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Abstract
The common reservoir can cause some unique effects, such as dark state and
steady-state coherence, which are extensively studied in the dynamics of open
quantum system. In this work, by means of collision model, we explore features of
quantum thermodynamics induced by common reservoirs. We first construct general
formulations of thermodynamic quantities for the system consisting of N coupling
subsystems embedded inM common thermal reservoirs. We confirm the existence of
nonlocal work due to simultaneous interactions of subsystems with the common
reservoirs resembling what is found for nonlocal heat. With a system of two coupled
qubits in a common reservoir, we show that steady-state currents could emerge even
when interactions of individual subsystems and the reservoir fulfill strict energy
conservation. We also exhibit the effect of dark state on the steady-state currents. We
then examine relations between the work cost, the system’s nonequilibrium
steady-state and the extractable work. In particular, we find that in the presence of
dark state, the work cost is only related to the coherence generated in the dynamical
evolution but not to the one contributed by the initial dark state of the system. We
also show the possible transformation of coherence into useful work in terms of
ergotropy. We finally examine the scale effect of reservoirs and show that the increase
of the number of involved reservoirs need more work to be costed and meanwhile
can produce more coherence so that more ergotropy can be extracted. The obtained
features contribute to the understanding of thermodynamics in common reservoirs
and would be useful in quantum technologies when common reservoirs are
necessary.
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1 Introduction
Recent years have seen increasingly comprehensive combinations of researches between
the theory of open quantum system (OQS) [1] and quantum thermodynamics (QT) [2, 3].
Explorations of OQS are promoted by rapid progress of quantum information technol-
ogy with the purpose to achieve on-demand manipulations on the OQS subject to various
destruction of environments [1]. The QT, on the other hand, examines classical thermo-
dynamics laws in the quantum level and implement various thermodynamic tasks by using
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quantum systems [2–7]. Since the QT exploits OQS as working substance, the theoreti-
cal frameworks treating system-environment interactions in the theory of OQS, such as
the quantum master equation (QME), are also applicable in QT. Moreover, the pursuit
of quantum advantages of various quantum effects, such as quantum coherence [8–16],
which have been widely studied in the theory of OQS, become a central issue in QT as
well.

The QME is the most popular tool in dealing with the dynamics of OQS surrounded
by external environments. Generally, QME includes the local and global forms with their
jump operators acting on local subsystems and the global degrees of the system, respec-
tively [1]. For a specific model, how to choose these two approaches relies, to some extent,
on the competition between strength of inner interactions among subsystems and that
of system-environment couplings. In the study of QT, although the QME is also applica-
ble, much more attentions should be paid to these two choices to avoid the occurrence of
thermodynamic inconsistences [17–30]. It is found that the local QME exhibits weakness
in dealing with QT, such as being unable to reach thermal equilibrium even for weak in-
teraction of system-environment [18, 19], missing important effects in thermal quantum
devices [20, 21], and even getting results that violate the second law of thermodynamics
[30]. On the other hand, the scope of application of global QME is also limited [23–26],
which is found to fail to give completely positive maps (in the Redfield type) [25] and be
insufficient for the depiction of heat current in stationary nonequilibrium regime [26].

Beyond the conventional QME, the collision model(CM) [31], as another popular frame-
work in simulating dynamics of OQS [32–49], proves to be a powerful tool in the explo-
ration of QT [50–61]. In this framework, the environment is modeled as a collection of
identically prepared ancillas. At each step, the system of interest interacts, or collides, with
a ancilla which is then discarded and replaced with a fresh one in the next step [31]. It has
been shown that the CM is consistent with Lindblad QME when no correlations exist ini-
tially and are created in the later dynamical process [33, 34]. Due to its versatile feature, the
CM is widely used in recovering the non-Markovian dynamics by, for instance, introduc-
ing either initial correlations among ancillas or ancilla-ancilla collisions in between two
system-ancilla collisions [38–49]. By taking advantage of CM, one has successfully con-
structed the link between non-Markovianity and QT so that the exploration of thermo-
dynamics in the non-Markovian process is made possible [62–68]. In addition to that, the
CM also sheds some light on the settlement of thermodynamic inconsistences [69–72].
In Ref. [30], Levy and Kosloff have considered a network composed of two subsystems
coupled to two thermal reservoirs with different temperatures. They have found that if
the local QME is used for the system’s dynamics, the second law of thermodynamics will
be violated with heat flowing automatically from cold to hot reservoirs even in the limit
of vanishing coupling between the subsystems [30]. Barra has recognized that in the CM
external work is required to switch on and off the successive system-environment colli-
sions [69]. Once the extra work cost of maintaining the successive collisions is taken into
account, the local QME based on CM is shown to comply again with thermodynamic laws
[71].

The requirement of work in CM become apparent when one recognizes that, in each
stroke of collision, the system-environment couplings must be turned on and off which
results in time-dependence of total Hamiltonian of system and environment. The quan-
tum work is just defined as energy change due to the change of system’s Hamiltonian.
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Therefore, one may image that different types of system-environment couplings require
different forms of work to maintain. In most situations, the environment ancilla collides
locally with a system so that the definition of work in this case is straightforward [71]. If
the ancilla collides simultaneously with more than one system, e.g., the system comprises
several subsystems embedded in a common environment, the form of work is not clear so
far. It is known that due to the indistinguishability of subsystems from the view of com-
mon environment, there will appear collective dissipative terms in the QME depicting the
system’s dynamics and nonlocal currents of heat between the system and environment
[68, 73]. In this context, one may ask whether nonlocal current of work exists and what
is the explicit form if any? Furthermore, what are thermodynamic features of quantum
system induced by common environments?

Motivated by these questions, in this work, we study QT in common reservoirs through
considering a model consisting of N coupling subsystems simultaneously interacting with
M common reservoirs. We first construct general forms of thermodynamic quantities
from their most fundamental definitions and identify their local and nonlocal compo-
nents. We therefore confirm that, as a unique feature of common reservoir, the nonlocal
work really exists resembling what has been found for nonlocal heat [68, 73]. The results
are demonstrated via a system that consists of two qubits embedded in a common reser-
voir. Aiming at the peculiarity of common reservoir, we discuss the condition for the ap-
pearance of steady-state currents and influences of dark state on the currents. We then
concentrate on relations between the amount of work cost, the system’s nonequilibrium
steady-state (NESS), and the extractable work in terms of ergotropy [74]. In particular, we
find that the work cost cannot be directly connected to the total coherence that character-
izes the NESS of the system if the dark state arises. We also exhibit the role of steady-state
coherence in facilitating the extraction of useful work from the system. Finally, we study
the scaling effect of multiple reservoirs on the steady-state currents, the coherence and
the ergotropy.

This paper is structured as follows. We start by introducing the CM in common reser-
voir and derive the QME governing system’s dynamics in Sect. 2. In Sect. 3, we formulate
thermodynamics quantities, i.e., the heat, work and internal energy, from their most fun-
damental definition and identify the local and nonlocal components of heat and work. In
Sect. 4, focusing on the system of two coupled qubits, we demonstrate the steady-state
currents of work and heat and the effect of dark state on them. In Sect. 5, we show re-
lations of work cost, NESS of the system, and the extractable work and discuss the scale
effect of multiple reservoirs. Finally, conclusions are given in Sect. 6.

2 The model and master equation
The system S we consider consists of N subsystems S1, S2, . . . , SN surrounded by M reser-
voirs R1, R2, . . . , RM and each one of the reservoirs is common to the whole system. The
scenario of common environment can arise naturally if subsystems are sufficiently close
to each other being indistinguishable from the aspect of environment. Moreover, since
many novel quantum effects can be induced by common environments, such as superra-
diance and decoherence-free subspace, one also engineer common environments in the
laboratory [75, 76]. In experiment, the dynamics and/or thermodynamics of a system in
common environment can be realized in different platforms, such as atoms, ions or quan-
tum dots in a (leaky) cavity and superconducting qubits in correlated electronic noise and
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so on [77–82]. In this context, it is useful to provide a consistent description of thermody-
namics in the presence of common environments by means of CM. Within the framework
of CM, the reservoir Rk (with k = 1, 2, . . . , M) is modeled as a series of identically prepared
ancillas and at each time an ancilla interacts/collides simultaneously with the N subsys-
tems for a short duration τ . The ancilla after collision is then replaced by a new one and
the process is iterated. For convenience, we use the notation Rk to refer to both the kth
reservoir and the generic ancilla therein. In the presence of intrasystem couplings, the
Hamiltonian of the system is given as

ĤS =
N∑

i=1

ĤSi + ĤI , (1)

where ĤSi is the free Hamiltonian of the subsystem Si and ĤI summarizes all interactions
between subsystems. The total Hamiltonian of the system plus the reservoirs takes the
form

Ĥtot = ĤS +
M∑

k=1

ĤRk +
1√
τ

M∑

k=1

N∑

i=1

V̂ik , (2)

where ĤRk is the free Hamiltonian of reservoir Rk and V̂ik stands for the interaction be-
tween Si and Rk . To be convenient for taking continuous time limit later, we have scaled
V̂ik with 1/

√
τ although not necessary.

We first establish QME to describe the dynamics of the system. After a collision of du-
ration τ , the state ρS of the system at time t will be transformed to ρ ′

S at time t + τ as

ρ ′
S = trR

{
ÛSRρSRÛ†

SR
}

, (3)

where ÛSR = e–iτ Ĥtot is the unitary time evolution operator and ρSR = ρS ⊗ ρR with ρR the
total state of the reservoirs. We assume that the reservoir Rk is prepared in the thermal
state ρth

Rk
= e–βk ĤRk /ZRk so that ρR =

∏M
k=1 ρth

Rk
with βk = 1/Tk the inverse temperature and

ZRk = tr{e–βk ĤRk } the corresponding partition function. We have set � = kB = 1 here and
throughout the paper. By expanding ÛSR up to the first order in τ , we get QME governing
the dynamics of the system as

dρS

dt
= lim

τ→0

[(
ρ ′

S – ρS
)
/τ

]

= –i[ĤS,ρS] +
M∑

k=1

Dk(ρS), (4)

where

Dk(ρS) = –
1
2

N∑

i,j=1

TrR
[
V̂ik , [V̂jk ,ρSρR]

]
. (5)

Note that in Eq. (5), the values i and j can be the same or different with the later case, i.e.,
i �= j, represents the collective dissipations due to the indistinguishability of the subsystems
from view of the common reservoir.
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3 Thermodynamics quantities with local and nonlocal components
In the following, we formulate thermodynamics quantities in common reservoirs from
their most fundamental definitions thanks to the CM approach. In particular, we identify
the nonlocal component of quantum work resembling what has been found for the non-
local heat in common environment [73]. For convenience, we denote ρ ′

SR = ÛSRρSRÛ†
SR as

state of the system and reservoirs after a single collision. The expectation value of any
observable Ô of either the system or the reservoir with respect to ρ ′

SR after the collision
can be expressed as 〈Ô〉ρ′

SR
= 〈Û†

SRÔÛSR〉ρSR with 〈·〉ρ = tr[·ρ], which we shall use repeat-
edly.

In a single collision, the heat flowed to the system from the reservoir Rk can be defined
as its energy decrease as

�Qk = 〈ĤRk 〉ρSR – 〈ĤRk 〉ρ′
SR

= �Qloc
k + �Qnon–loc

k , (6)

where

�Qloc
k =

τ

2

N∑

i=1

〈[
V̂ik , [V̂ik , ĤRk ]

]〉
ρSR

(7)

and

�Qnon–loc
k =

τ

2

N∑

i,j=1
(i�=j)

〈[
V̂jk , [V̂ik , ĤRk ]

]〉
ρSR

. (8)

From Eq. (6) one can see that the heat is contributed by two components with �Qloc
k

the local heat like the situation that an individual subsystem is coupled to Rk , while
�Qnon–loc

k the nonlocal heat induced by the simultaneous interactions of the subsystems
with Rk .

The quantum work is generally defined as a change of internal energy due to the change
of Hamiltonian of the system. In the CM, the system should be successively coupled to
and decoupled from reservoirs leading to the time-dependence of the total Hamiltonian.
Therefore, the energetic cost to retain these sequential collisions is contributed by the
work. The definition of work is straightforward for the situation where the reservoir col-
lides locally with a single system [71]. For the common reservoir considered here, how-
ever, the reservoir collides simultaneously with all the subsystems. The question of how
the work maintains such type of collisions, or in other words, what is the form of the work
in this case, is one of our main concerns. We show that being similar to nonlocal heat, the
work in the common reservoir also exhibits the non-locality.

Since the system and reservoirs as a whole undergo unitary dynamics, the work of a
single collision that occurs within the time interval [t, t + τ ] is defined as

�W =
∫ t+τ

t
TrSR

[
∂Ĥtot

∂s
ρSR

]
ds. (9)
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In the Hamiltonian Ĥtot (2), only the term V̂ik is time-dependent, so that an integration
over (9) yields the concrete form of work as

�W = �W loc + �W non–loc, (10)

with

�W loc = –
τ

2

N∑

i=1

M∑

k=1

〈[
V̂ik , [V̂ik , ĤSi + ĤRk + ĤI]

]〉
ρSR

, (11)

and

�W non–loc = –
τ

2

N∑

i,j=1
(i�=j)

M∑

k=1

〈[
V̂jk , [V̂ik , ĤSi + ĤRk + ĤI]

]〉
ρSR

. (12)

By Eqs. (11) and (12), we have divided the total work into local and nonlocal components.
The formulation (11) indicates that the local work coincides with the one that would be
obtained if each individual subsystem were in contact locally with the reservoirs in the ab-
sence of other ones. The nonlocal work (12), as a unique feature for the common reservoir,
is identified by the appearance of crossing terms of interaction Hamiltonians in terms of
V̂ik and V̂jk with i �= j. The local and nonlocal work thus play the roles of maintaining the
local and collectively collisions between subsystems with the common reservoirs, respec-
tively.

As mentioned previously, the work is energetic cost to successively switch on/off the
collisions of system and reservoir. If collisions happen between a single quantum system
and reservoir, no work is needed once the collisions can preserve the energy of system and
reservoir. However, it is not always true when the system consists of several subsystems
with inner interactions. Our formulations (11) and (12) clearly indicate that even when
the collisions in terms of V̂ik preserves the local energy of the individual subsystem Si and
reservoir Rk , i.e., [V̂ik , ĤSi + ĤRk ] = 0, for all 1 ≤ i ≤ N and 1 ≤ k ≤ M, a finite nonzero
work might still exist due to the existence of intrasystem interaction ĤI . In this case the
local and nonlocal work are reduced respectively to

�W loc
I = –

τ

2

N∑

i=1

M∑

k=1

〈[
V̂ik , [V̂ik , ĤI]

]〉
ρSR

, (13)

and

�W non–loc
I = –

τ

2

N∑

i,j=1
(i�=j)

M∑

k=1

〈[
V̂jk , [V̂ik , ĤI]

]〉
ρSR

. (14)

In the Sect. 4, with a concrete model, we shall demonstrate the currents of work and heat
as well as their local and nonlocal contributions. In particular, we address the types of
intrasystem interactions that can result in nonzero steady-state current of work even the
interactions of individual subsystems and reservoir satisfy energy-conservation.
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Finally, we derive the change of internal energy of the system as

�E = 〈ĤS〉ρ′
SR

– 〈ĤS〉ρSR

= –
τ

2

N∑

i=1

M∑

k=1

〈[
V̂ik , [V̂ik , ĤSi + ĤI]

]〉
ρSR

–
τ

2

N∑

i,j=1
(i�=j)

M∑

k=1

〈[
V̂jk , [V̂ik , ĤSi + ĤI]

]〉
ρSR

. (15)

From Eqs. (6), (10) and (15), we can obtain �E = �W +
∑M

k=1 �Qk implying that our de-
rived quantities fulfill the first law of thermodynamics.

4 Demonstration by two coupled qubits
To demonstrate our results, we consider that the system consists of a pair of two-level
subsystems (qubits) S1 and S2 embedded in M common reservoirs. The free Hamiltonian
of Si (i = 1, 2) is given as ĤSi = ωSi

2 σ̂ z
Si

with frequency ωSi and {σ̂ x
A, σ̂ y

A, σ̂ z
A} the usual Pauli

operators for the qubit A. The generic ancilla in the reservoir Rk (k = 1, 2, . . . , M) is also
modeled as qubit with the Hamiltonian ĤRk =

ωRk
2 σ̂ z

Rk
with frequency ωRk . We assume that

the ancillas of reservoir Rk are prepared in thermal states

ρRk =
[
(1 + ξRk )/2

]|0〉〈0| +
[
(1 – ξRk )/2

]|1〉〈1|, (16)

where ξRk = tanh(βkωRk /2) with βk = 1/Tk the inverse temperature and |0〉(|1〉) denotes the
ground (excited) state of Rk . We consider the XY-type interactions for subsystems S1 and
S2

ĤS1S2 = Jx
s σ̂ x

S1 σ̂
x
S2 + Jy

s σ̂
y
S1

σ̂
y
S2

, (17)

and for collisions between Si and Rk

V̂ik = Jx
ik σ̂

x
Si
σ̂ x

Rk
+ Jy

ik σ̂
y
Si
σ̂

y
Rk

, (18)

in which Jx(y)
s and Jx(y)

ik denote the interaction strengths.
The system’s dynamics is described by the master equation (4) with

ĤS = ĤS1 + ĤS2 + ĤS1S2 (19)

and

Dk(ρS) =
2∑

i,j=1

Jx
ikJx

jk

(
σ̂ x

Si
ρSσ̂

x
Sj

–
1
2
[
σ̂ x

Sj
σ̂ x

Si
,ρS

]
+

)

+ Jy
ikJy

jk

(
σ̂

y
Si
ρSσ̂

y
Sj

–
1
2
[
σ̂

y
Sj
σ̂

y
Si

,ρS
]

+

)

+ i
〈
σ̂ z

Rk

〉
ρRk

[
Jy
ikJx

jk

(
σ̂

y
Si
ρSσ̂

x
Sj

–
1
2
[
σ̂ x

Sj
σ̂

y
Si

,ρS
]

+

)
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– Jx
ikJy

jk

(
σ̂ x

Si
ρSσ̂

y
Sj

–
1
2
[
σ̂

y
Sj
σ̂ x

Si
,ρS

]
+

)]
, (20)

with [. . . , . . .]+ the anticommutator.
By means of Eqs. (6)–(8) and (10)–(12) and after taking continuous time limit, we derive

the current of heat with respect to the reservoir Rk , i.e., Q̇k = limτ→0(�Qk/τ ), as well as its
local and nonlocal components

Q̇loc
k = lim

τ→0

(
�Qloc

k /τ
)

=
2∑

i=1

ωRk

[
–2Jx

ikJy
ik
〈
σ̂ z

Si

〉
ρS

+
((

Jx
ik
)2 +

(
Jy
ik
)2)〈

σ̂ z
Rk

〉
ρRk

]
, (21)

and

Q̇non–loc
k = lim

τ→0

(
�Qnon–loc

k /τ
)

= ωRk

〈
σ̂ z

Rk

〉
ρRk

2∑

i,j=1
(i�=j)

[
Jx
ikJx

jk
〈
σ̂ x

Si
σ̂ x

Sj

〉
ρS

+ Jy
ikJy

jk
〈
σ̂

y
Si
σ̂

y
Sj

〉
ρS

]
, (22)

and that of work, i.e., Ẇ = limτ→0(�W /τ ), as well as its local and nonlocal components

Ẇ loc = lim
τ→0

(
�W loc/τ

)

=
M∑

k=1

2∑

i=1

[
–
((

Jx
ik
)2 +

(
Jy
ik
)2)(

ωRk

〈
σ̂ z

Rk

〉
ρRk

+ ωSi

〈
σ̂ z

Si

〉
ρS

)

+ 2Jx
ikJy

ik
(
ωRk

〈
σ̂ z

Si

〉
ρS

+ ωSi

〈
σ̂ z

Rk

〉
ρRk

)]

–
2∑

i,j=1
(i�=j)

[
Jx
s
((

Jy
ik
)2 +

(
Jy
jk
)2)〈

σ̂ x
Si
σ̂ x

Sj

〉
ρS

+ Jy
s
((

Jx
ik
)2 +

(
Jx
jk
)2)〈

σ̂
y
Si
σ̂

y
Sj

〉
ρS

]
, (23)

and

Ẇ non–loc = lim
τ→0

(
�W non–loc/τ

)

=
M∑

k=1

2∑

i,j=1
(i�=j)

[〈
σ̂ z

Rk

〉
ρRk

〈
σ̂ x

Si
σ̂ x

Sj

〉
ρS

(
ωSi J

y
ikJx

jk – ωRk Jx
ikJx

jk
)

+
〈
σ̂ z

Rk

〉
ρRk

〈
σ̂

y
Si
σ̂

y
Sj

〉
ρS

(
ωSi J

x
ikJy

jk – ωRk Jy
ikJy

jk
)

+ 2
〈
σ̂ z

Si
σ̂ z

Sj

〉
ρS

(
Jx
s Jy

ikJy
jk + Jy

s Jx
ikJx

jk
)

– 2
〈
σ̂ z

Rk

〉
ρRk

〈
σ̂ z

Si

〉
ρS

(
Jx
s Jy

ikJx
jk + Jy

s Jx
ikJy

jk
)]

. (24)
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4.1 The work due to inner interactions of subsystems
It has been recognized that, in the CM, a certain amount of work should be invested to
maintain successive collisions between the system and reservoir. If the collisions guar-
antee strict energy conservation for the system and reservoir, then no work is needed in
the steady-state and the currents of heat and work will vanish [72]. By contrast, for the
system consisting of several coupling subsystems with each one colliding with its own in-
dependent reservoir, due to inner interactions between the subsystems, work cost might
still be required even when collisions preserve the energy of a subsystem and its local
reservoir [71]. These results make one further ask what happens for the configuration of
several coupling subsystems embedded in a common reservoir. Here, we shall show that
conditioned on the types of inner interactions the work cost would still be required in the
stationary regime even when the energy conservation holds for each subsystem and the
reservoir.

For this purpose, we consider the condition of energy conservation for collisions of Si

and a single reservoir R, namely, Jx
i = Jy

i = Ji and ωR = ωSi for i = 1, 2, i.e., [V̂i, ĤSi + ĤR] = 0.
Here and henceforth, the subscript k in Vik , Rk , Jx(y)

ik and Q̇k is omitted when only a single
common reservoir is involved. Under the condition of energy conservation, the energy
that leaves the subsystem Si will enter the reservoir R, therefore one might think that no
work is needed to maintain the collisions and the currents of heat and work will vanish
at the steady state. However, due to the inner interactions of S1 and S2, the conservation
of global energy of the system, namely, [V̂i, ĤS + ĤR] = [V̂i, ĤS1S2 ] = 0, cannot be ensured.
Therefore, there could be finite nonzero currents of heat and work in stationary regime
even when the local energy of Si and R are conserved.

We find that whether stationary currents exist or not depends on forms of inner inter-
actions of S1 and S2, namely, not all the interactions can lead to currents of work and heat
in the stationary regime. If the interaction of S1 – S2 adopts the form Jx

s = Jy
s and at the

same time no dark state (which is to be discussed in the next subsection) appears with
J1 �= J2, both the two subsystems will arrive at ESS at the same temperature βR as the reser-
voir

ρ̃ESS =
e–βRĤS1

Z1
⊗ e–βRĤS2

Z2
, (25)

with Zi = Tr[e–βRĤSi ]. In this case, all the currents of heat and work will vanish in the sta-
tionary regime. Otherwise, the system reaches NESS and nonzero currents of heat and
work would come into being. In other words, a finite nonzero work should be invested
to maintain the NESS of the system. This is verified in Fig. 1, where we plot the cur-
rents of heat and work as well as their local and nonlocal components, i.e., Q̇loc, Q̇non–loc,
Ẇ loc and Ẇ non–loc, as a function of Jx

s /Jy
s under the condition of [V̂i, ĤSi + ĤR] = 0 for

i = 1, 2 as well as J1 �= J2. Clearly, apart from the point of Jx
s /Jy

s = 1, all the quantities
keep finite nonzero values with the first law of thermodynamics Q̇loc + Q̇non–loc + Ẇ loc +
Ẇ non–loc = 0 (i.e., Q̇ + Ẇ = 0) being always satisfied. As a unique feature of the common
reservoir, the nonlocal work appears and takes opposite direction to the local and total
work.
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Figure 1 The currents of heat Q̇ and work Ẇ as well as their local and nonlocal components, i.e., Ẇ loc ,
Ẇnon–loc , Q̇loc and Q̇non–loc , as a function of Jxs /J

y
s for ωS1 =ωS2 =ωR = 3, J1 = 0.4, J2 = 1.2 and TR = 1

Figure 2 The currents of heat Q̇ (black curves) and work Ẇ (red curves) as a function of Jxs /J
y
s for different

proportions PD of the dark state, i.e., PD = 0 (solid curve), PD = 0.3 (dashed curve), PD = 0.6 (dotted curve) and
PD = 0.9 (dash-dotted curve). The other parameters are set as ωS1 =ωS2 =ωR = 3, J1 = J2 = 1.2 and TR = 1

4.2 The effect of dark state
A striking feature of the dynamics of two subsystems in a common reservoir is the emer-
gence of dark state that is immune to the influence of the reservoir, namely, the pro-
portion of dark state in the initial state of the system remains unchanged in the sta-
tionary regime. The effect of dark state on the currents of work and heat is one of our
main concerns. For our model, we find that the state |ψ〉D = 1√

2 (|01〉S1S2 – |10〉S1S2 ) [with
|0〉 (|1〉) the ground (excited) state of Si] is the dark state of the system arising when
Jx
1 = Jx

2 , Jy
1 = Jy

2 and ωS1 = ωS2 . In Fig. 2, for a single common reservoir with the condi-
tion Jx

1 = Jy
1 ≡ J1 = Jx

2 = Jy
2 ≡ J2, we demonstrate the total currents of heat and work in the

steady-state regime with respect to Jx
s /Jy

s for different proportion of |ψ〉D denoted as PD

in the system’s initial state. One can observe that for any given values of Jx
s /Jy

s �= 1, both
the currents of work and heat shrink for an increase of PD. This implies that the currents
of work and heat are closely related to the initial preparation of the system and the more
proportion of |ψ〉D in the system’s initial state, the less work is required to maintain the
collisions. For the extreme case of PD = 1, namely, the system is initially prepared in the
state |ψ〉D without any further evolution taking place, both the currents of work and heat
will vanish.
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5 Work cost in sustaining non-equilibrium steady-state and extractable work
So far, we have shown that when the system reaches ESS, the currents of work and heat
will completely vanish, otherwise a finite nonzero work would be required to maintain
the NESS. Here, we are interested in relation between the extent of system’s steady-state
deviating from equilibrium and the amount of work cost. We show that, as expected, the
larger the system deviates from equilibrium, the more the work to be invested. Then, we
further consider relation between extractable work in terms of ergotropy and coherence
of the system. The consistent variations between these two parameters prove the role of
coherence in facilitating the extraction of useful work from the system.

5.1 The relation between work cost and NESS
In this subsection, we address relation between the extent of deviation of the system from
ESS and the amount of work cost. Upon reaching ESSs with the total state ρ̃ESS (25), the
two subsystems S1 and S2 have the same temperatures βR as the reservoir and no any
correlations exist between them. Hence, the temperature bias with respect to βR and the
production of correlation can indicate the system reaching NESS. It is reasonable for us
to adopt effective temperatures of the individual subsystems as well as the coherence of
the system as figures of merit to characterize the extent of nonequilibrium of the sys-
tem’s steady-state. For a qubit S with the frequency ωS , the effective temperature can
be expressed as TS = ωS

ln(pg /pe) where pg and pe are the populations of ground and excited
states of the qubit. The coherence of the system can be quantified by l1-norm defined as
C =

∑
l �=m |ρlm|, namely, the sum of absolute values of all the off-diagonal elements of the

system’s state [83]. The deviation of a state from equilibrium is also quantified through
the so-called entropy production rate [84] defined as �̇ = ṠS –βRQ̇ with ṠS the change rate
of the entropy of the system. In the steady-state ṠS = 0 one has �̇ = –βRQ̇ so that ther-
mal equilibrium occurs only when �̇ = Q̇ = 0, whereas a NESS is characterized by a finite
and constant entropy production rate. We shall show that the farther the system deviates
from ESS in terms of entropy production and related quantities, the more work an external
agent should supply.

As a demonstration, we consider two subsystems embedded in a single common reser-
voir and plot in Fig. 3(a), (b), (c) and (d), the coherence of the system, the ratio TS1 /TR,
the entropy production rate, and currents of work and heat, respectively, against Jx

s /Jy
s for

different TR. We have set ωS1 = ωS2 = ωR, Jx
1 = Jy

1 = J1 and Jx
2 = Jy

2 = J2 but J1 �= J2, under
which the total system can reach the ESS ρ̃ESS (25) if and only if Jx

s = Jy
s is further fulfilled.

As expected, at the point of Jx
s /Jy

s = 1, irrespective of the values of TR, the coherence and
entropy production rate remain zero, while the temperature of S1 (the same for S2, but not
shown here) is equal to that of R with TS1 /TR = 1, as demonstrated in Fig. 3(a), (c) and (b),
respectively. The currents of work and heat correspondingly vanish at this point as shown
in Fig. 3(d). By taking the ESS state ρ̃ESS as a benchmark, the work cost is expected to be
proportional to the extent of deviation from it. This is actually verified by Fig. 3, where we
just observe that the variations of work currents (the same for heat currents) are consistent
with the coherence, the ratio TS1 /TR as well as entropy production rate that characterize
deviations of the system from ESS. In particular, for a given Jx

s /Jy
s �= 1, the lower the tem-

peratures TR, the larger the coherence, the ratio TS1 /TR and the entropy production rate,
namely, the bigger the deviation of the system from ESS, which in turn lead to the larger
currents of work and heat.
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Figure 3 The coherence of S1 and S2 (a), the ratio of effective temperature of S1 to that of the environment
(b), entropy production (c), and currents of work and heat (d) against JxS/J

y
S for different temperatures TR of the

environment. The other parameters are set as ωS1 =ωS2 =ωR = 3, J1 = 0.4 and J2 = 1.2

Next, we consider the scenario with appearance of the dark state |ψ〉D = 1√
2 (|01〉S1S2 –

|10〉S1S2 ) and address, in this case, the relation between work cost and the extent of
nonequilibrium of the system’s steady-state characterized by the coherence of the sys-
tem. A striking feature of the present situation is that the steady-state of the system, so
does its coherence, is related to the proportion of dark state contained in the initial state.
In other words, the steady-state coherence includes two aspects, i.e., the one from dark
state and the one generated in the dynamics process. Since the dark state is immune to
the dynamical evolution, it is reasonable for us to suppose that the coherence of dark
state does not need the support of work. To prove this, we should distinguish the co-
herence generated in the dynamics and that contained in the dark state. For this purpose,
we subtract the component of dark state from the steady-state of the system and derive
the corresponding coherence, which is labeled as generated coherence in order to distin-
guish with the total coherence. As a demonstration with a single common reservoir, in
Fig. 4(a), (b) and (c), we plot the currents of work and heat, the total coherence, and the
generated coherence, respectively, as a function of Jx

R/Jy
R for different proportions PD of

the dark state. Here, we have chosen ωS1 = ωS2 = ωR, Jx
s = Jy

s , Jx
1 = Jx

2 = Jx
R and Jy

1 = Jy
2 = Jy

R. A
comparison between Fig. 4(a) and (b) shows that the variations of currents are not con-
sistent with that of the total coherence. In particular, we note that the larger the values
of PD, the larger the total steady-state coherence, but the smaller the currents. However,
after subtracting the contributions of dark state, as shown in Fig. 4(c) and 4(a), the gener-
ated coherence become consistent again with the currents of woke and heat. On the one
hand, with a given proportion PD of dark state, the generated coherence and the currents
of work and heat display the same increasing trends across the point Jx

R/Jy
R = 1. On the
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Figure 4 The currents of work and heat (a), total coherence (b), and the generated coherence (c) against
JxR/J

y
R for different proportions PD of the dark state. The other parameters are set as ωS1 =ωS2 =ωR = 3,

JxS = JyS = 1, Jx1 = Jx2 = JxR , J
y
1 = Jy2 = JyR and TR = 1

other hand, for a given Jx
R/Jy

R �= 1, the less proportion of the dark state, the more generated
coherence in the dynamics and the more currents of work and heat to be invested. There-
fore, it is not right for one to naively connect the work cost to the total NESS of the system,
which is actually only related to the component of NESS generated in the dynamical pro-
cess.

5.2 Extractable work and coherence
In the previous discussions, we have shown that the work should be supplied to main-
tain the NESS of the system in such a way that the greater the deviations of the system
from equilibrium the more the required work. Here, we in turn consider how much work
can be extracted from the NESS in a thermally isolated process and reveal the role of co-
herence in the extraction of work. The maximum amount of work that can be extracted
from a quantum system via cyclic and unitary operations is quantified by the so-called
ergotropy [74]. To be specific, we consider a quantum system governed by Hamiltonian
Ĥ =

∑
k εk|εk〉〈εk|, and prepared in a state ρ =

∑
j rj|rj〉〈rj|, with εk ≤ εk+1 and rj ≥ rj+1.

The ergotropy can be expressed as the difference between the energy of the initial state
and that of the final state with the minimum average energy through all possible unitary
operations being of the form

E(ρ) = tr[Ĥρ] – tr
[
ĤÛminρÛ†

min

]
= tr

[
Ĥ(ρ – Pρ)

]
, (26)
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Figure 5 Ergotropy of the steady-state as a function of JxS/J
y
S for different temperatures of the environment.

The other parameters are set as ωS1 =ωS2 =ωR = 3, J1 = 0.4 and J2 = 1.2

in which Pρ ≡ ∑
j rj|εj〉〈εj| represents passive state unable to generate work. By means of

the explicit form of Pρ , we obtain the well-known expression of ergotropy as

E(ρ) =
∑

j,k

rjεk
(∣∣〈rj|εk〉

∣∣2 – δjk
)
. (27)

It is known that the ergotropy can only be acquired from the non-passive states. For
a single-qubit system, the non-passive states could be the ones with inverted population
and/or the coherence. As far as the bipartite system considered here is concerned, we are
interested in the contributions of correlations induced by the common reservoir to the er-
gotropy. In Fig. 5, for a single common reservoir, we show ergotropy of the steady-state of
the two-qubit system as a function of Jx

s /Jy
s for different TR for the same condition as that

considered in Fig. 3 (i.e., ωS1 = ωS2 = ωR, Jx
1 = Jy

1 and Jx
2 = Jy

2 ). It is obvious that the variations
of ergotropy are consistent with the coherence of the system as shown in Fig. 3(a), in par-
ticular, it vanishes at the point of Jx

s /Jy
s = 1 at which the coherence becomes zero. Moreover,

we have verified that the ergotropy of the two individual subsystems always remain zero
within the whole regions of parameters so that the ergotropy can be completely attributed
to the correlations of the system. In Ref. [85], Francica et al’s highlighted the role of co-
herence in work extraction process from a quantum system by identifying a contribution
to the ergotropy corresponding precisely to initial coherence of the system in the energy
basis. In this sense, our results based on a particular setting of common environments are
consistent to that obtained in Ref. [85]. Here, we display the synchronous variations of to-
tal ergotropy and coherence though the coherent ergotropy, i.e., part of extractable work
which cannot be obtained by means of incoherent operations, is not always a coherence
monotone [85].

Next, in Fig. 6(a) and (b), we further compare the ergotropy and the coherence of the
system against Jx

1 /Jx
2 for the situation of ωS1 = ωS2 = ωR and Jx

s = Jy
s for different TR. One

can still see that the variations of ergotropy and coherence keep consistent implying the
contributions of the latter to the former. In Fig. 6(a), we find the points of sudden changes
of the ergotropy for TR = 1 and TR = 1.5, which, by the definition of ergotropy, are induced
by the intersect of two eigenvalues of the system’s density operator, as shown in the inset
of Fig. 6(a) for the case of TR = 1.5 (cf. the point labeled by the arrows).
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Figure 6 Ergotropy (a) and coherence (b) of the steady-state as a function of Jx1/J
x
2 for different temperatures

TR of the reservoir. The other parameters are set as ωS1 =ωS2 =ωR = 3, JxS = JyS = 0.5, Jy1 = 0.4 and Jy2 = 1.2

5.3 Scaling effect of multiple reservoirs
So far, the obtained results are based solely on a single common reservoir with M = 1. In
the following, we discuss the scale effect of the reservoirs, i.e., the configuration where
the subsystems S1 and S2 are coupled simultaneously to a cluster of M reservoirs, in the
steady-state currents of work and heat, the coherence and ergotropy. To make the compar-
ison on the same footing, we set identical frequency ωR and temperature TR for all the M
reservoirs. By replacing σ̂

x(y)
Rk

in Eq. (18) with the collective operators Ŝx(y)
R ≡ ∑M

k=1 σ̂
x(y)
Rk

,
the collective interaction between subsystem Si with the cluster of M reservoir qubits
reads

V̂i = Jx
i σ̂ x

Si
Ŝx

R + Jy
i σ̂

y
Si

Ŝy
R, (28)

where we have assumed identical interaction strengths Jx(y)
i between Si with the M reser-

voir qubits. With this collective interaction, the dissipative term of the master equa-
tion and formulations of currents of heat and work remain the similar structures as
that given in (20)–(24) for the interaction of Si with a single reservoir Rk . The scale
effect is embodied in the replacement of expectation value of σ̂ z

Rk
with that of Ŝz

R.
As the state of the cluster of M reservoirs reads ρR =

∏M
k=1 ρRk with ρRk being given

in Eq. (16), the expectation value of the collective Pauli operator Ŝz
R can be obtained

as

〈
Ŝz

R
〉
ρR

= –MξR, (29)

where ξR = tanh(βRωR). By inserting the expression of 〈Ŝz
R〉ρR into Eqs. (21)–(24), the local

and nonlocal parts of currents of heat and work can be further derived as

Q̇loc =
2∑

i=1

ωR
[
–2Jx

i Jy
i
〈
σ̂ z

Si

〉
ρS

– M
((

Jx
i
)2 +

(
Jy
i
)2)

ξR
]
, (30)

Q̇non–loc = –MωRξR

2∑

i,j=1
(i�=j)

[
Jx
i Jx

j
〈
σ̂ x

Si
σ̂ x

Sj

〉
ρS

+ Jy
i Jy

j
〈
σ̂

y
Si
σ̂

y
Sj

〉
ρS

]
, (31)
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Ẇ loc =
2∑

i=1

[
–
((

Jx
i
)2 +

(
Jy
i
)2)(–MωRξR + ωSi

〈
σ̂ z

Si

〉
ρS

)

+ 2Jx
i Jy

i
(
ωR

〈
σ̂ z

Si

〉
ρS

– MωSiξR
)]

–
2∑

i,j=1
(i�=j)

[
Jx
s
((

Jy
i
)2 +

(
Jy
j
)2)〈

σ̂ x
Si
σ̂ x

Sj

〉
ρS

+ Jy
s
((

Jx
i
)2 +

(
Jx
j
)2)〈

σ̂
y
Si
σ̂

y
Sj

〉
ρS

]
, (32)

and

Ẇ non–loc =
2∑

i,j=1
(i�=j)

[
–MξR

{〈
σ̂ x

Si
σ̂ x

Sj

〉
ρS

(
ωSi J

y
i Jx

j – ωRJx
i Jx

j
)

+
〈
σ̂

y
Si
σ̂

y
Sj

〉
ρS

(
ωSi J

x
i Jy

j – ωRJy
i Jy

j
)

– 2
〈
σ̂ z

Si

〉
ρS

(
Jx
s Jy

i Jx
j + Jy

s Jx
i Jy

j
)}

+ 2
〈
σ̂ z

Si
σ̂ z

Sj

〉
ρS

(
Jx
s Jy

i Jy
j + Jy

s Jx
i Jx

j
)]

. (33)

The above expressions clearly show the dependence of currents of work and heat on
the number M of involved reservoirs. On the one hand, the increase of M means the
system collides with more reservoirs so that more work should be supplied to sustain
the successive collisions. On the other hand, one might expect that the system will de-
viate more farther from the equilibrium in the steady-state and thus more coherence
and ergotropy can be achieved. We have actually verified these results in Fig. 7(a), (b)
and (c) for the currents of work and heat, the coherence and the ergotropy, respec-
tively, for different M of the reservoirs. We observe that the increase of M leads to
the rise of currents of work and heat and at the same time the growth of coherence
and ergotropy. We note that in Ref. [86], it is also found that the steady-state coher-
ence of a system (qubit) can grow with respect to the number of reservoirs coupled
to it. To make the production of steady-state coherence possible, they adopted com-
posite system-reservoirs interaction consisting of parallel and orthogonal components
with respect to the Hamiltonian of the system [86]. By contrast, our model contains
two qubits embedded in common reservoirs so that the coherence can also be thought
of as correlations between the two qubits induced by common reservoirs. Though dif-
ferent in types of coherence and generating mechanisms, both models exhibit similar
scaling effect of multiple reservoirs on the coherence. The underlying reason for this
scaling effect is that additions of reservoirs are equivalent to the increase of coupling
strengths between system and reservoirs [86–88], as can be seen from the interaction in
Eq. (28).

6 Conclusion
Being distinct from independent reservoir, the common reservoir can result in some
unique effects, such as dark state and steady-state coherence, which have been exten-
sively studied in the dynamics of open quantum system and applied in some quantum
technologies. In this work, we examine the quantum thermodynamics by considering a
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Figure 7 Currents of heat and work (a), coherence (b) and ergotropy (c) as a function of Jx1/J
x
2 with respect to

the number M of the involved reservoirs. The other parameters are set as TR = 2, JxS = JyS = 0.5,
ωS1 =ωS2 =ωR = 3, Jy1 = 0.4, and Jy2 = 1.2

model with N coupling subsystems being surrounded by M common reservoirs. We first
construct general formulations of thermodynamics quantities and particularly identify the
local and nonlocal components of the total heat and work. We therefore confirm the ex-
istence of nonlocal work in the common reservoir resembling what has been found for
nonlocal heat.

The steady-state behaviors of these thermodynamics quantities are demonstrated by
considering two coupled qubits embedded in a common reservoir. We have shown that
nonzero steady-state currents of heat and work could still emerge due to inner interactions
of subsystems even when the energy conservation holds for interaction of each subsystem
with the reservoir. We have exhibited the effect of dark state on system’s thermodynamics
and found that the more proportion of the dark state, the less the steady-state currents of
heat and work.

We then explore relations between the deviation of system’s steady-state from equilib-
rium, the work cost and the extractable work. We show that the more farther the system
deviates from equilibrium (i.e., the larger the coherence and/or the temperature bias of the
subsystem to the reservoir), the more work should be supplied. However, if the dark state
appears, it is not right for one to simply connect the coherence of the system’s steady-state
to the work cost because the total coherence of the steady-state in this case is contributed
by two aspects, namely, the one generated in dynamical evolution and the one contained
in the initial dark state. We show that only the coherence generated in the dynamics is
related to the work cost, namely, the larger the generated coherence, the more the work is
required. We in turn consider the relation between the coherence of the system induced
by the common reservoir with the amount of extractable work in terms of ergotropy. We
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show that the variations of ergotropy are consistent with the coherence implying the pos-
sible transformation of coherence into useful work. We finally examine the scale effect of
the reservoirs on the currents of work and heat, the coherence and the ergotropy. It turns
out that an increase of number of the reservoirs need more work to be invested but can in-
duce more coherence and thus more ergotropy. Our results reveal several unique features
of quantum thermodynamics in common reservoirs which would be useful in designing
quantum thermal machines and devices.
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