
Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26
https://doi.org/10.1140/epjqt/s40507-022-00145-y

R E S E A R C H Open Access

Quantum encryption with quantum
permutation pad in IBMQ systems
Randy Kuang1* and Maria Perepechaenko1

*Correspondence:
randy.kuang@quantropi.com
1Quantropi Inc., Ottawa, Canada

Abstract
Quantum permutation pad or QPP is a quantum-safe symmetric cryptographic
algorithm proposed by Kuang and Bettenburg in 2020. The theoretical foundation of
QPP leverages the linear algebraic representations of quantum gates which makes
QPP realizable in both, quantum and classical systems. By applying the QPP with 64 of
8-bit permutation gates, holding respective entropy of over 100,000 bits, we
accomplished quantum random number distributions digitally over today’s classical
internet. The QPP has also been used to create pseudo quantum random numbers
and served as a foundation for quantum-safe lightweight block and streaming
ciphers. This paper continues to explore numerous applications of QPP, namely, we
present an implementation of QPP as a quantum encryption circuit on today’s still
noisy quantum computers. With the publicly available 5-qubit IBMQ devices, we
demonstrate quantum secure encryption (256 bits of entropy) using 2-qubit QPP
with 56 permutation gates, and 3-qubit QPP with 17 permutation gates respectively.
Initial qubits of the encryption circuit correspond to the plaintext and after applying
quantum encryption operations, cipher qubits are measured with probabilistic
distributions, and the results with the highest probability are recorded as cipher bits.
The cipher bits are then decrypted with an inverse QPP circuit. The output state
plaintext qubits are measured and the most frequent count measurement results are
recorded as plaintext bits. This quantum encryption and decryption process clearly
demonstrates that QPP quantum implementations works exactly as symmetric
encryption and decryption schemes should. The plaintext and ciphertext bits can
also be encrypted and decrypted respectively by any classical computing device with
the corresponding QPP algorithm as in quantum computers. This work reveals that it
is possible to build quantum-secure communications between
quantum-to-quantum and quantum-to-classical computers over today’s internet and
the future quantum internet.

Keywords: Quantum permutation gate; Quantum encryption; Quantum
decryption; Quantum circuits; Qiskit; Symmetric encryption; QKD; Symmetric
cryptography; QPP; Quantum communication

1 Introduction
The term “Quantum encryption” often refers to quantum cryptography or Quantum Key
Distribution (QKD) used to establish a secret key for digital symmetric encryption with

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-022-00145-y
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-022-00145-y&domain=pdf
mailto:randy.kuang@quantropi.com
http://creativecommons.org/licenses/by/4.0/

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 2 of 26

quantum-resistant algorithms such as Advanced Encryption Standard (AES) and One-
Time-Pad (OTP). The QKD was first proposed by Bennett and Brassard in 1984 [1], lever-
aging the physical uncertainty of quantum measurement in conjugate encoding bases. In
the past few decades several variants of QKD have been developed. Among the said vari-
ants, some are based on the single photon 2-party protocol called the discrete variable
QKD or DV-QKD described in Djordjevic’s book [2], as well as some recent papers by
Lai et al. [3] and Qi [4]. Others are based on the 2-party continuous variable QKD using
coherent states or CV-QKD found in the works of Stefano et al. [5–7]. Both, DV-QKD
and CV-QKD suffer from the key rate upper bound due to the distance limitations. In at-
tempt to overcome the key rate-distance constraint, a new three-party protocol called the
twin-field QKD or TF-QKD was proposed by Lucamarini et al. in 2018 [8]. In 2021, Chen
et al. extended the attainable distance of the TF-QKD to over 500 km [9]. This result was
further improved by Wang et al. in 2022 [10] to over 800 km. With the establishment of
shared secrets using QKD, two communicating parties can achieve quantum secure com-
munication by employing symmetric encryption algorithms such as AES with 256-bit key.
Therefore, the said quantum encryption consists of two separate processes: quantum key
distribution using QKD and classical data encryption using symmetric algorithms.

Quantum secure direct communication without pre-shared key or QSDC was proposed
by Deng, Long and Liu in 2003 [11]. The QSDC uses blocks of EPR pairs. A set of ordered
EPR pairs is split into two sequences: checking and message-coding. Checking sequence
is used to verify the channel integrity and establish encoding and measuring bases be-
tween the sender and the receiver. After the checking phase, a message can be encoded
based on the bases determined in the checking phase. The encoded message is then trans-
mitted over the quantum channel and finally measured at the receiving end in the bases
determined in the checking phase. The QSDC can be considered a combination of key dis-
tribution and message encryption, both done quantum mechanically. Deng et al. in 2004
further advanced the QSDC and proposed a new QSDC protocol with a batch of single
photons as a quantum OTP [12]. Zhang et al. in 2017 proposed their QSDC with quantum
memory [13].

As the development of universal fault-tolerant quantum computers showed significant
speedup in the past few years, quantum encryption with quantum circuits have been pro-
posed based on different encryption algorithms. Almazrooie et al. in 2018 proposed their
quantum circuit design of AES-128, requiring the maximum of 928 qubits. Langenberg
et al. in 2020 proposed an improved design requiring a total of 880 qubits, 1507 X gates,
107960 CNOT gates, and 16940 Toffoli gates [14]. Wang, Wei and Long in 2021 further
reduced the implementation to 656 qubits, 1976 X gates, 101174 CNOT gates, but 18040
Toffoli gates (higher compared to the design of Langenberg et al.) [15]. Zou et al. in 2020
proposed their implementation of AES quantum circuit design with some optimization
considerations on AES S-Box and key scheduling. The proposed implementation requires
512 qubits for AES-128 [16]. Some other lightweight symmetric encryption algorithms
have been designed for quantum circuits such as PRESENT and GIFT by Jang et al. in
2021 [17] and RECTANGLE and KNOT by Baksi et al. in 2021 [18].

Possible implementations of the described quantum circuit designs for the classical sym-
metric encryption algorithms involve considerably large quantum resources. It is clear that
efficient implementation of said quantum algorithms will have to wait for relatively long
time. Hu and Kais in 2021 proposed a lightweight quantum encryption scheme [19], us-

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 3 of 26

ing a generic unitary gate with N discrete probabilistic amplitudes per qubit for a block of
n-qubits. To each qubit of an n-qubit block a unitary gate is applied, followed by a set of
CNOT gates to enforce diffusion and confusion capability to cipher quantum states. The
cipher quantum states are generally in superposition, thus preventing possible eavesdrop-
ping during their transmission to a receiver. They also proposed two modes of operations
to enhance the security. Such design would work for secure quantum communications
between two quantum computers given an ideal quantum channel.

Leveraging the entire Symmetric group of permutations with 2n! elements, Kuang filed
his first patent in 2017 to perform encryption with permutation matrices [20] then filed
its enhancement in 2019 [21]. Kuang and Bettenburg in 2020 formally proposed an en-
cryption algorithm using a pad of permutations called the Quantum Permutation Pad or
QPP [22]. It is well-known that permutation transformations are bijective over computa-
tional basis, so the QPP encryption holds the property of Shannon perfect secrecy. The
QPP encryption scheme has been applied to different cases recently in classical computing
[23–25]. For an n-qubit computational basis, there exist a total of 2n! unique permutation
gates. The entire group of permutations corresponds to the Shannon information entropy
of log2(2n!) bits. Considering this permutation group as a key space and mapping the clas-
sical key material into a QPP pad by using random shuffling algorithm such as the Fisher-
Yates algorithm, a new cryptographic algorithm can be established that is applicable to
both classical computing and quantum computing.

In this paper, we propose an implementation of QPP in fully available IBM quantum
computers. Due to its relative simplicity, we could create a hybrid quantum-classical
scheme of quantum encrypted secure communications over a potential hybrid internet.
While this paper focuses entirely on the implementation of QPP in quantum systems, de-
tailed security analysis can be found in a very recent publication by Kuang and Barbeau in
2022 [26].

2 Quantum permutation pad
We refer to quantum encryption to describe an encryption scheme that employs unitary
operators for encryption and their respective Hermitian conjugate operators for decryp-
tion. That is, if such unitary operators were constructed using a pre-shared secret key then
both parties can perform encryption and decryption using said unitary operators, and the
adversary will have to obtain the pre-shared secret key in order to determine such op-
erators. One great example of such operators are permutation operators. In the classical
settings, permutation operators are elements of the symmetric group S2n which permute
the 2n elements {0, . . . , 2n–1}, or equivalently, 2n × 2n matrices. There are 2n! such per-
mutation operators. As matrices, permutation operators are natural quantum computing
objects. That is, permutation operators can be constructed directly using the matrix form
of the permutations. Moreover, it can be easily shown that permutation operators are in-
deed unitary operators.

We want to warn the reader that the quantum permutation operators used in quan-
tum computing are very different from the notion of a permutation operator in quan-
tum physics, where permutation operators act on identical particles and mainly refer
to swapping particles’ physical positions. In quantum physics, it is known that the to-
tal number of permutations of n identical particles is n!. In quantum computing, on
the other hand, permutation operators act as quantum perturbations of an n-qubit sys-
tem and permute its computational basis from Bc = {|0〉, |1〉, |2〉, . . . , |2n – 1〉} to BP =

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 4 of 26

{P̂|0〉, P̂|1〉, P̂|2〉, . . . , P̂|2n – 1〉}. It is clearly seen that BP is just a permuted basis of the com-
putational basis Bc. There are in total 2n! permuted bases for an n-qubit system.

The entire set of quantum permutation gates forms the symmetric group S2n or so-called
Quantum Permutation Space or QPS. QPS can be considered as “quantum key space” with
a dimension 2n!, which is significantly larger than its corresponding classical key space
with a dimension of 2n. Such dramatic increase in the dimension of the key space from
classical computing to quantum computing indicates the exponential increase of quan-
tum key entropy to be used for quantum encryption. Therefore, the paradigm shift of
computing algebra from Boolean to linear not only reveals the superpower of quantum
computing but also releases the superpower of entropy for quantum encryption.

Kuang et al. reported their QPP implementations as a lightweight quantum safe block
cipher [23] and streaming cipher [24], entropy transformation and expansion [25], pseudo
quantum random number generation [27]. Kuang and Barbeau recently proposed a uni-
versal quantum safe cryptography with QPP [26] for potential quantum encrypted com-
munications between two quantum computers and one quantum one classical computers
over the existing internet or future quantum internet. Perepechaenko and Kuang have
demonstrated their first toy implementation of QPP in IBM 5-qubit quantum computer
recently [28]. In this paper, we describe an implementation of QPP on today’s publicly-
available free of charge quantum computers such as ibmq-bogota to demonstrate how
we can achieve quantum encryption and decryption with at least 256 bits of entropy, even
with today’s noisy quantum computer.

For brief summarization, we will introduce 1-qubit QPP, 2-qubit QPP and n-qubit QPP
in the following subsections separately. The QPP can be designed and described using two
different mechanisms. On one hand, QPP can be expressed using eigen-decomposition of
the permutation operators. Such QPP gets physical security from the uncertainty prin-
ciple. On the other hand, QPP can be considered using the permutation matrices them-
selves. This QPP gets its information-theoretical security from uninterpretability of the
states that have been acted on with permutation operators. We discuss the latter in the
next few sections, as our implementation only uses the permutation matrix interpretation
of QPP.

2.1 1-qubit QPP
A single qubit system, can be in only two possible states. Thus there are only 21! = 2 permu-
tation matrices acting on such states, namely the identity P0 = I =

[1 0
0 1

]
and P1 =

[0 1
1 0

]
also

known as a NOT gate. The computational basis of such 1-qubit system is Bc = {|0〉, |1〉},
where |0〉 =

[1
0

]
and |1〉 =

[0
1

]
. Suppose that the system is prepared in the state |a〉, where

a ∈ {0, 1}. The identity permutation P0 applied to the said state does not change the com-
putational basis. Indeed, BP0 = {P̂0|0〉, P̂0|1〉} = {|0〉, |1〉}. On the other hand, P2 would
change state |0〉 to |1〉 and state |1〉 to |0〉. Thus, BP1 = {P̂1|0〉, P̂1|1〉} = {|1〉, |0〉}. A sin-
gle qubit state can be still deterministically measured in the computational basis after a
permutation but it can only be probabilistically interpreted without knowing what the
permutation operator is operated. That is, if the permutation is randomly chosen from
{P0, P1} and applied to the state |a〉, and the adversary is only able to see the resulting
state, they will not be able to determine if the original state is |a〉 = |0〉 or |a〉 = |1〉. Thus,
the correct interpretation of the original state, without any other knowledge, happens only
50% of the time.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 5 of 26

In single qubit case, a random key pad can be naturally mapped to a quantum permu-
tation pad or QPP with key bit ‘0’ for P0 and ‘1’ for P1. Then the implantation circuit has
two qubits, one for the secret key, and one for the qubit to be acted on. Quantum imple-
mentation of the permutations P0 and P1 can be done using a 2-qubits Control – NOT or
CNOT gate, with key bit used as control qubit. The output of said operation is a secret
key qubit and the cipher qubit. It is clearly seen that CNOT gate performs the classical
XOR bitwise operation. Therefore, we can implement the classical OTP encryption with
quantum logic gate CNOTs with each pair of key qubit and message qubit as input qubits
for the CNOT gate.

The decryption is done the same way, however, using the P†
0 and P†

1, and a cipher qubit
instead of the message qubit. In the case of 1-qubit QPP implementation P†

0 = P0 and
P†

1 = P1.
Although CNOT gates operate on qubits, the quantum encryption with CNOT gates

behaves the exactly same way as the classical OTP, that means, the key qubits can only be
used for one time because of the deterministic measurements in the computational basis.
In order to make a key reusable, we may have to use either superposition single qubit gates
such as a universal gate [19] or Hadamard or H gate.

2.2 2-qubit QPP
For 2-qubit permutation space, there is a total of 22! = 24 permutation gates. Indeed, there
are 4 possible states of the system with 2 qubits, and we apply permutation operator to the
entire system, thus applying to 2 qubits simultaneously. Here is a typical 2-qubit permu-
tation operator in its matrix form

P0 = CNOT =

⎡

⎢⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎥
⎦

.

Such permutation maps the state |2〉 = |10〉b (note: we use subscript b to a state vector for
bit string) to |3〉 = |11〉b and |3〉 = |11〉b to |2〉 = |10〉b, and leaves the states |0〉 = |00〉b and
|1〉 = |01〉b intact. Another example of the 2-qubits permutation operator is

P1 =

⎡

⎢
⎢⎢
⎣

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤

⎥
⎥⎥
⎦

.

Such permutation turns the state |0〉 = |00〉b to |1〉 = |01〉b, |1〉 to |3〉 = |11〉b, |2〉 = |10〉b

to |0〉, and |3〉 to |2〉. Suppose that the message qubits are |3〉 = |11〉b and the secret key
determined that P1 is the permutation that will be used for encryption, then the produced
ciphertext state is |2〉 = |10〉b. The decryption can be done in the same way using conjugate
transpose of P1 applied to the ciphertext state to produce the message state.

We can randomly select a pre-shared 2-qubit QPP pad, from 2-qubit permutation
space, to perform direct quantum encryption for uninterpretable security or its eigen-
decomposition pad for physical untouchable security. However, quantum implementation

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 6 of 26

with an eigen-decomposition QPP pad or 2-qubit QKD is much more complex than using
a single qubit QPP pad. Note that 2-qubit QKD with eigen-decompisitions is not likely
practical.

2.3 n-qubit QPP
Although quantum encryption in permutation eigenbases makes the encryption key
reusable because of the physical uncertainty principle, the encryption can only work
within quantum computing systems or between quantum computers over an ideal quan-
tum channel. In order for a key to be reused for quantum encryption with a QPP pad,
we have another option: using n-qubit permutation gates with n > 1 because of the gen-
eralized uncertainty principle or mathematical non-commutativity: [P̂i, P̂j] �= 0 for i �= j =
1, 2, . . . , 2n!. This is fundamental for QPP cryptographic algorithm to not only hold the
property of Shannon perfect secrecy with uninterpretable security but also make the key
reusable.

Quantum encryption with QPP generally has following steps:
• The first step is to decide how many permutation gates are required to achieve at least

256 bits of entropy for a given n-qubit permutation space. Table 1 illustrates the
dimension of different permutation spaces, equivalent Shannon entropy per
permutation gate, number of permutation gates for a QPP to achieve at least 256 bits
of entropy, length of classical key materials required, and number of qubits for a QPP
encryption circuit. To achieve quantum security, we need the randomly chosen QPP
pad with at least 56 gates for using 2-qubit permutation space, or 17 gates for using
3-qubit permutation space, or 6 gates for using 4-qubit permutation space, or 3 gates
for using 5-qubit permutation space.

• The second step is to decide the classical key length. Table 1 also displays the classical
key lengths required to produce the QPP pad. Generally speaking, the minimum
random key length per permutation gate requires (log2 2n!) bits and the maximum key
length is n × 2n bits. Table 1 illustrates the maximum classical key length for 2-qubit,
3-qubit, 4-qubit, and 5-qubit per QPP pad, respectively. They all hold more than 256
bits of entropy. However, their corresponding QPP circuits require much less than 256
qubits, thanks to the condensed entropy from the permutation space.

• The third step is to map the classical key materials into a QPP pad. There are a
number of algorithms to chosen for this mapping. We choose the Fisher-Yates
shuffling algorithm to shuffle the states of the n-bit finite field. For a sufficient
shuffling, a random bit string should be n × 2n bits to choose one permutation gate.

Table 1 The table tabulates the equivalent Shannon information entropy per n-qubit permutation
space for n from 2 to 5. We also illustrate the number of gates to achieve the equivalent classical 256
bits of entropy and classical key bit length. The last row displays the number of qubits required per
circuit to achieve the quantum security, counting qubits corresponding to the message and the
pre-shared key

2-qubits 3-qubits 4-qubits 5-qubits

Dimension of Permutation Space 24 40,320 2.09× 1013 2.63× 1035

Entropy per Permutation Gate (bit) 4.58 15.30 44.25 117.7
Number of Permutation Gates Required 56 17 6 3
Classical key length (bit) 448 408 384 480
Total Qubits Required 224 102 48 30

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 7 of 26

• the forth step is to decide how many qubits a QPP circuit needs for NIST security level
V or 256 bits of entropy. Table 1 displays that a QPP circuit requires 112 qubits for a
2-qubit pad, or 51 qubits for 3-qubit pad, or 24 qubits for 4-qubit pad, or 15 qubit for
5-qubit pad. It is obvious that full implementation of a QPP circuit in today’s quantum
computer faces challenges due to the limitation of quantum volumn. However, we can
demonstrate the fundamental logics with certain simplifications to be discussed later.

3 QPP circuits
Any implementation of quantum encryption using QPP should consist of three main
building blocks, namely the randomization operation, the dispatching operation, and the
permutation operation. The randomization operation is to be applied to the plaintext to
randomize it and erase any statistical patterns that can be later used for statistical analysis
attacks. The dispatching operation determines which permutation operator of the Permu-
tation Pad will be applied to a given n-qubit randomized plaintext state. The permutation
operation describes the encryption of a given randomized plaintext using the dispatched
permutation operators.

In this section, we give an overview of an ideal implementation of QPP on future fault-
tolerant, fully scalable quantum computers with sufficient quantum volume. Such imple-
mentation should be done using tools entirely native to quantum computing. For instance,
the randomization and the dispatching operations should be implemented using quan-
tum gates only. The quantum Permutation Pad itself ought to be created using exclusively
quantum gates as well. We illustrate a sample circuit for this implementation in Fig. 1.

An attentive reader will notice that in Fig. 1 the initialization operator is depicted using
a dashed line rather than a solid line. That is because the default initial state depends on

Figure 1 We illustrate an encryption circuit for ideal implementation of the QPP on a quantum device. All the
operations are performed using quantum gates and instruments native to quantum computing. The
encryption procedure consists of an initialization, randomization, dispatching and quantum permutation pad
operations. Note that permutations in the Permutation Pad are applied together as one pad. For this specific
figure each permutation operator is acting on 2 qubits at a time. The permutation operators are not limited to
2 qubits only, but for the sake of simplicity without loss of generality we depict 2-qubits permutation
operators. Qubits labeled “Designated plaintext qubits” and “Designated secret key qubits” are denoted in
such way to show what input they will store. Note, that they are not yet initialized according to the plaintext
bits and secret key bits. Initialization operation will transform default qubits into precisely the secret key
qubits and plaintext qubits. That is, such qubits if measured will be precisely the plaintext and secret key bits

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 8 of 26

Figure 2 Quantum Randomization procedure is a collection of CNOT gates applied to the plaintext qubits
with secret key qubits set as control. Such implementation is the quantum counterpart of the classical XOR
operation. Indeed, suppose the secret key is 011 . . .1 and the plaintext is 111 . . .0. The result of the XOR
operation between the said two bit strings is 100 . . .1. Setting the control qubits as depicted in this figure for
q0 = 0,q1 = 1,q2 = 1, . . . ,qi–1 = 1 and qi = qi+1 = qi+2 = 1, . . . ,qn–1 = 0 will produce the state |100 . . .1〉, which
when measured is precisely the bit-string 100 . . .1

the hardware. In the case of the IBM hardware, used for our implementation, each of the
default qubits is set to |0〉. Thus, in order to act on the initial state of the quantum system
in the same way as we would act on the binary plaintext, we need to initialize the qubits
according to the plaintext bits. For different quantum hardware, the qubits might not be
set to any specific default value, thus, no initialization might be required.

In the framework of a fully quantum implementation, the randomization procedure can
be done by a collection of CNOT gates applied to the plaintext qubits with secret key
qubits set as control qubits. We depict the described randomization operation in Fig. 2.

Dispatching can be done in many different ways. The fully quantum dispatcher will use
the qubits initialized according to the pre-shared secret key bits, to determine which per-
mutation from the Permutation Pad will be applied to any given plaintext qubits. We have
not yet determined the most optimal way to implement such dispatching, however, as
with the randomization operation, secret key qubits will be controlling the dispatching
operator. Thus, we will illustrate it in Fig. 3 as controlled operations with key qubits set as
control qubits.

In the future implementation of QPP, permutation operators are applied as a single Per-
mutation Pad. However, each permutation in the Permutation Pad is acting on a specified
number of qubits in the fashion determined by the dispatcher. That is, the first k-qubits
permutation in the Permutation Pad might not be acting on the first k qubits of the ran-
domized plaintext, but rather on the k-qubits block it was dispatched to. We denote a
permutation operator that acts on k qubits simultaneously as a k-qubits permutation op-
erator. The illustration of a sample Permutation Pad with 2-qubits permutation operators
is depicted in Fig. 4.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 9 of 26

Figure 3 The dispatching procedure, in the ideal case, will be performed using quantum gates applied to the
plaintext qubits with the secret key qubits set as control qubits. Note that we have not yet determined the
optimal way to implement the quantum dispatching procedure, however, it should depend on blocks of
secret key qubits and act of blocks of plaintext qubits. Thus, we depict dispatching as quantum gates applied
to the blocks of plaintetx qubits with multiple secret key qubits set as constrol. We also believe that the
quantum gates used for dispatching are unitary gates. After all, their classical counterparts are simply blocks
of secret key converted to integers

The said circuit will successfully encrypt any given plaintext using quantum gates and
qubits only. In the future, the encrypting party can simply send the ciphertext qubits, to
the decrypting party over a reliable quantum channel.

Once the decrypting party receives the ciphertext qubits, they can begin the decryp-
tion procedure. The first step is to use the dispatcher that will dispatch operators from
the Inverse Permutation Pad. Note that the two communicating parties will agree on the
dispatching procedure as well as the pre-shared secret key, this will guarantee that the
decrypting party is able to dispatch precisely the respective Hermitian conjugates of the
permutations used by the encrypting side. In this text, we will refer to the Hermitian
conjugates as inverse permutations. The dispatching operation is followed by applying
the dispatched inverse permutation operators from the Inverse Permutation Pad. At this
point, the system is in the state that corresponds to the randomized plaintext qubits. The
last step necessary to produce the plaintext is de-randomization. Using the same key and
CNOT operations as described in Fig. 2, the decrypting party can generate a state that
corresponds to the original plaintext. Such a state can be measured to observe the plain-
text bits. The circuit for the procedure is available in Fig. 5. Each individual operation is
equivalent to the operations illustrated in Fig. 2, 3, 4, however, the plaintext qubits will be
replaced by the ciphertext qubits, and the Inverse Permutation Pad consists of inverses of
the permutations from the Permutation Pad.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 10 of 26

Figure 4 The Quantum Permutation Pad in the case of ideal fully-quantum permutation will be applied as
one pad to plaintetx qubits. For this specific illustration each permutation in the permutation pad acts on 2
qubits simultaneously. Permutation operators are not limited to 2 qubits at a time, however, we depict it for
the sake of simplicity without loss of generality using 2-qubits permutations

Figure 5 We illustrate a decryption circuit for the ideal implementation of the fully quantum QPP. The said
circuit is similar to the one for encryption, however, the qubits are initialized to the ciphertetx bits instead of
the plaintext bits, and the order in which the operations are applied is different, For instance, the
randomization in the decryption circuit is the last procedure that is acting on qubits, whereas for encryption is
the second one. Moreover, the permutations are not dispatched form the Permutation Pad but rather the
Inverse Permutation Pad. The Inverse Permutation Pad is applied to the ciphertetx qubits all together as one
pad

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 11 of 26

3.1 Entropy
Depending on the desired security, the communicating parties can agree on specific pa-
rameter values. For instance, suppose that A and B agree to communicate using QPP such
that the best possible attack has complexity of at least O(2256). This means that the pre-
shared secret key must be truly random and be at least 256 bits in length to avoid brute
force attacks. Such pre-shared key has at least 256 bits of entropy. On the other hand, the
attack on the algorithm itself should require brute force search with complexity O(2256).
Thus, the Permutation Key Space, as described in [26], should have 256 bits of entropy.
This is possible if the Permutation Pad consists of sufficient number of permutations. For
an implementation of n-qubit QPP with n-qubit permutations, the Permutation Pad must
consist of at least k = 256

log2(2n!) permutation operators. Since the pre-shared key K is used
to generate the Permutation Pad, it must now satisfy two conditions, namely ‖K‖ > 256
bits, and ‖K‖ > k × (2n × n). This way the pre-shared key is sufficiently long to generate k
permutations for the Permutation Pad.

Recall that in the future implementation of QPP the permutation operators are applied
as a single Permutation Pad. This means, every quantum circuit used for encryption and
decryption of a message or a block of a message should have k × n qubits corresponding
to the message, and k × n qubits corresponding to the pre-shared key.

We summarize this discussion in Table 1, which illustrates parameters needed to achieve
classical entropy of 256 bits with n-qubit QPP for n = 2, . . . , 5.

3.2 2-qubit QPP circuit
We now describe a special case of the future QPP implementation, namely the 2-qubit
case. That is, the permutation operators used in the Permutation Pad are 2-qubit permu-
tation operators. In this case, the Permutation Pad must consist of 56 permutations as
shown in Table 1 to provide 256 bits of entropy. The number of qubits per circuit required
to reflect the plaintext and the pre-shared secret key is 224 as illustrated in Table 1. Note
also that the pre-shared secret key must be at least 448 bits of length to avoid brute force
search attacks on the secret key and generate the Permutation Pad.

Suppose that the encrypting party wants to securely send aK-bit message. Suppose, also,
that the communicating parties have pre-shared a K-bit secret key, where K ≥ 448. Then
the encryption and decryption procedures are illustrated in Algorithm 1 and Algorithm 2
respectively.

If the message needed to be encrypted is less than 112 bits, then only the necessary
amount of permutations will be selected from the pad. That is, the entire Permutation
Pad serves as a menu, from which only the needed amount of 2-qubit permutations will
be selected using the secret key and applied to the plaintext. The amount of entropy, in
this case, remains the same, however, instead of applying the entire Permutation Pad at
once only a certain amount of permutations is selected from the said pad. The same holds
true for decryption.

3.3 3-qubit QPP circuit
The future implementation of the 2-qubit QPP can be extended to any n-qubit permu-
tation operators. As quantum machines advance, we expect the number of qubits that
can be encrypted at a time to increase drastically as well as the number of qubits a single
permutation can act on at once.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 12 of 26

Algorithm 1 Ideal 2-qubit QPP Encryption circuit
Require: m ← message, s ← pre-shared secret key, i ← 112, k = 56, List = [].
Ensure: c ← ciphertext

1: CREATE Permutation Pad(s, k, i)
return PermutationPad;

2: SPLIT m
return mBlock_j ∀j = 0, . . . , 	 K

112
 s.t. ‖mBlock_j‖ = 112 bits;
3: SPLIT s

return sBlock_j ∀i = 0, . . . , 	 K
112
 s.t. ‖sBlock_j‖ = 112 bits;

4: for j = 0, . . . , 	 K
112
 do

5: CREATE Quantum Circuit(224 qubits, 112 bits)
6: INITIALIZE (CONCAT(mBlock_j, sBlock_j))

return InitialState = CONCAT(mQubitsBlock_j, sQubitsBlock_j)
7: RANDOMIZE(InitialState) {Fig. 2}

return mQubitsRandomBlock_j
8: DISPATCH Permutations(InitialState[sQubitsBlock_j], PermutationPad) {Fig. 3}
9: ENCRYPT(mQubitsRandomBlock_j) by applying dispatched operators

return cQubitsBlock_j
10: APPEND cQubitsBlock_j to the List
11: end for {Fig. 1}
12: return c ← List

Algorithm 2 Ideal 2-qubit QPP Decryption circuit
Require: c ← ciphertext, s ← pre-shared secret key, i ← 112, k = 56, List = [].
Ensure: m ← message

1: CREATE Permutation Pad(s, k, n)
return PermutationPad;

2: SPLIT s
return sBlock_i ∀j = 0, . . . , 	 K

112
 s.t. ‖sBlock_j‖ = 112 bits;
3: for i = 0, . . . , 	 K

112
 do
4: CREATE Quantum Circuit(224 qubits, 112 bits)
5: INITIALIZE (CONCAT(cBlock_j, sBlock_j))

return InitialState = CONCAT(cQubitsBlock_j, sQubitsBlock_j)
6: DISPATCH Permutations(InitialState[sQubitsBlock_j], PermutationPad)
7: DECRYPT(cQubitsBlock_j) by applying dispatched operators

return mQubitsRandomBlock_j
8: DE-RANDOMIZE(mQubitsRandomBlock_j, InitialState[sQubitsBlock_j])

return mQubitsBlock_j
9: MEASURE(mQubitsBlock_j)

return mBlock_j
10: APPEND mBlock_j to the List
11: end for {Fig. 5}
12: return m ← List

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 13 of 26

For the 3-qubit QPP, the same K-bit message can be broken down into blocks of 51 bits
each. Then each such block can be converted into qubits and encrypted using a circuit
similar to the 2-qubit case. The pre-sharedK-bit secret key is also broken down into blocks
of 51-bits length accordingly. The number of 3-qubit permutations in the Permutation Pad
to achieve 256 bits of entropy is 17, as shown in Table 1.

The reader can consult Fig. 1 and Fig. 5 for the illustration of the general logic of the
3-qubit QPP circuits, however, with updated values i = 51, n = 102, and most importantly
the permutation operators as well dispatching operators will act on 3 qubits at a time. The
reader can also use Algorithms 1 and 2 to see the general logic of 3-qubit QPP encryption
and decryption circuits respectively, however, with updated values i = 51, and k = 17.

4 Quantum secure encryption
In this section, we discuss the currently realizable, not ideal, implementation of QPP that
we have successfully executed on the IBM quantum computers using the Qiskit develop-
ment kit. Three major hurdles that make the ideal implementation currently impossible
are the lack of quantum channel, the limited capacity of currently publicly available free-
of-charge quantum computers, and the noise. We discuss these matters in the next section.

4.1 Noisy quantum computers and quantum volume
It is well understood that although there has been a significant advancement in the field
of quantum computing over the years, including demonstrations of quantum supremacy
[29, 30], current quantum computers are a far way from the universal fault-tolerant fully-
scalable quantum computers. One reason for that is the noise, which causes the current
computers to experience errors. Another reason is the capacity of quantum computers in
terms of qubits and the size of the largest circuit it can process successfully, in other words
without too many errors as to alter the results.

We want to focus the reader’s attention on the latter. IBM first introduced the notion of
quantum volume (QV) metric to qualify and compare the capabilities of quantum devices
[31]. The QV accounts for many factors contributing to the performance of a quantum
computer such as the number of qubits, systemic errors, device connectivity, and compiler
efficiency [32]. Thomas Lubinski et al. generalized the notion of QV to be a function of
the job size, in other words, circuit width and circuit depth, that a quantum computer can
run without errors.

IBM provides information on quantum volume for each of their quantum computers.
The IBM quantum computers that we have used for implementation is ibmq-manila
and ibmq-bogota. Both of these quantum computers have a capacity of 5 qubits and a
Quantum Volume of 32. A device’s QV is said to be 2n, where n is the number of qubits
or width of the circuit it can execute successfully, and also the number of layers or the
depth of the largest circuit it can execute without too much noise as to alter the results or
introduce significant errors. Thus, QV of 32 refers to the ability of a quantum computer to
successfully run a job corresponding to the largest circuit with 5 layers and 5 qubits [32].

Quantum Volume and qubit capacity are not the only measures of performance that
IBMQ makes available to the users. Typically, the providers would include 1- and 2- qubit
gate fidelity, state preparation and measurement fidelity, and T1 and T2 coherence times.
We include the said information provided by IBMQ for one of the quantum computers
we used for implementation, ibmq-manila, in Fig. 6. We have tested ibmq-manila

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 14 of 26

Figure 6 Detailed specifications of the IBMQ “ibmq-manila” quantum computer provided by IBM to its users

for 2-qubit, 3-qubit, and 4-qubit QPP and found the depth of decomposed layers of el-
ementary gates is far beyond its QV for 4-qubit permutation gates. So we will limit our
implementations only to 2- and 3-qubit QPP.

Each encryption and decryption circuit that we run on ibmq-manila and ibmq-

bogota for 2-qubit QPP has width of 2, and depth of 3. Interested reader can check this
value by editing the source code given in the Appendix. Lines 124–133 can be commented
out, and a single command qc.depth() can be added. This command will return the
depth of a given circuit, which can be appended to the list_of_ciphers and printed
out. The width of the encryption and decryption circuits of 3-qubit QPP is 3, and the
depth is 3 as well. However, corresponding transpired circuits have depth ranging from 5
to 13. Note that increased depth does not significantly affect the results due to the width
being only 2 and 3. More detailed discussion on this is available in [32].

4.2 2-qubit QPP circuits
We have successfully implemented 2-qubit QPP on the IBM quantum computers ibmq-
manila and ibmq-bogota, using the Qiskit developmental tool. This implementation
uses Permutation Pad consisting of 56 of 2-qubit permutations, however, we encrypt and
decrypt only 2 qubits at a time. This is done to account for the limitations of the cur-
rently publicly available free-of-charge IBM quantum computers. Indeed, these quantum
systems have at most 5 qubits capacity with a Quantum Volume of 32.

To begin communication, parties A and B must agree on a symmetric pre-shared key
to be used for the (Inverse) Permutation Pad generation, randomization, as well as the
dispatching. For our implementation we will use a classical secret key due to the limited
capacity of the quantum computers used for our implementation. Note that, if we were
to use qubits to store secret key blocks, each circuit used to encrypt a single plaintext
block will consist of 4 qubits. That would result in uninterpretable measurement results,
tampered by noise. We, also, use classical randomization and dispatching procedures due
to the same limitations.

4.2.1 Permutation pad generation
Assume that both communicating parties have pre-shared a classic secret key K. To
achieve 256 bits of entropy, we require that K is 448 bits long as shown in Table 1.
Both communicating parties would divide K into blocks, to be stored in the list se-
cret_key_blocks, of 8 bits each. A simple for loop to populate an empty list can
do the trick. Each such block is later used to generate one 2-qubit permutation gate. The

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 15 of 26

Permutation Pad as well as the Inverse Permutation Pad consist of 56 permutation oper-
ators each. We allow for repetitions in the (Inverse) Permutation Pad, since the 2-qubit
permutations are elements of the symmetric group S4 of order 4!, so there are at most
4! = 24 possible distinct 2-qubit permutations.

Both communicating parties can use the Fisher-Yates shuffling algorithm to gener-
ate the Permutation Pad and the Inverse Permutation Pad using the mentioned se-
cret key blocks as follows. First, the Fisher-Yates algorithm is used to create a shuffled
array, given a secret key block. Then, both communicating parties will use a Numpy

np.zeros routine to create a matrix of zeros. Each such matrix will be edited using
the shuffled array created by the Fisher-Yates algorithm and a simple array of n num-
bers to assign 1 to every row of the matrix in distinct columns. The resulting matri-
ces are permutation matrices. Now, the encrypting party will use command Permuta-

tion_Pad.append(Operator(my_matrix)) to populate the empty list Permu-
tation_Pad =[]with permutation matrices converted to quantum operators. The de-
cryption party will use the commandInverse_Permutation_Pad.append(Oper-
ator(my_matrix.transpose()) to populate the Inverse_Permutation_Pad
= [] with the respective inverse permutations converted to quantum operators. Note
that inverse permutations are precisely the conjugate transposed permutation matrices.
However, since the coefficients in the matrices are all integers it is enough to consider the
transposed matrices only. At this point party A and party B have created a Permutation
Pad and corresponding Inverse Permutation Pad respectively.

4.2.2 Randomization
For our experiment A sends an encrypted picture of Albert Einstein, illustrated in Fig. 7,
to B using the 2-qubit QPP. The natural first step for A to begin the communication is
to convert the PNG file of Einstein to a bit-string. That is, using Image module from

Figure 7 The picture of Albert Einstein to be encrypted and sent to the decrypting party

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 16 of 26

the Python PIL fork and the BytesIO class from the Python IO Module, A can get the
values of the image in bytes and later it to a plaintext bitstring. Next, A randomizes the
plaintext message using classical XOR operation with the pre-shared key K, and breaks
the randomized plaintext bitstring into block of 2 bits each.

4.2.3 Encryption
After the plaintext has been randomized, A generates a permutation selection array, de-
noted perm_selection_blocks, that will be used for dispatching later. Such array is
simply the blocks of the secret key of length 6 bits each, converted to integers and evalu-
ated modulo 56. Each one of these integers point out to the position of a permutation in
the Permutation Pad. Next, A creates an empty list, called list_of_ciphers, which
will be later populated with the ciphertext bits.

The party A begins encrypting every block of the randomized plaintext one by one. For
that they use afor loop. For each randomized plaintext block, A creates a quantum circuit
with 2 qubits and 2 classical bits by defining the QuantumCircuit() class, and initial-
izes the qubits to create the state |b0b1〉, where b0 is the first bit in the corresponding ran-
domized plaintext block and b1 is the second one, using the initialize(Statevec-
tor.from_label()) command. A, then, applies the jth permutation from the Per-
mutation Pad using the append command, where j = perm_selection_blocks[x%

len(perm_selection_blocks)] and x is the position of the plaintext block in the
array of all the plaintext blocks. This produces a state corresponding to the ciphertext
block. Due to inability to send the qubits over a quantum channel, the said block is then
measured.

In order to run the job described above in today’s noisy quantum computers, each circuit
created for each plaintext block needs to be transpiled using the transpile() com-
mand. Indeed, most input circuits require rewriting to match the topology of a specific
quantum device. That is, to make them compatible with a given target quantum computer.
A also performs heavy optimization on the circuits. After the circuit is transpiled, A spec-
ifies the quantum system which they want to use to execute the job and obtains the result
using the job = execute() and result = job.result() commands. A, then,
gets histogram data from the experiment using counts = result.get_counts()

and stores the highest probability value in the list_of_ciphers. Such list contains all
the classical ciphertext blocks.

To transmit the ciphertext, A creates a binary file from the data stored in the
list_of_ciphers. That is, A can join the entries of the list_of_ciphers and
create ciphertext bytes using the bytes() method. A then opens a new binary file and
writes the ciphertext bytes to it. A transmits such file over a reliable classical channel.

The illustration of the described encryption procedure is depicted in Fig. 8. We also
include the illustration of the ciphertext binary file converted to pixels using an available
online tool in Fig. 9. The illustration of the transpiled circuit diagram used for encryption
of the first 2-qubits plaintext block is available in Fig. 10 as well as the histogram plot of
the measurement result in Fig. 11.

4.2.4 Decryption
Recall, that the decrypting party has already generated an Inverse Permutation Pad
corresponding to a Permutation Pad used for the encryption. They, then, perform the

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 17 of 26

Figure 8 The encryption circuit for functional currently-realizable implementation of a 2-qubits QPP on IBMQ
using Qiskit starts by breaking the randomized plaintext bits into 2-bits chunks. Each such chunks is
encrypted separately with a new circuit. We give such circuit for one block in this figure. Note that the qubits
in each such circuit are initialized according to the randomized plaintext bits of the corresponding bit block

Figure 9 The illustration of the ciphertext binary file converted to raw pixels

Figure 10 The diagram of a transpiled circuit used to encrypt the first 2-qubits chunks of the plaintext using
2-qubits QPP

exact same procedure as the encrypting party to generate the array perm_selec-

tion_blocks. Next, the decrypting party B receives the ciphertext binary file, opens
it, and separates the ciphertext into blocks of 2 bits each. B creates an empty list called
list_of_messages to be populated later on.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 18 of 26

Figure 11 The plot histogram of the measurement results of the encrypted first 2-qubits block of the
randomized plaintext using 2-qubits QPP. That is, the measurement results of the first 2-qubits block of
ciphertext

Figure 12 The decryption for functional currently-realizable implementation of a 2-qubits QPP on IBMQ
using Qiskit acts on the 2-bit ciphertext blocks. For each such block, a new quantum circuit is created with
qubits initialized to the ciphertext block bits. Ciphertext qubits are the decrypted using Inverse QPP and the
resulting state is measured. The measurement results are precisely the blocks of the randomized plaintext.
The decryption party then applied classical XOR opertaor using the same shared key as the encryption party
to produce the original plaintext

Each block of ciphertext is decrypted separately, using the for loop. For each block
of the ciphertext B creates a quantum circuit with 2 qubits and 2 classical bits by
defining the QuantumCircuit() class. The qubits are then initialized according to
the corresponding ciphertext bits using the initialize(Statevector.from_la-
bel()) command. To the created state B applies jth permutation from the Inverse Per-
mutation Pad using the append command, where j = perm_selection_blocks

[x%len(pad_selection_blocks)], and the value x is the position of the plaintext
block in the array of all the plaintext blocks. That is, this step of the decryption procedure
is identical to the same step in the encrypting process but the operator that is acting on
the ciphertext block is an inverse permutation taken from the Inverse Permutation Pad.
The produced randomized plaintext block is then measured.

Just as the encrypting party A, party B also transpiles each decrypting circuit using the
transpile() command. B, then, sends the job to be executed on a desired quantum
computer and obtains the results. B then gets histogram data from the experiment us-
ing the job.result().get_counts() command and stores the highest probability
value in thelist_of_messages. Such list contains the binary plaintext. B simply needs
to print("".join(list_of_messages)) to obtain the randomized plaintext bi-
nary string.

To de-randomize, B acts with a classical XOR operation with the secret K on the ran-
domized plaintext.

Lastly, in order to generate a PNG file from the plaintext B opens a new PNG file and
writes the binary string to it.

The illustration of the described decrypting procedure is available in Fig. 12. The dia-
gram of the transpiled circuit used for decryption is available in Fig. 13 as well as a plot

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 19 of 26

Figure 13 The diagram of a transpiled circuit used to decrypt the first 2-qubits chunks of the ciphertext
using 2-qubits QPP

Figure 14 The plot histogram of the measurement results of the decrypted first 2-qubits block of the
plaintext using 2-qubits QPP. That is, the measurement results of the first 2-qubits block of randomized
plaintrext produced by decryption

histogram of the measurements results in Fig. 14. The source code for the implementation
of the 2-qubits QPP can be found in the appendix. The source-code for 3-qubits QPP is
very similar except for the parameters as well as number of qubits, permutations in the
Permutation Pad and classical bits to store the measurement results. It is available at re-
quest to the corresponding author.

4.3 3-qubit QPP circuits
The Quantum Volume and qubits capacity of ibmq-bogota and ibmq-manila com-
puters allow for a 3-qubit QPP implementation. To provide 256 bits of entropy, this im-
plementation uses a Permutation Pad consisting of 17 3-qubit permutations. Note that
due to limitations discussed, the secret key in this implementation is classical as well as
the randomization and dispatching procedures. More precisely, this is identical with the
2-qubits QPP implementation except for a few details, which we discuss in the next few
sections.

Suppose that party A wants to send the same encrypted picture of Einstein to B, however,
now using a 3-qubits QPP.

4.3.1 Permutation pad generation
We list the major differences in the Permutation Pad generation procedure between the
two implementations, both providing 256 bits of entropy.

1 The Permutation Pad consists of 17 permutations.
2 The size of the pre-shared secret key is 408 bits.
3 Blocks of the pre-shared key of size 24 bits each are used in the Fisher-Yates algorithm

to generate permutation matrices.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 20 of 26

4.3.2 Encryption
We list the differences in the encryption procedure between the two implementations.

1 After converting the PNG plaintext file into a binary string, it is divided into blocks of
3 bits each. Note that there are instances of the plaintext that are not divisible by 3 in
this case one solution is to add a few bits at the end or beginning of the plaintext until
its length is divisible by 3.

2 The dispatching array perm_selection_blocks is created using secret key
blocks of length 5 bits converted to integers and evaluated modulo 17.

3 The QuntumCircuit() created for each plaintext block has 3 qubits and 3 classical
bits.

The reader can consult Fig. 8 for the illustartion of the general logic of the 3-qubit QPP
implementation circuit, however, with 3 qubits and 3 classical bits instead of 2. Moreover,
the operators must be applied to 3-qubit blocks at once instead of 2-qubit blocks.

4.3.3 Decryption
The decryption procedure for the 3-qubit QPP is equivalent to that of 2-qubit QPP except
for a few subtle points. These differences are listed in the previous section.

Note that Fig. 12 can be extended to the 3-qubits QPP implementation circuit with 3
qubits and 3 classical bits instead of 2. In addition, the 3-qubits QPP the operators are
applied to 3-qubits blocks at once instead of 2-qubits blocks.

4.4 Cipher randomness
The more detailed security analysis of the QPP can be found in [26], however, in this sec-
tion, we want to present the reader with the ENT test results of the ciphertext produced by
encryption on the picture in Fig. 7 using 2- and 3-qubits QPP. We also include the results
of the ENT testing of the plaintext itself before the randomization procedure for better
comparison.

ENT or Pseudorandom Number Sequence Test Program is a well-recognized and widely
used in industry program that tests binary files for the data on information density of the
files, or its entropy. In other words, ENT testing determines the randomness of the data
in the file. ENT performs a range of tests and output values that indicate the randomness
of the data in the file such as Entropy, Arithmetic Mean, the value of Chi-square, Monte
Carlo value for π , and the Serial Correlation Coefficient. We provide the data generated by
the ENT testing of the ciphertext produced by encrypting Fig. 7 with 2- and 3-qubit QPP
as well as the ideal values of the ENT test results in Table 2. We also include the results of
the ENT testing of the original pre-randomized plaintext.

Table 2 The table shows data from the ENT testing of the ciphertext produced by encrypting the
picture of Einstein using 2- and 3-qubits QPP. We also include ideal values of the ENT testing in the
first column for comparison

ENT test values Ideal Values 2-qubits QPP 3-qubits QPP AES-256 Plaintext

Entropy (bits) 7.98 7.934235 7.938312 7.936005 7.323068
Chi-square 256 277.57 270.07 250.98 8853.85
p-Value [0.01, 0.99] 0.1585 0.2471 0.5541 0.0001
Arithmetic Mean 127.50 127.6751 126.1195 129.0124 119.7248
Monte Carlo π 3.141592 3.128107075 3.112810707 2.986899563 3.120458891
Serial Correlation 0 –0.006264 –0.011305 –0.002608 0.244054

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 21 of 26

For a better comparison, we include ENT test results of the ciphertext produced by
AES256 that corresponds to the same plaintext, namely Fig. 7. The secret key for this
encryption is a randomly generated string of 256 bits.

The reader can see that the Entropy values of the ciphertext for both QPP implemen-
tations are close to the ideal values, and significantly closer than the plaintext value. The
entropy value for AES-256 ciphertext is very close to those for QPP ciphertext. There is
a notable difference in the values of Chi-square between the QPP encrypted ciphertext
and the pre-randomized plaintext. Note that Chi-square value is very sensitive to bias and
we can see that the mentioned values for the QPP encrypted ciphertexts are much closer
to the ideal value, when the plaintext value is not even in the same ballpark. Chi-square
value for AES-256 is closer to the ideal value, however, very similar to the QPP cipher-
text values. The p-Value of the plaintext does not fall in the ideal range unlike the QPP
encrypted cipheretexts as well as the AES-256 ciphertext. The arithmetic mean values are
also much better for the QPP encrypted ciphertexts, with 2-qubits QPP ciphertext being
almost identical to the ideal p-Value. As for the Monte Carlo π values, none of the values in
columns 2–5 are quite good, however, AES-256 ciphertext is further away from the ideal
value than the other values. The Serial Correlation values are much better for the QPP
encrypted ciphertexts than the plaintext, and very similar to the AES-256 ciphertext.

Note that it is recommended that ENT testing is done with larger files. In our case, the
files are a mere 3KB so we expect the testing results to be better for larger plaintext and
ciphertext files.

5 Discussion and conclusion
In this paper, we presented an implementation of Kuang’s et al.’s Quantum Permutation
Pad used to encrypt a PNG file with Qiskit on an IBM quantum computer. Although func-
tioning and providing 256 bits of entropy, this implementation is not an absolute imple-
mentation of QPP on a quantum device. We are working on advancing the implementation
described in this paper as well as studying other applications of this implementation. For
instance, given that QPP can be implemented on a quantum computer as well as classi-
cal computer we see its potential for quantum to classical device communication. That
is, QPP can be seen as a uniform symmetric encryption algorithm that can be used for a
hybrid network with quantum and classical devices. Moreover, if a quantum channel was
available, QPP could be shown to be a symmetric encryption scheme that can be used for
two quantum computers for communication with no classical parts except for plaintext
input bits and plaintext output bits after decryption. Everything in between has a quantum
nature.

For our current implementation we used free-of-charge available to public IBMQ com-
puters ibmq_bogota and ibmq_manila with 5 qubits and a Quantum Volume of 32.
To account for the limitations of these computers we implemented QPP using 2- and 3-
qubit permutation operators. That is, with permutation operators that act of 2 and 3 qubits
at a time respectively. QPP can be implemented using any n-qubits permutations, and as
quantum hardware advances we will demonstrate n-qubit QPP. Moreover, for this imple-
mentation, we did not use sophisticated randomization and distribution procedures. We
use classical operators for randomization and dispatching; In the future, we will be able to
use more involved fully-quantum operators for such tasks.

Note that in our previous work [28, 33], we have not included randomization step as well
as the dispatching step. A detailed discussion on the importance of these steps is contained

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 22 of 26

in [26]. However, we will point out that although the randomization step already encrypts
the plaintext, the same pre-shared key used for randomization can not be reused. However,
the Permutation Key Space, as described in [26], can be reused again.

We included the source code for the implementation of 2-qubits QPP in the appendix.
The latest source code as well as the source code for 3-qubit QPP is avaialble upon request
to the corresponding author. We also conducted ENT tests and described the ENT testing
results to show the randomness of the ciphertext after encryption with 2- and 3-qubit QPP.

Appendix
We include a source code for the implementation of the 2-qubits QPP in this appendix.
The implementation of 3-qubits QPP is available at request to the corresponding author.

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 23 of 26

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 24 of 26

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 25 of 26

Acknowledgements
Authors acknowledge IBM for their free of charge 5-qubit quantum computers used for this study.

Abbreviations
QPP, Quantum Permutation Pad; QKD, Quantum KeyDistribution; DV-QKD, Discrete Variable QKD; CV-QKD, Continuous
Variable QKD; TF-QKD, Twin-field QKD; OTP, One-Time-Pad; QV, Quantum Volume; CNOT, Control-NOT gate; PRNG, Pseudo
Random Number Generator; QRNG, Quantum Random Number Generator; pQRNG, Pseudo QRNG; QSDC, Quantum
Secure Direct Communication.

Availability of data and materials
Partial data generated or analysed during this study are included in this published article and its supplementary
information files. Any datasets used and/or analysed during the current study that have not been included in this
published article or its supplementary information files are available from the corresponding author on reasonable
request.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
Both authors contributed to the work described in this paper. The authors jointly drafted and reviewed the manuscript
and approved the submission. Dr. Kuang majorly contributed on the development and the advancement of the QPP
algorithm and Mrs. Perepechaenko contributed on the implementation of QPP in IBMQ systems described in this paper.

Authors’ information
Quantropi Inc., Ottawa, ON, Canada, ON K1Z 8P9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 April 2022 Accepted: 29 September 2022

References
1. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci.

2014;560:7–11. https://doi.org/10.1016/j.tcs.2014.05.025.
2. Djordjevic IB. Discrete variable (DV) QKD. In: Physical-layer security and quantum key distribution. Berlin: Springer;

2019. https://doi.org/10.1007/978-3-030-27565-5_7.
3. Lai J-S, Lin X-Y, Qian Y, Liu L, Zhao W-Y, Zhang H-Y. Deployment-oriented integration of dv-qkd and 100g optical

transmission system. In: Asia communications and photonics conference (ACP). vol. 2019. Chengdu: IEEE; 2019.
p. 1–3. http://opg.optica.org/abstract.cfm?URI=ACPC-2019-T2H.1.

4. Qi B. Bennett-brassard 1984 quantum key distribution using conjugate homodyne detection. Phys Rev A.
2021;103:012606. https://doi.org/10.1103/PhysRevA.103.012606.

5. Pirandola S, Mancini S, Lloyd S, Braunstein SL. Continuous-variable quantum cryptography using two-way quantum
communication. Nat Phys. 2008;4(9):726–30. https://doi.org/10.1038/nphys1018.

6. Pirandola S, García-Patrón R, Braunstein SL, Lloyd S. Direct and reverse secret-key capacities of a quantum channel.
Phys Rev Lett. 2009;102(5):050503. https://doi.org/10.1103/physrevlett.102.050503.

7. Weedbrook C, Pirandola S, García-Patrón R, Cerf NJ, Ralph TC, Shapiro JH, Lloyd S. Gaussian quantum information. Rev
Mod Phys. 2012;84(2):621–69. https://doi.org/10.1103/revmodphys.84.621.

8. Lucamarini M, Yuan ZL, Dynes JF, Shields AJ. Overcoming the rate–distance limit of quantum key distribution without
quantum repeaters. Nature. 2018;557(7705):400–3. https://doi.org/10.1038/s41586-018-0066-6.

9. Chen J-P, Zhang C, Liu Y, Jiang C, Zhang W-J, Han Z-Y, Ma S-Z, Hu X-L, Li Y-H, Liu H, Zhou F, Jiang H-F, Chen T-Y, Li H,
You L-X, Wang Z, Wang X-B, Zhang Q, Pan J-W. Twin-field quantum key distribution over a 511 km optical fibre linking
two distant metropolitan areas. Nat Photonics. 2021;15(8):570–5. https://doi.org/10.1038/s41566-021-00828-5.

10. Wang S, Yin ZQ, He DY et al. Twin-field quantum key distribution over 830-km fibre. Nat Photonics. 2022;16:154–61.
https://doi.org/10.1038/s41566-021-00928-2.

11. Deng F-G, Long GL, Liu X-S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen
pair block. Phys Rev A. 2003;68(4):042317. https://doi.org/10.1103/physreva.68.042317.

https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1007/978-3-030-27565-5_7
http://opg.optica.org/abstract.cfm?URI=ACPC-2019-T2H.1
https://doi.org/10.1103/PhysRevA.103.012606
https://doi.org/10.1038/nphys1018
https://doi.org/10.1103/physrevlett.102.050503
https://doi.org/10.1103/revmodphys.84.621
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/s41566-021-00828-5
https://doi.org/10.1038/s41566-021-00928-2
https://doi.org/10.1103/physreva.68.042317

Kuang and Perepechaenko EPJ Quantum Technology (2022) 9:26 Page 26 of 26

12. Deng F-G, Long GL. Secure direct communication with a quantum one-time pad. Phys Rev A. 2004;69(5):052319.
https://doi.org/10.1103/physreva.69.052319.

13. Zhang W, Ding D-S, Sheng Y-B, Zhou L, Shi B-S, Guo G-C. Quantum secure direct communication with quantum
memory. Phys Rev Lett. 2017;118(22):220501. https://doi.org/10.1103/physrevlett.118.220501.

14. Langenberg B, Pham H, Steinwandt R. Reducing the cost of implementing the advanced encryption standard as a
quantum circuit. IEEE Trans Quantum Eng. 2020;1:1–12. https://doi.org/10.1109/TQE.2020.2965697.

15. Wang Z, Wei S, Long G. A quantum circuit design of AES. 2021. arXiv:2109.12354.
16. Zou J, Wei Z, Sun S, Liu X, Wu W. Quantum circuit implementations of aes with fewer qubits. 2020.

https://doi.org/10.1007/978-3-030-64834-3_24.
17. Jang K, Song G, Kim H, Kwon H, Kim H, Seo H. Efficient implementation of present and gift on quantum computers.

Appl Sci. 2021;11(11):4776. https://doi.org/10.3390/app11114776.
18. Baksi A, Jang K, Song G, Seo H, Xiang Z. Quantum Implementation and Resource Estimates for RECTANGLE and KNOT.

Cryptology ePrint Archive, Report 2021/982. 2021. https://ia.cr/2021/982.
19. Hu Z, Kais S. A quantum encryption design featuring confusion, diffusion, and mode of operation. Sci Rep. 2021.

https://doi.org/10.1038/s41598-021-03241-8.
20. Kuang R. Methods and systems for data protection. Google Patents. 2019. US Patent 10476664.

https://patentimages.storage.googleapis.com/07/0a/5b/82e9fd00a38e08/US10476664.pdf.
21. Kuang R. Methods and systems for secure data communication. Google Patents. 2022. US Patent 11323247.

https://patentimages.storage.googleapis.com/13/68/bb/b21a2b559881c3/US11323247.pdf.
22. Kuang R, Bettenburg N. Shannon perfect secrecy in a discrete Hilbert space. In: 2020 IEEE international conference on

quantum computing and engineering (QCE). 2020. p. 249–55. https://doi.org/10.1109/QCE49297.2020.00039.
23. Kuang R, Lou D, He A, Conlon A. Quantum safe lightweight cryptography with quantum permutation pad. In: 2021

IEEE 6th international conference on computer and communication systems (ICCCS). 2021. p. 790–5.
https://doi.org/10.1109/ICCCS52626.2021.9449247.

24. Kuang R, Lou D, He A, Conlon A. Quantum secure lightweight cryptography with quantum permutation pad. Adv Sci
Tech Eng Syst J. 2021;6(4):790–5. https://doi.org/10.25046/aj060445.

25. Lou D, Kuang R, He A. Entropy transformation and expansion with quantum permutation pad for 5g secure networks.
In: 2021 IEEE 21st international conference on communication technology (ICCT). 2021. p. 840–5.
https://doi.org/10.1109/ICCT52962.2021.9657891.

26. Kuang R, Barbeau M. Quantum permutation pad for universal quantum-safe cryptography. Quantum Inf Process.
2022;21:211. https://doi.org/10.1007/s11128-022-03557-y.

27. Kuang R, Lou D, He A, McKenzie C, Redding M. Pseudo quantum random number generator with quantum
permutation pad. In: 2021 IEEE international conference on quantum computing and engineering (QCE). 2021. p.
359–64. https://doi.org/10.1109/QCE52317.2021.00053.

28. Perepechaenko M, Kuang R. Quantum encrypted communication between two ibmq systems using quantum
permutation pad. In: 2022 11th international conference on communications, circuits and systems (ICCCAS). 2022. p.
146–52. https://doi.org/10.1109/ICCCAS55266.2022.9824836.

29. Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li
H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum computational advantage using
photons. Science. 2020;370(6523):1460–3. https://doi.org/10.1126/science.abe8770.

30. Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen
Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Martinis J. Quantum supremacy using a
programmable superconducting processor. Nature. 2019;574:505–10. https://doi.org/10.1038/s41586-019-1666-5.

31. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using randomized model
circuits. Phys Rev A. 2019;100:032328. https://doi.org/10.1103/PhysRevA.100.032328.

32. Lubinski T, Johri S, Varosy P, Coleman J, Zhao L, Necaise J, Baldwin CH, Mayer K, Proctor T. Application-oriented
performance benchmarks for quantum computing. 2021. https://doi.org/10.48550/ARXIV.2110.03137.
https://arxiv.org/abs/2110.03137

33. Perepechaenko M, Kuang R. Quantum encryption and decryption in IBMQ systems using quantum Permutation Pad.
J Commun. 2022. Unpublished.

https://doi.org/10.1103/physreva.69.052319
https://doi.org/10.1103/physrevlett.118.220501
https://doi.org/10.1109/TQE.2020.2965697
http://arxiv.org/abs/arXiv:2109.12354
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.3390/app11114776
https://ia.cr/2021/982
https://doi.org/10.1038/s41598-021-03241-8
https://patentimages.storage.googleapis.com/07/0a/5b/82e9fd00a38e08/US10476664.pdf
https://patentimages.storage.googleapis.com/13/68/bb/b21a2b559881c3/US11323247.pdf
https://doi.org/10.1109/QCE49297.2020.00039
https://doi.org/10.1109/ICCCS52626.2021.9449247
https://doi.org/10.25046/aj060445
https://doi.org/10.1109/ICCT52962.2021.9657891
https://doi.org/10.1007/s11128-022-03557-y
https://doi.org/10.1109/QCE52317.2021.00053
https://doi.org/10.1109/ICCCAS55266.2022.9824836
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.48550/ARXIV.2110.03137
https://arxiv.org/abs/2110.03137

	Quantum encryption with quantum permutation pad in IBMQ systems
	Abstract
	Keywords

	Introduction
	Quantum permutation pad
	1-qubit QPP
	2-qubit QPP
	n-qubit QPP

	QPP circuits
	Entropy
	2-qubit QPP circuit
	3-qubit QPP circuit

	Quantum secure encryption
	Noisy quantum computers and quantum volume
	2-qubit QPP circuits
	Permutation pad generation
	Randomization
	Encryption
	Decryption

	3-qubit QPP circuits
	Permutation pad generation
	Encryption
	Decryption

	Cipher randomness

	Discussion and conclusion
	Appendix
	Acknowledgements
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Authors' information
	Publisher's Note
	References

