scheme
of Eq. (14) to arrive at the folded setup in a way completely analogous to that described
in Sect. 3. The number of beam splitters is then reduced approximately by the number of
beam splitters required to construct the removed swap operator.

The parallelized scheme of Eq. (14) reduces the total number of elements, but the num-
ber of elements that each photon has to traverse on average increases. Another relevant
issue when assessing the performance of the setup are thus losses accompanying the trans-
formation L[g) ) Even though the detailed analysis of the role of losses lies beyond the
scope of the present paper, in Appendix B a simplified discussion is presented. It turns
out that the overall transmittance per photon of the parallelized scheme is decreased by
a factor of 72229 when compared to the naive scheme, where T quantifies the effective
mean transmittance of each optical element in the setup. The losses for both the naive and
parallelized schemes are otherwise comparable to schemes that implement purely path-
encoded unitaries, such as the scheme of Ref. [18].

4.3 Parallelized Pauli gates
In this section, we discuss the parallelization of Pauli gates and compare their scaling prop-
erties with the naive approach. As mentioned in Sect. 2.2, the implementation of the d-
dimensional Pauli Z gate is especially simple—a single rotated Dove prism will do. The Z
gate in OAM is thus an example of a gate where the parallelization does not actually bring
any advantage. This is no longer true though for the X* gates.

One can parallelize the X gate by starting from the setup in Eq. (14), where Up is the
path-encoded X gate, and then removing all the redundant optical elements. To see which
elements are not necessary, let us take a close look at the internal structure of the swap
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Figure 4 Explicit forms of the parallelized scheme for X gates. The parallelized scheme, exemplified for
d=n=8and 1 <k <d/2, consists of a path permutation sandwiched between two swaps. The swap
operator comprises a network of OAM exchangers, whose structure is depicted in Fig. 1, and a series of H
blocks (in the present case there are two such blocks per one swap). The presented schemes can be
simplified by removing the exchangers that do not affect the final state. These are drawn in faded colors and
enclosed in dashed boxes. The input paths of the swap operator should be permuted to comply with formula
(13). As this path permutation does not affect our discussion, we omit it in the figure for clarity. (a) Parallelized
X gate. (b) Parallelized X2 gate. (c) Parallelized X3 gate. (d) Parallelized X* gate

operator demonstrated in Fig. 4(a). The swap consists of two functionally different parts
[25]—one E block and a series of H blocks of increasing size. The E block is a network
of exchangers EX; of increasing orders of the form k = 2! and is shown explicitly for each
swap in Fig. 4. The structure of H blocks is not of interest in our discussion and can be
found in Ref. [25]. The removal of redundant exchangers in the case of the parallelized
X gate is depicted in Fig. 4(a) explicitly for the special example of n = d = 8. Analogously
to the procedure of Sect. 2.2, there are many instances where an OAM exchanger EXj is
followed by its inverse EX; . These exchangers can be removed without affecting the final
state. In a completely analogous way one also proceeds for the parallelized integer powers,
the X* gates. One again starts from the scheme in Eq. (14). This step for # = d = 8 is shown
in Figs. 4(b), (c), and (d) for all X* gates with k < d/2.

Page 12 of 21
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0 2 4 8 16
power k

Figure 5 The number of beam splitters N in the naive and parallelized implementations of d-dimensional

XK gates. The gates act on n = 16 propagations paths in dimensions d = 2,4,8,16 and 1 < k < d - 1. The naive
implementation, represented by dark bars, requires as many as 960 beam splitters for d = 16 and k= 8. On the
contrary, the parallelized implementation, represented by bright bars, needs only 162 beam splitters in such a
case

The number of beam splitters in the parallelized scheme is shown in Fig. 5 for n = 16
propagation paths and dimensions d < n. For comparison, the naive approach that in-
volves # copies of the non-parallelized X* gate is also shown. To put these numbers into
context, we note that in Ref. [36] an experiment has been reported recently where 50 po-
larizing beam splitters and a bulk interferometer representing 300 beam splitters were
used. Even though the naive approach exceeds these numbers already for d = 8, the par-
allelized scheme allows for the construction of an arbitrary power of the X gate even for
d = 16. At most 162 beam splitters are required in such a case. Although this number is
still rather formidable from the present technology point of view, the savings provided by
the parallelized schemes are clearly visible. In Appendix A.4 a more detailed discussion of

the number of elements is presented.

5 Periodicity

Each implementation scheme discussed so far comes with one neat feature — they are
periodic in OAM. When working with OAM degree of freedom, one has to define the
subspace of eigenstates in which the operations are to be carried out. When one sets
the dimension to d, one possible choice of the OAM subspace consists of eigenstates
{10),...,]1d — 1)}. Let us denote the subspace spanned by these eigenstates with (. An-
other choice of eigenstates can be {|d),...,|2d — 1)} or {|ad),...,|(a + 1)d — 1)} for a gen-
eral a € Z. Let us denote the subspace spanned by the latter eigenstates by H,. Consider

a unitary operation U defined on subspace H, by formula
d-1
uliy ="y Uy, (18)
j=0

where U = (U;;) and 0 < i,j < d. For dimensions of the form d = 2, the naive implemen-
tation Uy (3) of unitary U acts identically on each subspace H,, for any a € Z, not only on

the fundamental subspace H,, such that

d-1
Uli+ad) =) Ulj+ad). (19)
j=0
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This property was noted for the case of the high-dimensional X gate in Ref. [26], but any
power of the X gate constructed in Sect. 2.2 has this property also.> The periodicity in
OAM is aresult of the modulo property of the OAM sorter and the swap operator [14, 25].
For details refer to Appendix C.

An interesting issue is that of the periodicity of the controlled-unitary setup of Eq. (11).
When the eigenvalues of U are of the form Ay = exp(2mi(ax/by)) for some ay, by € Z, the
whole scheme is periodic with the period that does not exceed the product bob1b;...b, ;.
Unitaries whose eigenvalues have phases that are irrational multiples of 27 do not display
any periodic behaviour. In practice though, any real number can be approximated by a
rational number and the periodicity is effectively restored.

The periodicity of the presented setups may be seen as another parallelization feature —
the parallelization in OAM. The OAM degree of freedom allows for the generation of very-
high-dimensional states. One can thus consider a large OAM Hilbert space { composed
of n subspaces H,, each of dimension d, such that H is a direct sum of the form

H=H1®H,D---DH,. (20)

A single photon with (nd)-dimensional state |{) € H can therefore be seen as representing
a sum of # different d-dimensional qudits |,) € H,. When the manipulation of this state
is done via operations discussed in preceding sections, each qudit |y,) is due to Eq. (19)
manipulated independently of all the others. One photon can thus in effect carry # differ-
ent qudits in parallel. This framework can be seen as subspace multiplexing, where several
OAM eigenmodes together carry a given quantum state in each subspace. Subspace mul-
tiplexing could be used in the free space communication or in the quantum computation
with single photons.

Even though in theory there is no limit on the largest possible number of OAM quanta
and, therefore, the number of subspaces the operation Uy can act on, from the physical
perspective there is a limit. The spatial extent of the photon’s wavefunction increases with
the number of OAM quanta and so for large OAM values the eigenstate becomes macro-
scopic and unwieldy for manipulation [7, 37, 38].

6 Conclusion
We study the manipulation of orbital angular momentum of light with the help of inter-
ferometric networks. The networks consist of conventional optical elements and spiral
phase plates, which add or subtract an integer number of OAM quanta. Importantly, no
use of holograms with complex phase profiles is made, as is the case for instance in the
multi-plane light conversion method [8—11]. The interferometric scheme for implement-
ing an arbitrary unitary operation on single photons is presented, which can be viewed
as the OAM counterpart of Reck et al. scheme. To exemplify the argument, we construct
explicitly the setups for X* gates for dimensions of the form d = 2™ and derive precise
analytical formulas for the number of employed optical elements.

Another interferometric scheme introduced is that for implementation of single-photon
controlled gates, where the OAM and path play the role of either the control or target

3The parallelized scheme exhibits the same periodicity property with one modification. As follows from the construction
of the swap operator, when n > d the values of input OAM eigenstates have to be chosen like |/n/d). The formula (19) is
then modified such that i — in/d and j — jn/d where we assume that not only the OAM-space dimension but also the
number of paths is a power of two.
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qudits. It turns out that several reported results of other authors are special cases of the
scheme.

The last class of interferometric networks under consideration is the one that allows for
simultaneous application of the same unitary on multiple OAM states. This parallelized
scheme can find applications e.g. in multiplexed communication channels, where the in-
ternal modes of photons are used as carriers of information. The savings in resources for
a general unitary offered by the parallelized scheme scale approximately linearly with the
number 7 of involved parties, i.e., the naive approach requires roughly # times more el-
ements than the parallelized approach. The parallelized versions of Pauli gates are con-
structed as concrete examples.

The networks presented in the text display periodicity in OAM, which can be used to
implement subspace multiplexing where one device acts on many disjoint OAM subspaces
of the same photon in the same way. When multiple independent pieces of information are
encoded in the OAM of a single photon, our scheme applies the same unitary to each piece
separately. The periodicity follows directly from the sorting properties of Leach interfer-
ometers in dimensions that are powers of two. This feature is unique to the interferometric
implementation we use in this paper and cannot be imitated by alternative techniques that
implement an OAM unitary using holograms with complex phase profiles [9, 11, 20].

The above results are in principle applicable not only to single photons but also to clas-
sical beams of light carrying orbital angular momentum. It would be interesting to see
whether more properties of the networks similar to those studied in the text can be found.

Appendix A: Number of elements

A.1 General unitary

The path-encoded unitary Up as well as the OAM sorter are implemented as networks of
many interferometers. Beam splitters thus play an important role in their construction. In
the following, we will estimate the complexity of the OAM implementation U by count-
ing the beam splitters used in its construction. A similar discussion can also be done for
other optical elements. Let Np(d) be the number of beam splitters required in the scheme
of Eq. (3). If Np(d) is the number of beam splitters that are necessary to implement Up,

then

No(d) = Np(d) + 2Ns(d), (21)
where

Ns(d)=2(d-1) (22)

is the number of beam splitters that implement the OAM sorter in dimension d [25]. The
upper bound for Np(d) is provided by Reck et al. scheme, for which Np(d) = d(d — 1)/2.

A.2 Xk gates
The number of beam splitters required in a scheme for the d-dimensional X gate, where

d =2M, is equal to [26]

Ni(d) = 4log,(d). (23)
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Following the analysis in the main text, it is not hard to see that the number of beam
splitters necessary to implement X*, where d = 2™ and k = 2", is

Nx(d, k =2") = kNx(d/k) + 2Ns(k) (24)

:4(k logz(%> +k—1>. (25)

It is easy to observe that for k = d/2 = 2"~! there are no exchangers to be removed from the
naive scheme, see Fig. 1(g), since the path permutation affects all the outermost exchangers
in both OAM sorters. Indeed, in such a case Nx(d, k = d/2) = 2 Ns(d). On the other hand,
for k = 1 = 2° the number of required beam splitters is minimal and (25) coincides with
Nx(d) (23).

The structure of the network for powers k that are not powers of two is more compli-
cated. Even though the same procedure as delineated in the main text can be followed,
we refrain from describing it in detail and present the resulting number of beam splitters
retained in the simplified setup. It turns out that this number for X* gates in dimension
d = 2M and for general powers 1 < k < d/2 is equal to

Nx(d, k) = 4 (k log, (%) +27h - 1), (26)
where m is an integer such that 2" < k < 2+, For k = 2" we recover formula (25).

From the structure of the OAM exchanger, Fig. 1(a), and the fact that the resulting setup
for any X* gate consists only of the OAM exchangers, it is clear that the exact same formula
(26) applies also to the number of employed Dove prisms and holograms. For the number
of mirrors we get twice as large a number and there is no need for phase shifters.

A.3 Parallelized scheme
Let us denote by Ng3 *) the number of beam splitters employed in the parallelized scheme
of Eq. (14). Analogously to Eq. (21) we obtain

NE(n,d) = Np(d) + 2 Nswap(n,d), (27)

where Nswap (1, d) is the number of beam splitters used to implement the swap operator
with z input and d output paths. Due to the structure of the swap operator [25] we have to
discuss the case with # < d and that with # > d separately. When both # and d are powers
of two and # < d, the number of beam splitters that implement the swap operator is given
by [12]

Nswap(n,d) = glogz(n) +dlog,(n) —3n+2d + 1. (28)
In the opposite case with # > d one obtains

Nowap(,d) = g log, (1) + dlog,(d) + n—2d + 1. (29)
When 7 or d are not powers of two, we construct the swap with 2" input and 2° output

paths, where r and s are such that 2"! < # < 2" and 25! < d < 2%, Formulas (28) and (29)
then represent upper bounds on the number of utilized beam splitters.
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general unitaries
I permutations

Figure 6 The ratio (15) plotted as a function of the number of paths n and the OAM dimension d. Orange
dots represent exact values of rreck for general unitaries implemented with Reck et al. scheme [17]. Violet dots
correspond to the ratio rperm, for permutations, which form a special subset of unitaries. The orange surface is
given by formula (30) that expresses the approximate scaling of ratio rreck. The violet surface is likewise given
by formula (17) derived for permutations. The bottom right corner of the plot corresponds to n = d = 20438, for
which rrec ~ 107 for general unitaries and Iperm. ™~ 1073 for permutations. The gray plane divides the cases
withn>dandn <d

To compare the performance of the parallelized scheme with the naive approach, let us
use the ratio r defined in Eq. (15) and consider a general unitary implemented with Reck
et al. scheme [17]. For this scheme the ratio (15) scales roughly as

1 21
rRecl((n, d) ~ — 4+ M

p 7 (30)

Even though the number of beam splitters in the swaps differs for the case of # < d and
that of n > d, the scaling (30) holds approximately for both of them. A sample of exact
values of ratio rreck as well as the asymptotic behavior are depicted in Fig. 6. Permutations
serve as a counterpart of this general scheme as far as the number of beam splitters is
considered, see rperm. in Eq. (17). For comparison, a sample of exact values of rperm, as well
as the asymptotic behavior (17) are also depicted in Fig. 6.

As for the other optical elements involved in the parallelized setup built using Reck
et al. scheme, the following estimates apply. The path-only unitary implementation re-
quires O(d?) beam splitters and O(d?) phase shifters. To build the swap operators there are
O(nlog,(n)) beam splitters, O(n) phase shifters, O(nlog,(n)) holograms, and O(n) Dove
prisms necessary, provided that # > d [12]. When n < d, the estimates only depend all on
d, not on n.

A.4 Parallelized X* gates
The resulting number of beam splitters required to implement the parallelized version of
the X gate in dimension d = 2™ for n = 2K paths is equal to

NP (n,d) = nlog,(n) + 21 -2, (31)

provided that # > d. This formula does not depend on the dimension d, only on the num-
ber of paths. The naive approach consisting in stacking # non-parallelized schemes (23)
would require Nx(d) n = 4nlog,(d) beam splitters. The saving in resources is thus approx-
imately equal to

log,(n)

4log, @) (32

rx(n,d) ~
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for large enough dimensions d and number of paths # > d. When the number of paths
is approximately equal to the dimension, the ratio above approaches a constant factor of
1/4 and the parallelization of Eq. (14) provides a moderate improvement over the naive
approach. When n < d, the formula (31) is modified, but even then the improvement re-
sulting from the parallelized scheme is rather moderate.

By calculations analogous to those for the non-parallelized powers of X* gates, the num-
ber of beam splitters retained in the final implementation of the parallelized schemes for
an arbitrary k < d/2 turns out to be

ar /
N)((p )(n,d,k):nlogz(n)+2n—4k+2+2d(2—(m+m—1>, (33)

where m in an integer such that 2 < k < 2"*! and where we assume 7 > d. This expression
simplifies for k = 1 into the formula (31) derived for the parallelized version of the X gate.
A similar discussion can also be done for other optical elements with similar results and
forn<d.

When we compare the scaling for the naive approach utilizing # identical copies of the
X* gate and the parallelization of Eq. (14), we obtain a scaling ratio that approaches

i log, ()
4klog,(d)’

rx(n,d, k) ~ (34)

where again n > d. For high powers k we, therefore, save more resources by making use
of the parallelized version. In this formula, we assumed k to be constant. We can, how-
ever, also consider k that scales with the dimension d. For instance, the most resource-

demanding scenario is when k = d/2. In such a case one obtains

3log,(n)
,d,d[2) S ————. 35
rx(n ) S 4d (35)
Unless the number of paths exceeds exponentially the dimension, the parallelized scheme
of Eq. (14) offers in this scenario substantial savings in resources when compared to the

naive approach. For n < d one can perform an analogous analysis.

Appendix B: Losses
We can make some rough estimates of the losses of setups presented in the main text by
adopting the following simplifications. There are many sources of errors, such as possi-
ble beam distortions due to Dove prisms, non-unit conversion efficiency of holograms,
different splitting ratios of beam splitters, as well as imperfect reflection of mirrors. Let
us assume that all these errors can be modelled as losses quantified by effective mean
transmittance T of each optical element where we omit the phase shifters as these can be
implemented by a mere path length difference in an interferometer. We also assume that
all OAM modes are affected the same way and that # = d in the parallelized scheme.

The number of elements that a photon has to traverse in the universal scheme of Eq. (3)
equals approximately L(d) = d + 10log,(d). The transmittance of this scheme thus equals
T and is, therefore, of the same order of magnitude as the transmittance of the scheme

of Ref. [18] for purely path-encoded unitaries, in which each photon traverses d elements.
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The naive implementation of the parallel transformation L[g’ ) with # = d consists of d
copies of the universal scheme. When a photon is launched into each of them, there is a

chance of T4L@ - Td*+10dlog(d)

that all photons make it through the setup and no pho-
ton is lost. The parallelized scheme of Eq. (14) has a more complicated structure, where
a photon launched into the j-th port propagates through a different number L;(d) of ele-
ments. The probability that no photon is lost is given by TH@ L@ | TLia(@) = 72514
where the exponent reads Z}‘i_ol Li(d) = d? + 12d1og,(d). The simultaneous transmis-
sion of d photons through the parallelized scheme is thus quantified by transmittance of
T#+12d10%,(@) \which differs by a factor of T%41°22() from the naive scheme. The per-photon
transmittance is thus decreased by a factor of T2°22(@ for the parallelized scheme. If we
assume that the effective mean transmittance of each element is T = 0.9, this factor does
not drop below 0.43 for dimensions up to d = 16.

Let us note that all the schemes for implementing unitaries in OAM presented above
share with the purely path-encoded schemes [17-19] the fact that the overall transmit-
tance drops down exponentially with the dimension d, which is of a particular concern in

the real-world experimental implementations.

Appendix C: Periodicity in OAM

The OAM subspace is usually defined as a linear span of eigenstates [0)o, |1)0, |2)0, ...,
|d — 1)¢ for a fixed dimension d. This subspace can be used in the universal scheme of
Eq. (3). When we want to make use of the periodicity in OAM, the dimension has to be
of the form d = 2™ in order that the interferometric implementation of OAM sorters and
swap operators works properly for higher-order eigenstates [12]. For the power-of-two

dimensions, the OAM sorter is shown [25] to act like
m
Salm)oloys) = ‘d- bD mmodd)p. 36)
o

This ‘modulo property’ makes sure that OAM eigenstates of the form |0 + ad)o, |1 + ad)o,
|2 + ad)o, ..., |d — 1 + ad)o for some a € Z are not mixed with eigenstates from other
OAM subspaces. When an eigenstate |m+ad) o enters the OAM sorter, it gets transformed
into |ad)o propagating along the m-th output path. All the aforementioned eigenstates
thus leave the OAM sorter along d different paths, but all of them are at that moment
equal to |ad)o. This way, the path-only implementation U/p then mixes only the terms
that correspond to the same subspace, which results in the parallelized operation in the
OAM degree of freedom.

From the implementation of the swap operator it follows that whenever the number
n of input paths exceeds the number d of output paths, only a specific class of incom-
ing OAM eigenstates gets swapped correctly. Specifically, only eigenstates of the form
|0)o, |n/d)o,|2nld)o,...,|knld)o for k € Z can then be used in our parallelized scheme.
For these eigenstates, the action of the interferometric implementation of the swap can be
summarized as [12]

n p—
7 'm>O|P)P) =

SWAPn,d<

n- {ZJ +p> |[mmodd)p. (37)
d o
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Since we work only with such # and d that are powers of two, their ratio #/d is an integer.

The above formula is a generalization of the ‘modulo property’ for the swap operator. If

n < d, the action of the swap operator can be written like

d
SWAP,4(Im)olp)p) = ‘; : <n L%J +p)> lmmodd) . (38)
(0]
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