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Abstract
Current quantum processing technology is generally noisy with a limited number of
qubits, stressing the importance of quantum state fidelity estimation. The complexity
of this problem is mainly due to not only accounting for single gates and readout
errors but also for interactions among which. Existing methods generally rely on
either reconstructing the given circuit state, ideal state, and computing the distance
of which; or forcing the system to be on a specific state. Both rely on conducting
circuit measurements, in which computational efficiency is traded off with obtained
fidelity details, requiring an exponential number of experiments for full information.
This paper poses the question: Is the mapping between a given quantum circuit and
its state fidelity learnable? If learnable, this would be a step towards an alternative
approach that relies on machine learning, providing much more efficient
computation. To answer this question, we propose three deep learning models for 1-,
3-, and 5-qubit circuits and experiment on the following real-quantum processors:
ibmq_armonk (1-qubit), ibmq_lima (5-qubit) and ibmq_quito (5-qubit) backends,
respectively. Our models achieved a mean correlation factor of 0.74, 0.67 and 0.66 for
1-, 3-, and 5-qubit random circuits, respectively, with the exponential state
tomography method. Additionally, our 5-qubit model outperforms simple baseline
state fidelity estimation method on three quantum benchmarks. Our method, trained
on random circuits only, achieved a mean correlation factor of 0.968 while the
baseline method achieved 0.738. Furthermore, we investigate the effect of dynamic
noise on state fidelity estimation. The correlation factor substantially improved to 0.82
and 0.74 for the 3- and 5-qubit models, respectively. The results show that machine
learning is promising for predicting state fidelity from circuit representation and this
work may be considered a step towards efficient end-to-end learning.

Keywords: Quantum computing; State tomography; Convolutional neural network;
Classical optimization; Noise characterization; Quantum circuit; Fidelity estimation

1 Introduction
With the advancement of technology in the quantum computing field, we are entering the
Noisy Intermediate-Scale Quantum (NISQ) era [1]. NISQ refers to the limited number of
available qubits ranging from 50 to a few hundred that can potentially perform more com-
plex tasks. In addition, the term “Noisy” refers to the noise inherent in qubits that needs
error correction schemes. However, these schemes are constrained by the limited number
of available qubits, hindering continuous quantum error correction. Noise in the NISQ era
occurs due to multiple reasons such as crosstalk between gates executed at the same time,
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Figure 1 Bloch Sphere

decoherence errors due to undesirable interactions with the environment, gates errors,
and readout errors. Moreover, mapping of qubits according to layout constraints and the
complexity of the given quantum circuit contribute further to noise.

Characterising the noise is therefore essential in guiding circuit optimisations, and
quantifying circuit reliability. The term ‘state fidelity’ is well-known in characterising such
noise [2]. It is generally defined as the probability of the noisy quantum circuit state to be
equal to the ideal one. Unfortunately, there is no accurate analytical noise model for esti-
mating state fidelity. Thus, state of the art relies on exhaustive experimentation to recon-
struct the noisy state. This process is called ‘state tomography’ [3]. To illustrate, consider a
one qubit state. The state can be represented as a point onto the Bloch sphere (Fig. 1). To
reconstruct the state, it suffices to measure the x, y, z coordinates by generating three cir-
cuits, each projecting the quantum state into a corresponding direction. For a two-qubit
circuit, 3 × 3 circuits are generated each projecting to a combination of the axes, e.g. xx,
xy, · · · . This results into 3n different circuits for an n-qubit circuit, severely limiting scal-
ability of the state tomography approach.

While there are many methods in the literature to compute state fidelity (as detailed in
Sect. 1.1), the state of the art mainly relies on state tomography. Other fast methods exist
such as random benchmarking [4, 5] and simple multiplicative models [6, 7]; however,
they either provide partial noise characterisation or suffer from low accuracy.

As the state of the art requires generating an extensive number of circuits (as well as their
executions), it might be interesting to consider an alternate approach that merely relies on
one circuit with no measurements. In particular, we consider the question: Is the mapping
between a given quantum circuit and its state fidelity learnable? This is a necessary step
towards a time efficient, end-to-end fidelity estimation process.

To answer the above question, we need to provide evidence that machine learning results
in accurate estimates of state fidelity for complex circuit models and quantum backends.
This is challenging given the limited availability of quantum resources to the research com-
munity. Therefore, we use a simple multiplicative noise model as a baseline in evaluating
the machine learning results. Moreover, we consider random circuits as well as quantum
circuits for solving real-world problems to decrease bias and assess the generality of the
approach.

Another issue is the time required for generating the training dataset. A training record
consists of a representation of an input circuit together with its state fidelity. However,
computing the state fidelity is an exponential process as mentioned before (for both the
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circuit and the ideal one). Nevertheless, our question focuses on the learning aspect as a
starting point towards the more general utility of the approach.

Due to the limited availability of open-access quantum backends, we consider three
quantum backends provided by IBM (ibmq_armonk (1-qubit), ibmq_lima (5-qubit) and
ibmq_quito (5-qubit)) for generating random circuits consisting of 1-, 3-, and 5-qubit.
These small number of qubits can still perform complex tasks, representing 2n states.

For each of the considered machines, we utilise the typical convolutional neural net-
work architecture for estimating state fidelity. In addition, we utilize an embedding layer
to provide a better dense representation of the circuit encoding.

Our results has reconfirmed the dynamic variation of noise across the day, which sig-
nificantly affects the state fidelity of the same circuit when run at different times across
the day [8]. Generally, we have observed two noise types: static and dynamic noise. Static
noise refers to noise that occur to specific circuit’s characteristic in addition to stable noise
levels that can vary slightly in the quantum backend. Dynamic noise refers to system in-
stability that are circuit independent while occurring in certain time-frame, resulting in
system failure and low circuit fidelity.

The neural networks resulted in a mean correlation factor of 0.74, 0.67 and 0.66 for
1-, 3-, and 5-qubit random circuits, respectively, with the exponential state tomography
method. When filtering out the dynamic noise, the mean correlation factors substantially
improved to 0.82 and 0.74 for the 3-and 5-qubit models, respectively.

Additionally, for our most complex 5-qubit model, it outperformed a simple baseline
state fidelity estimation method on three quantum benchmarks; our method achieved a
mean correlation factor of 0.968 while the baseline method achieved 0.738, while trained
on the random circuits only.

In summary, this paper has the following contributions:
1 Propose a 1D convolutional neural network model for state fidelity estimation for

single qubit circuits, and extend the proposed model to three and five qubits circuits,
exploiting transfer learning to test the generalization of our 1D convolutional models.

2 Usage of circuit representation instead of tomographic measurements which reduces
the input space complexity from exponential to polynomial for practical quantum
circuits.

3 Demonstrate the learnability potential of the neural network models when compared
with baseline state fidelity estimation on both random and real-world quantum
benchmarking circuits.

1.1 Related work
In this section, we review state of the art research in quantum state reconstruction using
techniques with varying complexities. These techniques can be divided into employing
optimization techniques, exploiting properties in certain entangled quantum states, and
utilizing machine learning techniques. Other simple fidelity estimation techniques were
proposed such as exploiting randomized benchmarking and utilizing gates and readout
errors.

Several researchers transformed the problem into an optimization problem [9, 10] rely-
ing on maximum likelihood (MLE) estimation method for quantum state reconstruction.
However, the MLE method is resource intensive. Gross et al. [11] and Flammia et al. [12]
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utilized compressed sensing techniques on low-rank states. They randomly choose a sub-
set of O(rn22n) Pauli measurements, where r is the rank of the density matrix, and n rep-
resents the number of qubits. They then use convex optimization to estimate the density
matrix. Bolduc et al. [13] proposed three methods for state reconstruction using different
variations of projected gradient descent algorithm. Their method achieved a time com-
plexity of O(N22n), where N is the number of projectors. Shang et al. [14] accelerated the
convergence of the MLE method using projected gradients. Their method achieved a time
complexity of O(kn+1

r ), where kr represents the number of probability-operator measure-
ment. Qi et al. [15] proposed a linear regression estimation method for state reconstruc-
tion in which the unknown parameters are estimated by the least squares method. Their
results show that the method is faster than the MLE. However, their method is still ex-
ponential requiring O(24n). This method was enhanced by other works [16, 17]. Hou et
al. [16] reduced the number of Pauli bases needed achieving a complexity of O(8n). Qi et
al. [17] used an adaptive recursive method. Specifically, they recursively estimate the state
based on the available measurements. This estimate is then updated with new measure-
ments. Their method accelerated their previous estimation method [15] achieving O(23n).
Ferrie [18] introduced self guided quantum tomography. Their method utilizes stochastic
optimization techniques to estimate quantum state using 2 measurements per iteration on
2-qubit. The time complexity of their method is O(2n). However, the convergence of their
technique is not scalable with the number of qubits. This technique was then extended to
more qudits [19] and to mixed states [20]. Other researchers relied on Bayesian inference
for state reconstruction [21–23].

Other studies have exploited properties in certain entangled types of quantum states
[24, 25]. Tiurev and Sørensen [25] introduced a method for fidelity estimation on cluster
state class, which refers to the entanglement of multi-qubit. Their method relies on the
use of stabilizers that require number of measurements that increases linearly with the
number of qubits. However, their work was limited to a special case which is the cluster
state.

Several researchers have focused on exploiting machine learning methods. Qian and
Shuqi [26] relied on dense neural network to reconstruct density matrices from tomo-
graphic measurements. The hyperparameters of their network and the number of train-
ing samples differ according to the number of qubits that range up to 5-qubit. Their simu-
lated training dataset consists of ideal measurements, whereas the testing dataset contains
Gaussian noise. Their results show that their method is comparable with the maximum
likelihood technique. However, their work contains multiple limitations. One limitation
is the use of simulated instead of real qauntum backend. Another limitation is that the in-
put to their network will always be exponential as their network depends on tomographic
measurements totalling 6n. Other limitation is that the reconstruction requires exponen-
tial complexity achieving O(23n). Lohani et al. [27] proposed a 2D convolutional neural
network to reconstruct an unknown state using tomographic measurements totalling 6n

where n refers to number of qubits. They collected 35,500 simulated random states for
up to 4-qubit. They also explored the reconstruction of states for circuits with limited
number of shots. Their results show that their proposed method is comparable with the
maximum likelihood technique. However, one important issue with their technique is
that their method depend on tomographic measurements as an input, which means that
the inference time of a given circuit will be exponential since it will be transformed to
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6n measurements. Zhang et al. [28] reduced the input space by feeding a machine learn-
ing method a subset of the 3n Pauli operators. Specifically, they proposed a dense neural
network consisting of 4 layers that classifies the fidelity output as 1 of the 122 available fi-
delity intervals. They used separate models for qubits ranging from 2 to 7 on both general
quantum states and classes of entangled states like bell, cluster, dicke, and Greenberger–
Horne–Zeilinger state. For each model, they choose k Pauli operators that maximize ex-
pectation for a state. Their results show that fidelity classification accuracy is proportional
to the number of Pauli operators. However, one limitation to their method is the need
to calculate all 6n measurements to select the maximum k operators. Cha et al. [29] in-
troduced attention based tomography, in which they utilize the transformer model used
in natural language processing applications. Their work is concerned with Greenberger–
Horne–Zeilinger state, a class of entangled states. Their method consists of an embed-
ding layer followed by 6 stacked transformer layers which are then fully connected to a
dense layer. The input to their model is the positive operator valued measurements and
the output is the reconstructed density matrix. Their results are comparable to maximum
likelihood estimation methods. However, they were limited to a certain entangled state
class.

Other researchers relied on generative neural network models. Torlai et al. [30] and
Carrasquilla et al. [31] exploited restricted Boltzmann machines (RBMs). Ahmed et al.
[32] employed conditional generative adversarial networks (CGAN), in which they rely
on a generator to reconstruct a density matrix estimate from measurement operators and
statistics. The discriminator is then used to distinguish between the reconstructed density
matrix and the statistical one. However, this method requires exponential measurements
as an input to the CGAN.

Due to the complexities of the aforementioned studies, Murali et al. [6] and Nishio et
al. [7] relied on simple method for approximating fidelity calculation that scales linearly
with the total number of gates. Specifically, they rely on daily calibration errors provided
by IBM’s quantum backends for single and two qubits gates errors in addition to readout
errors. Thus, the estimated success probability (ESP) of the circuit is based on error rates in
single (εs) and two qubits (εe) gates along with readout errors (εr), shown in Eq. (1) where
G1, G2, and N represent the number of single qubit gates, edges used by two qubits gates,
and total number of qubits, respectively. This equation calculates the success rate of the
circuit after subtracting gates’ errors and qubits’ readout errors. However, this method has
multiple limitations. One limitation is that this method considers separate error forms and
does not account for non-negligible errors like crosstalk. Another limitation is due to the
product form equation of this method such that if one gate has an error of 1 then the whole
circuit will have 0 success rate.

ESP =
G1∏

s=1

(1 – εs) ×
G2∏

e=1

(1 – εe) ×
N∏

r=1

(1 – εr). (1)

Liu and Zhou [5] estimated the reliability of circuits through the probability of successful
trials (PST) metric which is the ratio between successful trials and total number of tri-
als. Specifically, they utilize randomized benchmarking to generate random circuits using
Clifford gates group such that each circuit is appended by its equivalent inverse gate at the
end of the circuit so that ideally the quantum state will return to the original input state.
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They then extract characteristics from the circuits like connectivity map, number of single
and two qubit gates to estimate PST using two reliability estimation models: polynomial
fitting and shallow neural network. Their results show that their method is comparable
with Qiskit noise model but outperforms the ESP method. Their neural network model
achieved a correlation factor of 0.9 while the Qiskit noise and the ESP methods achieved
correlation factors of 0.89, and 0.78, respectively, with the observed PST values on quan-
tum benchmarks. However, one limitation of this method is that it will infer the same PST
value for different circuits if they have the same depth and number of gates.

The rest of this paper is organized as follows: Sect. 2 details the dataset collection pro-
cess, describes the architecture of the proposed models, and explains the experimental
design. Section 3 analyses and provides insights about the performance of our models in
comparison with the baseline method on both random circuits and real-world quantum
benchmarks. Finally, Sect. 4 concludes this paper and provides future work directions.

2 Models and methods
2.1 State fidelity estimation
Generally, quantum states can be divided into pure and mixed states. Pure states refer to
the ideal condition of the quantum system. A pure quantum state can be described using
the state vector notation, shown in Eq. (2) where αi∈[0,2n–1] is the amplitude and phase of
the basis state i, or the density matrix notation, shown in Eq. (3).

|ψpure〉 =

⎡

⎢⎢⎢⎢⎢⎢⎣

α0

α1

·
·

α2n–1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (2)

ρ = |ψpure〉〈ψpure|. (3)

Mixed states refer to the mixture of probabilities of multiple pure states that can only be
represented using the density matrix, shown in Eq. (4) where pi is the probability of pure
state |ψi〉.

ρ =
∑

i

pi|ψi〉〈ψi|. (4)

To measure the closeness between any two quantum states, we estimate the state fidelity,
shown in Eq. (5) where ρ1 and ρ2 are the density matrices for pure or mixed states and
Tr is the trace. In this paper, we are concerned with the reconstruction of a pure quan-
tum state |ψpure〉. Thus the state fidelity equation reduces to Eq. (6) where ρ1 reduces to
|ψpure〉〈ψpure| and ρ2 represents the reconstructed density matrix for the mixed state out-
come. Specifically, Eq. (6) measures the probability of the noisy mixed quantum state ρ2

being equal to the ideal one |ψpure〉.

F(ρ1,ρ2) =
[
Tr(

√√
ρ1ρ2

√
ρ1)

]2, (5)

F(ρ1,ρ2) = 〈ψpure|ρ2|ψpure〉, where ρ1 = |ψpure〉〈ψpure|. (6)
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For dataset collection, we maximize the likelihood function, shown in Eq. (7) where |yj〉〈yj|
are the projective measurements repeated with frequencies fj, to reconstruct the noisy
quantum state ρ2. This is equivalent to the least-squares minimization under the assump-
tion of Gaussian measurement noise [10]. The least-squares minimization method is fitted
under the constraint that the reconstructed density matrix has a unit trace and is positive
semi-definite.

L(ρ2) =
∏

j

〈yj|ρ2|yj〉fj . (7)

2.2 Dataset collection
We generated random circuits consisting of different combinations of basis gates for 1,
3, and 5-qubit circuits using IBM’s Qiskit software [33]. These basis gates include single
qubit gates (identity, rotation Z, square-root NOT, and NOT) and a two qubit gate (con-
trolled NOT). The identity gate (ID) is used for no operation, that is, a qubit is left as it is.
The rotation Z gate (RZ) is a phase parameterized gate that rotates a qubit state around
the z-axis with a specified angle. The square-root NOT gate (SX) transforms a qubit into
a superposition state with different phase. The NOT gate (X) flips a qubit state. The con-
trolled NOT gate (CX) is a two qubit gate consisting of a control qubit that flips the target
qubit if the control qubit is in state |1〉. For each RZ gate, the angle was randomly gener-
ated. Each IBM device supports certain universal gate set referred to as “basis or physical
gates”. Therefore, gates in a quantum circuit must be composed using the basis gates be-
fore running on the IBM backend. For each circuit, we use Qiskit software to provide the
corresponding state vector, generate state tomography projections, and estimate the state
fidelity distance between the state tomography of the circuit and its state vector. We set
the optimization level for all circuits to be 0, which means no optimization, in order to
prevent any variations and accurately measure the state preparation and measurement
errors on a real quantum device for the given high-level circuit. The number of shots for
all circuits was fixed to 8190 shots.

For single qubit dataset, we generated different combinations of single qubit basis gates
(ID, RZ, SX, and X) on ibmq_armonk machine of 5 stages depth threshold. We collected
a total of 1024 circuits considering all possible combinations.

For three and five qubits datasets, we generated different combinations of both single
and two qubits basis gates (ID, RZ, SX, X, and CX). For the three qubits dataset, we col-
lected on ibmq_lima machine a total of 8, 295 unique random circuits. The quantum vol-
ume for ibmq_lima machine is 8, specifying that the maximum square circuit size that
can run successfully on this backend is 3 × 3. Thus, we fixed the depth of the collected
3-qubit circuits to 3. For the five qubits dataset, we collected on ibmq_quito machine a
total of 5, 429 unique random circuits, which is considered a small subset of the design
space. For consistency with the 3-qubit dataset, we fixed the depth of the 5-qubit circuits
to 3, which is close to the quantum volume of ibmq_quito with value 16. These datasets
were then divided into 80% training and 20% testing without any overlap. Additionally,
we generated 500 test circuits on ibmq_lima (3-qubit) and ibmq_quito (5-qubit) with 4
stages depth threshold, to test the generality of our model.
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Figure 2 Single qubit convolutional model

2.3 Proposed models
In this section, we proposed three deep learning models that have similar architectures,
but differ in few hyperparameters, the number of layers used, and the input shapes. Addi-
tionally, the dataset used for each model is collected on different IBM backend (ibmq_ar-
monk, ibmq_lima, and ibmq_quito). Each proposed architecture consists of an embed-
ding layer, 1D convolution layers, a spatial pyramid pooling layer, and dense layers. The
embedding layer provides a better dense encoding representation that learns relationships
among gates in the circuit, unlike the use of integer encoding directly. The 1D convolution
layers learn and extract unique patterns among gates from the embedding representation
of the circuit. The spatial pyramid pooling layer is used to allow variable-sized circuit in-
put while having a fixed-sized output for the dense layers. The dense layers are then finally
used to estimate the state fidelity of a circuit.

2.3.1 1-qubit convolutional model
The input to this model is the integer encoding of gates in each circuit. Specifically, we map
each gate to a unique integer value (ID: 1, RZ: 2, SX: 3, and X:4). The input is a vector of
length 5, corresponding to the maximum depth of each circuit. The model, shown in Fig. 2,
consists of an embedding layer that encodes the input into a dense representation resulting
in an output dimension of length 5 for each element in the input. This representation is
fed into 4 1D convolutional layers to extract unique features about the circuit consisting
of 200, 200, 50, and 25 filters with kernel sizes of 5, 1, 1, and 1, respectively. The output is
then followed by a spatial pyramid pooling layer consisting of 1 bin to allow variable-sized
input. The output of the pooling layer is flattened to vector of length 25 which is then fully
connected to 3 dense layers consisting of 128, 32, 16 neurons. This is finally connected to
the output dense layer to estimate state fidelity. There are 2 dropout layers with 40% and
50% dropout rates. The activation function for all layers is the ReLU function except the
output layer which has a sigmoid activation function as the expected fidelity value has a
range from 0 to 1.

2.3.2 3-qubit and 5-qubit convolutional models
The input to these models consists of 2 matrices: gates and edges matrices. The gates
matrix is the integer encoding as described in the single qubit model with the addition
of the encoding of the two qubits gate (CX:5). The edges matrix is the encoding for the
availability of CX gate and its direction. The availability of a CX gate is encoded to value 6



Elsayed Amer et al. EPJ Quantum Technology            (2022) 9:31 Page 9 of 23

Figure 3 ibmq_lima and ibmq_quito backend layout

and 8 according to the connection direction of the control and target qubit. The absence
of a CX gate is encoded to value 7.

Each of the 3-qubit circuits consists of 3-qubit and 3 stages depth threshold, thus the
gates matrix has a shape of 3 × 3, which is flattened to a vector of length 9. There is a
total of 2 edges, highlighted in blue in Fig. 3, for the 3-qubit circuits consisting of 3 stages,
consequently the resulting edges matrix has a shape of 2×3 which is flattened to a vector of
length 6. The flattened vectors of both matrices are fed to our model, shown in Fig. 4, which
are first concatenated, then fed to an embedding layer to encode a dense representation.
This model consists of 6 1D convolution layers consisting of 100, 50, 50, 50, 50, and 25
filters with alternating kernel sizes of (3, and 1) for each 2 consecutive convolution layers.
This is then followed by a spatial pyramid pooling layer of 2 bins resulting in 2 different
pooling layers with sizes 1, and 3. The resulting fixed length output has a length of 9. These
sizes were empirically found to produce better results. The output of the pooling layer is
then flattened to a vector of length 100 and fully connected to 2 dense layers of sizes 64
and 32, respectively. This is then connected to the output dense layer to finally output the
state fidelity value. There are 2 dropout layers in this network, consisting of dropout rates
of 40%. The activation function for all layers is the ReLU function except the output layer
which has a sigmoid function.

Similar to the 3-qubit circuits, the gates matrix for 5-qubit circuits has a shape of 5 × 3,
which is flattened to a vector of length 15. There is a total of 4 edges in the layout of the
five qubits device, shown in Fig. 3, hence the resulting edge matrix has a shape of 4 × 3
which is flattened to a vector of length 12. Figure 5 represents the gates and edges encoding
of a 5-qubit random circuit. The flattened vectors of both matrices are fed to our model,
shown in Fig. 6, which are first concatenated to a length of 27 then fed to an embedding
layer to encode a dense representation. This model consists of 6 1D convolution layers
consisting of 100, 100, 50, 25, 50, and 25 filters with kernel sizes of 3, 1, 1, 1, 3, and 3,
respectively. This is then followed by spatial pyramid pooling of 3 bins of sizes 1, 3, and
15 resulting in a fixed length output of 19. These sizes were empirically found to produce
better results. The output of the pooling layer is then flattened to a vector of length 475 and
fully connected to 2 dense layers of sizes 64 and 32, respectively. This is then connected
to output dense layer to finally produce the state fidelity value. There are 3 dropout layers
in this network, consisting of dropout rates of 30%, 30% and 50%. In the spatial pyramid
pooling, we empirically found that using 3 bins of sizes 1, 3, and 15 produced better results.
The resulting fixed length output has a length of 19. The activation function for all layers
is the ReLU function except the output layer which has a sigmoid function.
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Figure 4 Three qubits convolutional model
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Figure 5 Gates and edges encoding of a random 5-qubit circuit

2.4 Experimental design
The data collection process was run on IBM Quantum lab, including the state tomography
process to generate the ground truth fidelities. First, we generate random circuits consist-
ing of basis gates defined on IBM quantum backends. For ibmq_lima (5-qubit) backend,
we fix three qubits (1, 3, and 4) in the topology layout, highlighted in blue in Fig. 3, so
that the logical 3-qubit of the circuit will be mapped to these physical qubits in the same
order. Similarly, we fix the logical to physical mapping of the 5-qubit circuits to be in the
same order on ibmq_quito backend (for example logical 0 will be mapped to physical 0).
Additionally, we constrain the controlled NOT (CX) basis gate according to the layout of
the backend devices, shown in Fig. 3, where we allow the CX gate to only be applied if
the 2-qubit are directly connected (e.g. qubits 1 and 3). The goal of these constraints is
to learn the underlying hardware noise and avoid the addition of gates resulting from the
swap operation. For each generated circuit, we estimate the ideal outcome state vector,
shown in Eq. (2).

For the state tomography estimation, we utilize IBM’s Qiskit software to generate the 3n

Pauli tomographic measurements for each circuit. After that we used IBM’s tomography
fitter to reconstruct the density matrix for the mixed state outcome from the tomographic
measurements by the least-squares minimization method.

Then, we calculate the state fidelity distance, shown in Eq. (6) between the expected pure
state vector |ψpure〉 and the reconstructed mixed state represented by the density matrix
ρ2.

The input to our models is the integer encoding circuit matrices instead of the tomo-
graphic measurements. Our representation relies on the circuits depths which can in-
crease polynomially with the number of qubits for practical quantum circuits; if the depth
of quantum circuits increases exponentially, then the quantum advantage over classical
methods will be invalidated and will be impractical to run on current available backends
that deal with decoherence noise as the results will be unreliable. For practical quantum
circuits, our representation reduced the complexity of the input space from exponential
to polynomial assuming arbitrary number of stages or circuit depth. In this paper, since
we fixed the circuits’ depth, the complexity of the input space is linear as it only linearly
scales with the number of qubits. The output of our regressor models is the corresponding
state fidelity of the circuit which indicates the reliability of executing the circuit on a noisy
hardware.

Our 3 models were then implemented using Keras [34] as a python API of tensorflow
[35]. We used Glorot uniform as a kernel initializer for convolution and dense layers. We
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Figure 6 Five qubits convolutional model
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chose to use an embedding layer because if we just relied on integer encoding of the circuit,
it will imply an ordinal relationship among gates which is not the case. Also, if we used one
hot encoding, it would result in a sparse input representation with no relationship among
gates. Additionally, the use of an embedding layer in each model was found to provide a
substantial improvements in the results, emphasizing its role in modeling complex rela-
tionships among gates in a circuit. Since convolutional layers allow more generalization in
extracting features than dense layers, they are used for the unsupervised layers concerning
feature extraction followed by a few dense layers for supervised classification or regres-
sion. This is demonstrated by the well-known deep neural networks as AlexNet [36] and
VGGNet [37] networks which have multiple consecutive convolutional layers to demon-
strate hierarchical representation of learning features. These convolutional layers are usu-
ally followed by a few dense layers for supervised classification. Therefore, we used multi-
ple convolutional layers to extract and learn patterns from the embedding representation
of a circuit which is followed by a few dense layers to output the predicted state fidelity.
The 3 models were trained on a GPU (NVidia GeForce GTX 1060). We basically had 2
phases: the hyperparameter tuning phase and the experimental analysis phase. In the first
phase, we performed manual hyperparameter tuning to the neural network and evaluated
the model on a separate data sample (validation set). This manual tuning includes explor-
ing different numbers of 1D convolutional layers (ranging from 2 to 8), varying numbers
of dense layers (ranging from 1 to 6), using different optimizers (Adam, AdaDelta, and
RMSProp) along with different learning rates (in the range from 0.0001 to 0.009). We also
explored different kernel sizes (ranging from 2 to 8), different filter sizes (ranging from 10
to 200), different activation functions (ReLU, and sigmoid), and different batch sizes (16,
32, and 64). After we settled on the network architecture, we no longer tuned the 1-, 3-
and 5-qubit models and proceeded with the second phase. In the experimental analysis
phase, we repeated the experiment 10 times, for the 1-, 3- and 5-qubit models, with dif-
ferent random splits of training and testing to calculate the mean and standard deviation
for the correlation factor, mean absolute error, and root mean square error to ensure that
the model is stable and unbiased to certain split. This experiment was done after settling
on the 1-, 3- and 5-qubit models’ hyperparameters so that there is no data leakage. The
three models were optimized using Adam optimizer with batch size set to 32. For single
qubits models, we set the learning rate to 0.001, respectively. For the three and five qubits
models before noise removal, we set the learning rate to 0.0009 and 0.0001, respectively.
After noise removal, we slightly increased the learning rate for the 3 and 5-qubit models to
0.001 and 0.0003, respectively. Additionally, we used an activity regularizer before the out-
put layer of 0.001 and 0.005 for single and five qubits models, respectively. The optimizer
is then used to minimize the mean absolute error shown in Eq. (8), where S represents
number of samples, Pred stands for predicted, and GT stands for ground truth.

MAE =
1
S

S–1∑

i=0

∣∣Fi
Pred – Fi

GT
∣∣. (8)

Since available literature methods require exponential time complexity, we consider the
method used by [6, 7] as the baseline method. Additionally, the ground truth fidelity we are
considering already requires exponential complexity as the reconstruction process using
maximum likelihood estimation relies on the tomographic measurements, serving as both
ground truth and comparison with literature review.
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3 Results and discussion
3.1 Results
Fidelity estimation is a regression task in which our goal is to estimate the state fidelity of a
circuit through its representation only without undergoing exponential tomographic mea-
surements, thus reducing the input space complexity. For a 5-qubit circuit, our 2 matrices
representation would require a total of 27 elements for depth-3 that could increase poly-
nomially with the number of qubits. Thus, our representation for an efficient quantum
circuit consisting of n-qubit and N gates and having depth-l will be O(poly(n)). However,
the exponential tomographic measurement would require a total of 7, 776 measurements
outcomes given that there is a total of 3n possible Pauli combinations that lead to 6n pos-
sible outcomes as each measurement operator has 2 possible outcomes, where n is the
number of qubits.

To quantify the performance of our models, we measure the correlation factor, the mean
absolute error (MAE), and the root mean square error (RMSE) between the predicted
and the ground truth fidelities shown in equations (8), (9), and (10) respectively, where
Pred stands for predicted, GT stands for ground truth, Cov represents the covariance, σ

is the standard deviation, and S is the number of samples. We also calculate the percentage
error (%Errori), shown in equation (11), between predicted and ground truth state fidelity
for circuit i. Due to the small variation in the state fidelity range, the correlation factor
illustrates better the relationship between the predicted and ground truth fidelity than the
use of mean absolute error and root mean square error.

r(FPred, FGT) =
Cov(FPred, FGT)
σFPred × σFGT

, (9)

RMSE =

√√√√1
S

S–1∑

i=0

(
Fi

GT – Fi
Pred,

)2 (10)

%Errori =
|Fi

GT – Fi
Pred|

Fi
GT

∗ 100. (11)

Additionally, we analyze the dynamic effect of noise on both 3-qubit and 5-qubit cir-
cuits’ state fidelities by removing noisy regions, shown in Figs. 7 and 8, respectively. These
figures represent the ground truth state fidelities of random circuits running on IBM back-
ends sequentially in time. The bounded rectangular regions in both figures, highlighted
in green, represent noise clustered regions that are circuit independent as they occur in
limited regions and do not spread across the whole dataset. We eliminate these regions as
they represent instability periods of backend devices, resulting in erroneous fidelities. In
this paper, we consider both scenarios: before and after the removal of noise.

For the single qubit dataset, Fig. 9 represents the percentage error between ground truth
and predicted state fidelities across different circuits of our 1D convolutional model on
our test set running on ibmq_armonk backend. The results show that the percentage er-
ror across different circuits has a mean of 0.89% ± 0.84% reflecting the high prediction
accuracy of our model with the ground truth fidelities. We achieved a mean correlation
factor of 0.7447 ± 0.0374, shown in Fig. 10, a mean absolute error of 0.0094 ± 0.008, and a
root mean square error of 0.0129±0.001. The results on this small-scale model shows that
there is a potential relationship between transformations applied to qubits and its state fi-
delity on a specific hardware device. These results motivated us to extend this model to
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Figure 7 Ground truth fidelities for 3-qubit random circuits

Figure 8 Ground truth fidelities for 5-qubit random circuits

Figure 9 Percentage error between ground truth
and predicted fidelities for 1-qubit model across
different circuits

3 and 5-qubit circuits, as the single qubit model provided insight about the feasibility of
this method for this simplistic case.

For the three qubit dataset, Figs. 11 and 12 show the percentage error between ground
truth and predicted state fidelities across different circuits of the test set for 3-qubit cir-
cuits running on ibmq_lima backend before and after noise removal. The results show
that the percentage error before noise removal across different circuits has a mean of
5.65% ± 8.54%, while after noise removal the percentage error is further reduced achiev-
ing a mean of 3.23% ± 3.04%. The high standard deviation before noise removal demon-
strates high dynamic noise rates available in ibmq_lima. This is also illustrated in Fig. 12
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Figure 10 Predicted and ground truth comparison plot for 1-qubit model of depth-5 stages (r = 0.74)

where percentage error is more compact with almost no outliers as in Fig. 11. Similarly,
for the five qubits dataset, Figs. 16 and 17 represent the percentage error between ground
truth and predicted fidelities across different circuits on ibmq_quito backend. The re-
sults show that the percentage error across different circuits before noise removal has
a mean of 5.06% ± 5.09%, while the percentage error after noise removal has a mean of
3.92% ± 3.41%. This reduction in both the mean and the standard deviation is also de-
picted in Fig. 17 where few outliers exist than in Fig. 16.

Table 1 shows a comparison between the results before and after noise removal for the 3
and 5-qubit models. The results show significant improvements over the consideration of
the dataset without noise removal, and emphasize the effect of stable backend devices to
achieve high reliability. For the 3-qubit model, the correlation factor after noise removal
was 0.828 ± 0.0129, shown in Fig. 14, while the one before noise removal was 0.6745 ±
0.0152, shown in Fig. 13. Similarly, for the 5-qubit model, the correlation factor after noise
removal was 0.745 ± 0.0119, shown in Fig. 19, while the one before noise removal was
0.6637 ± 0.0121, shown in Fig. 18. Also, the MAE and RMSE after noise removal slightly
decreased than before noise removal for both models.

For the rest of the paper, we will work with 3- and 5-qubit models without noise removal,
assuming worst-case scenario. We then employed transfer learning to test our model on
circuits with increased depth of 4 stages while trained on circuits with depth-3 for both
3- and 5-qubit models. For the 3-qubit models, we achieved a mean correlation factor
of 0.3471 ± 0.0448, shown in Fig. 15, a mean absolute error of 0.0536 ± 0.0034, and a
root mean square error of 0.0694 ± 0.0038. For the 5-qubit models, we achieved a mean
correlation factor of 0.3582 ± 0.0147, shown in Fig. 20, a mean absolute error of 0.0821 ±
0.0036, and a root mean square error of 0.1013 ± 0.0036. These results show that even
though our models were trained on certain depth, they can still generalize to higher depth.
This opens the direction for further research to fine-tune these models to higher depth.

Additionally, we compare our 5-qubit model with a simple baseline method (ESP),
shown in Eq. (1), on 250 additionally randomly generated circuits on ibmq_quito. Al-
though the ESP baseline method achieved a mean absolute error (MAE) of 0.04 and a
root mean square error (RMSE) of 0.06 with ground truth fidelities, it achieved a low cor-
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Figure 11 Percentage error between ground truth
and predicted fidelities for 3-qubit model across
different circuits

Figure 12 Percentage error between ground truth
and predicted fidelities for 3-qubit model across
different circuits after noise removal from dataset

Figure 13 Predicted and ground truth comparison plot for 3-qubit model on depth-3 stages (r = 0.67)

relation factor of 0.10, shown in Fig. 21. Our deep learning method achieved a MAE of
0.03, a RMSE of 0.04, and a correlation factor of 0.687. Thus, the approximate fidelity cal-
culation method, given its simplicity, cannot be used for state tomography due to its poor
performance.

3.2 Quantum benchmarks
In this section, we demonstrate the effectiveness of our 5-qubit model trained on random
circuits on specific quantum benchmarks. Specifically, we verify our proposed model on
three real-world quantum algorithms and protocols (Bernstein–Vazirani, Simon, and Su-
perdense coding). Bernstein–Vazirani algorithm [38] is concerned with finding a secret
string by querying an oracle one time only, providing a polynomial speedup over its clas-
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Figure 14 Predicted and ground truth comparison plot for 3-qubit model on depth-3 stages after noise
removal from dataset (r = 0.82)

Figure 15 Predicted and ground truth comparison
plot for 3-qubit model on depth-4 stages (r = 0.34)

Figure 16 Percentage error between ground truth
and predicted fidelities for 5-qubit model across
different circuits

sical counterpart. Simon’s algorithm [39] solves the problem of finding a periodic string s
such that when querying an oracle both input x and x⊕s will have the same output. This al-
gorithm provides an exponential speedup over the classical one. Superdense coding [40]
is the process of sending 2 classical bits between two distant parties across a quantum
communication channel. The sender encodes a single qubit such that when decoded, the
receiver is able to reveal the classical bits.
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Figure 17 Percentage error between ground truth
and predicted fidelities for 5-qubit model across
different circuits after noise removal from dataset

Figure 18 Predicted and ground truth comparison plot for 5-qubit model on depth-3 stages (r = 0.66)

Figure 19 Predicted and ground truth comparison plot for 5-qubit model of depth-3 stages after noise
removal from dataset (r = 0.74)

For Bernstein–Vazirani and Simon’s algorithms, we use a simplified version of these
algorithms such that the circuits conform with our constraints. Specifically, we remove
stages that contain only RZ gates, shown in Fig. 22, as IBM Qiskit implements this gate
virtually [41] requiring zero time and error. Thus, these circuits fit to our constraints with-
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Figure 20 Predicted and ground truth comparison plot for 5-qubit model on depth-4 stages (r = 0.35)

Figure 21 Approximate Fidelity and ground truth comparison plot for 5-qubit circuits on depth-3 stages
(r = 0.1)

Table 1 Mean results (± standard deviation) before and after noise removal between ground truth
state tomography and our models

Model Before Noise Removal After Noise Removal

Correlation factor MAE RMSE Correlation factor MAE RMSE

3-qubit model 0.6745 0.0414 0.0655 0.828 0.029 0.0401
±0.0152 ±0.0012 ±0.0020 ±0.0129 ±0.0009 ±0.0014

5-qubit model 0.6637 0.0388 0.0519 0.745 0.0307 0.0389
±0.0121 ±0.0008 ±0.0010 ±0.0119 ±0.0010 ±0.0011

out sacrificing any gate error. For the superdense coding protocol, we only use the opti-
mized versions of the circuits as they already fulfill our constraints. For comparison, we
implement the baseline fidelity estimation, shown in Eq. (1), to the simplified versions of
the three benchmarks.
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Figure 22 Bernstein–Vazirani circuit for string “0001”

Table 2 Comparison between ground truth state tomography (optimized and simplified circuits),
predicted and baseline state fidelities using our model

Benchmark Output GT Optimized
Fidelities

GT Simplified
Fidelities

Predicted
Fidelities

Baseline (ESP)
Fidelities

Bernestein–Vazirani 4-bit “0001” 0.84 0.83 0.85 0.84
Simon 2-bit “00” 0.78 0.76 0.81 0.86

“01” 0.84 0.81 0.82 0.90
“10” 0.83 0.80 0.82 0.89

Superdense coding “01” 0.89 – 0.89 0.93
“10” 0.89 – 0.88 0.97
“11” 0.84 – 0.85 0.93

Table 2 represents a comparison between ground truth state tomography (optimized
and simplified circuits) with the predicted and baseline fidelities of our model across
benchmarks. The discrepancy between optimized and simplified ground truth fidelities
is due to the readout errors which are inversely proportional to the number of ones or
hamming weight in a measured state according to [42]. To demonstrate the advantage of
the predicted fidelities of our model over the estimated fidelities of the baseline method,
we computed the correlation factor with the ground truth fidelities of the simplified ver-
sions of Bernstein–Vazirani and Simon and the optimized version of superdense coding.
For the three benchmarks, our method achieved a correlation factor of 0.968 while the
baseline method achieved a correlation factor of 0.738 with the ground truth fidelities.

4 Conclusion
In this paper, we proposed three deep learning models to estimate the state fidelities for 1-,
3-, and 5-qubit circuits. In particular, we exploited an embedding layer to encode a dense
representation of a circuit instead of tomographic measurements that scale exponentially
with the number of qubits, reducing the input space for practical quantum circuits from
exponential to polynomial complexity. Specifically, we aimed at modeling the relationship
between gates and circuits’ state fidelities. Experimental results show that there is a high
correlation between the predicted and ground truth state fidelities achieving a correlation
factor of 0.74, 0.67, and 0.66 for single, three, and five-qubits circuits, respectively. To test
the generality of the three and five qubits circuits, we increased the circuits’ depth to 4
while training our model only on depth-3 circuits. We achieved a mean correlation factor
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of 0.34 and 0.35 on three and five qubits circuits, respectively. We also investigated the dy-
namic effect of noise on the circuits’ state fidelities. We achieved correlation factor of 0.828
and 0.745 for three and five-qubits circuits after removing noisy regions from our dataset.
Additionally, we compared our 5-qubit model and the baseline state fidelity estimation
method with the exponential state tomography method on three quantum benchmarks.
Our method achieved a correlation factor of 0.96 with the exponential state tomography
method while the baseline method achieved 0.73. Thus, our results demonstrate the learn-
ability of quantum state fidelity which is considered a step towards an efficient end-to-end
learning. Machine learning methods typically require few data points to train a neural net-
work model. To generate a data point which is composed of a circuit and its corresponding
ground truth state fidelity, we need to utilize state tomography (which is of exponential
complexity on the number of qubits). As future work, we plan to reduce this complexity to
allow scalability to a higher number of qubits. Additionally, we plan to train our model for
specific quantum algorithms like quantum approximate optimization algorithm (QAOA).
We also plan to explore stage based fidelity estimation using long short-term memory
neural network.
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