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Abstract
We present a noise deconvolution technique to remove a wide class of noises when
performing arbitrary measurements on qubit systems. In particular, we derive the
inverse map of the most common single qubit noisy channels, and exploit it at the
data processing step to obtain noise-free estimates of observables evaluated on a
qubit system subject to known noise. We illustrate a self-consistency check to ensure
that the noise characterization is accurate providing simulation results for the
deconvolution of a generic Pauli channel, as well as experimental evidence of the
deconvolution of decoherence noise occurring on Rigetti quantum hardware.

1 Introduction
Quantum noise is currently the largest limiting factor in the adoption of quantum com-
putation and quantum technology. Their theoretical performances are in fact hindered
by the intrinsic fragility of quantum systems, and over the last years many proposal have
been put forward to mitigate, ideally correct, the effect of noise and recover reliable re-
sults. On the computing side, as fault-tolerant quantum computers remain out of reach at
the moment [1–4], various error mitigation techniques have been proposed to extend the
capabilities of current small scale noisy quantum devices [5–7]. These ranges from cor-
recting the readout noise via inversion of probability assignment matrix [8], extrapolating
the noise in the device to the zero error case [9–11], using a probabilistic sampling on spe-
cific circuits to approximate the noise free computation [9, 10, 12], to also using machine
learning approaches to learn how to recover ideal results [13].

While these methods are concerned with mitigating noise occurring in a computation,
here we instead focus on the more generic task of correcting the expectation value of
arbitrary observables evaluated on a system which is subject to a known noise happening
before the measurement stage. Such a scenario is relevant in quantum communication
and quantum tomography tasks [14].

Noise in quantum systems is described by means of quantum channels [15]

ρ −→ E(ρ) =
∑

k

AkρA†
k , (1)

where Ak are operators acting on the system named Kraus operators. While the effect of
unitary dynamics can be reversed using realizable operations, quantum channels cannot
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Figure 1 General scheme for the noise deconvolution process applied to a qubit. (a) Ideal estimation of an
observable O on a single qubit in state ρ . The operator M ∈ {1,H,HS†}, with H and S being the Hadamard and
phase gate are used to select a measurement basis in {σz ,σx ,σy} respectively, and thus reconstruct a generic
observable O, using Eq. (16). (b) Noise (indicated with a yellow box) happening before measurement leads to
noisy estimates of the expectation values. (c) Noise deconvolution approach: measurements of the
noise-inverted observablesN –1(O) on the noisy state leads to the mitigated ideal result 〈O〉. (d) The noise
deconvolution approach can be used to mitigate the effects ofN1 only. However, the full noise (N0 andN1)
can be mitigated either if the unitary can be easily inverted as well, or if the noise processes commutes with
the interleaving unitary, as is the case for depolarizing noise

be undone, and one can only hope to find operations which only approximately invert
the noise process at hand. Examples of this approach leverages for example Petz recovery
maps [16–18], or unitaries which, on average, are able to best reverse the noise based on
given distance measures [19–21].

Here instead we show that noise can be eliminated by means of a deconvolution pro-
cess, provided that the noise map describing the process is known and invertible. In fact,
we drop the requirements of the inverse transformation being itself a quantum channel,
since the transformation is not applied to the quantum system itself, but to the outcome
statistics as a classical post-processing step. We derive the inversion maps of the most
common single-qubit noisy channels (both unital and non-unital), and show how to use
these to remove the effect of noise from the expectation values of general observables.
In Fig. 1 we schematically summarize the noise deconvolution idea. The mitigation is ef-
fectively obtained by multiplying the noisy estimates by a factor depending on the noise
〈O〉mitig ∼ c〈O〉noisy, which comes at the cost of increasing the variance of the estimation, as
Var[〈O〉mitig] ∼ c2 Var[〈O〉noisy], so one needs to gather more statistic to reach a target pre-
cision. A related post processing technique specialized for quantum many-body systems
and quantum field theory is put forward in ref. [22]. In addition, we provide both numer-
ical simulations of the noise deconvolution process, as well as evidence of deconvolution
of decoherence noise occurring on the superconducting quantum computer “Aspen-9”
provided by Rigetti, accessed using the Quantum Cloud Services (QCS) [23]. We show
how simple self-consistency checks can test whether the known noise map is accurate
and how a feedback scheme can be used to adjust the noise parameters. Our contributions
then include: (i) formalization and discussion of CPTP (namely, completely positive trace
preserving) noise deconvolution of expectation values through (mathematical) inversion
of the noise map; (ii) explicit derivation of the inverse map of the most common single
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qubit noise channels; (iii) numerical and experimental application of the ideas introduced
before.

Before continuing, we briefly describe the relation of the proposed noise deconvolution
idea to probabilistic error mitigation (PEC) [10, 12], a quantum error mitigation technique
aimed at correcting noisy operations during a quantum computation. Given a character-
ization of the noise, PEC works by using the inverse noise map of the operations to build
an ensemble of suitably generated quantum circuits. These are sampled according to spe-
cific weights, and the results combined to build an approximation of the action of the
noise-free quantum circuit. In particular, the mitigation procedure is active, in the sense
that the experimenter need to generate new quantum circuits and run them against the
quantum device. On the contrary, we are instead concerned with the correction of ex-
pectation values evaluated on a noisy state, with no computation or dynamics involved.
In addition, within our framework, the mitigation is passive, in the sense that the mitiga-
tion happens classically as a post-processing step, and no action on the quantum system
is necessary. Appropriately limiting PEC to the specific case of measurement error mit-
igation, and realizing that sampling on quantum circuits is no longer a necessary step,
then one can recover the noise deconvolution procedure presented here, whose regime of
application is not restricted to quantum computation, but applies to a general quantum
mechanical measurement scenario. As such, some of the results presented here can be re-
covered also with the techniques proposed in [10, 12]. That said, the explicit calculations
presented here for the general noise maps we analyze have not been presented elsewhere
in full generality, e.g. see Table 1 below.

The paper is organized as follows. In Sect. 2 we recall some basic concepts about quan-
tum channels and the Pauli transfer matrix formalism, and the idea of noise deconvolution
in Sect. 3. In Sect. 4 we leverage the Pauli transfer matrix formalism to explicitly derive
the inverse map of the most common single qubit noise channels, and use inside the noise
deconvolution procedure to obtain noise-free estimates. In Table 1 we summarize all the
maps taken in consideration as well as their inverse. In Sect. 5 we show by means of sim-
ulations that the noise deconvolution process can be used to cancel out the effect of a
general Pauli channel, and also provide experimental evidence of the deconvolution of
decoherence noise as performed on a real quantum device by Rigetti.

2 Methods
In this section we introduce the notation and the theoretical tools used to derive the main
results of the work. We will denote with H the Hilbert space, and with L(H) the space of
squared linear operators acting on H. For those interested, a brief overview of quantum
channels and Kraus decomposition can be found in Appendix A.

2.1 Quantum channels
In general quantum channels cannot be physically inverted, as there is no quantum evo-
lution capable of reversing their actions. Formally stated, let E be a CPTP map, it is not
possible to find another CPTP map D = E–1, such that (D ◦ E)(ρ) = ρ ∀ρ . The only triv-
ial case when this is possible, is for maps having only a single Kraus operator, in which
case they reduce to standard unitary evolution E(ρ) = UρU†, with the inverse given by
D(·) = U† (·) U .
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The CPTP conditions impose hard constraints to the operatorial form that physically re-
alizable evolutions must match, namely the Kraus representation. However, the require-
ment for admitting a more general operator-sum representation are looser. In fact, any
Hermiticity preserving map, i.e. a map such that �(ρ)† = �(ρ) for ρ = ρ†, admits an
operator-sum representation as [24, 25]

�(ρ) =
∑

k

λkAkρA†
k (2)

with λk ∈ {+1, –1}. Clearly if all the coefficients are λk = 1 ∀k, then the map � is also
completely positive, since it is in standard Kraus form (1). Moreover, another useful char-
acterization is given by

Corollary 1 (Corollary II.2 of [25]) Let MN be the space of complex N × N matrices.
Suppose � : MN →MN is a completely positive map having the form

�(ρ) =
∑

k

βkAkρA†
k , (3)

where {Ak}k is linearly independent in MN , and βk ∈R ∀k. Then βk ≥ 0 ∀k.

Conversely, if a map has form (3) with linearly independent operators {Ak}k but has some
of the coefficients βj < 0, then the map is not completely positive. This result is steadily
applied to maps acting on qubit systems where MN = C

2×2. In fact, Pauli matrices σx, σy

and σz together with the identity σ0 = 12, form a linearly independent set in the space of
2 × 2 complex matrices, and then any map of the form

E(ρ) = β0σ0ρσ0 + β1σxρσx + β2σyρσy + β3σzρσz (4)

having some negative coefficients is not a CP map, thus it is not a physically realizable
channel. In the following we will derive many inverse maps having this form, for which
this result holds. Of course, we already know that a quantum channel cannot be inverted
(apart from the trivial unitary case), so that if an inversion map is found, then it is certainly
not CP. Nonetheless, this result is still of interest because it gives a nice and clear condition
that can be used to quickly assess the nature of the maps under investigation. In addition,
as shown in ref. [26], if a CPTP map is invertible, then its inverse is Hermitian preserving
(HP), and so can be expressed in operator-form (2).

2.2 Qubit systems and Pauli transfer matrix formalism
We focus on quantum systems made of qubits, and briefly review some useful results on
qubit channels.

The identity and the Pauli matrices {1,σx,σy,σz} form a basis on L(H) = C
2×2, and so

any operator O ∈L(H) can be expressed in this basis as

O =
3∑

i=0

oiσi, oi = Tr[σiO] (5)

= o01 + o · σ , (6)
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where we have introduced the vector of Pauli matrices σ = (σx,σy,σz), and the vector of
coefficients o = (o1, o2, o3) ∈ C

3. Similarly, density operators are expressed in this basis in
terms of their Bloch vector as ρ = (1 + r · σ )/2, with r = (rx, ry, rz) ∈ R

3, and |r| ≤ 1, where
equality holds only for pure states ρ = |ψ〉〈ψ | [15].

Since any operator O is completely specified by its components in the Pauli basis, we
define its vector of coefficients as the column vector |O〉〉 := (o0, o1, o2, o3)T. We refer to
[27, 28] for a detailed discussion on the correspondence between operators and vectors.

In addition, every linear map � : L(C2) → L(C2) can be represented in this basis as a
4 × 4 matrix � [25, 29–31], whose action is given by

�(O) −→ �|O〉〉 =

[
γ0 γ

t T

][
o0

o

]

=

[
γ0o0 + γ · o

o0t + To

]
or

�(O) = (γ0o0 + γ · o)1 + (o0t + To) · σ ,

(7)

where γ and t are row and column vectors respectively, and T is a 3 × 3 matrix. The
matrix � associated to the map � is called Pauli Transfer Matrix (PTM), and its elements
are given by

�ij =
1
2

Tr
[
σi�(σj)

]
, i, j ∈ {0, 1, 2, 3},σ0 = 1. (8)

If we restrict to trace-preserving maps, then γ = 0 and γ0 = 1, so the � matrix reduces
to the simpler form

� =

[
1 0
t T

]
. (9)

Furthermore, if the map is also unital (i.e. �(1) = 1), then also t = 0. As an example, the
quantum bit-flip channel described by the map

Nx(ρ) = (1 – p)ρ + pσxρσx, (10)

has a corresponding PTM representation as

Nx −→ �x =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 – 2p 0
0 0 0 1 – 2p

⎤

⎥⎥⎥⎦ . (11)

2.3 Quantum tomographic reconstruction
Quantum tomography [32–35] is a method to estimate the ensemble average of any ar-
bitrary operator by using measurement outcomes of a quorum of observables. The goal
of a tomographic reconstruction of an observable is to identify a set of observables {Qλ},
called quorum [36], such that the mean value 〈O〉 = Tr[Oρ] of any observable O ∈ L(H),
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for all states ρ , can be reconstructed by using measurements outcomes of the quorum ob-
servables. A tomographic reconstruction formula for an operator O is obtained by using
a spectral decomposition of the identity in the operator Hilbert space [36–39]

O =
∫




dλTr
[
C†

λO
]
Cλ, (12)

where λ is a parameter living in either a continuous or discrete manifold 
, and operators
Cλ depend on the quorum observables. The term E[O](Qλ) := Tr[C†

λO]Cλ is called quan-
tum estimator of the operator O, and given a quantum state ρ , the expectation value 〈O〉
on such state amounts to

〈O〉 = Tr[Oρ] =
∫




dλTr
[
OC†

λ

]
Tr[Cλρ] (13)

=
∫




dλTr
[
E[O](Qλ)ρ

]
(14)

=
∫




dλ
〈
E[O](Qλ)

〉
. (15)

For qubit systems, the most common choice (but non unique, e.g. [35]) for the quorum
are the Pauli matrices {Qλ}λ = {σx,σy,σz}, and the tomographic reconstruction formula
results in the standard expansion in the Pauli basis, albeit with a slightly different notation
(see Appendix B for the explicit derivation):

〈O〉 =
∑

α=x,y,z

1
3
〈
E[O](σα)

〉
,

E[O](σα) =
(

3 Tr[Oσα]
2

σα +
Tr[O]

2
1
)

.

(16)

Note that the quantum tomographic reconstruction can be straightforwardly applied to
multipartite quantum systems by simply using as a quorum the tensor product of single-
system quorums [36].

3 Noise deconvolution
The tomographic reconstruction formula can be used whenever one has access to the
quantum state ρ and measurements of the quorum observables. In practical scenarios
however, estimations are performed in the presence of noise and one generally deals
with noisy quantum states ρ → ρ̃ = N (ρ) which then leads to noisy estimates 〈O〉ρ̃ =
Tr[ON (ρ)]. The idea of noise deconvolution is to correct the errors by considering a new
quorum of observables taking into account the noise, and then use a noise inverted quan-
tum estimator to recover the ideal estimates, namely the ones that we would obtain in the
absence of noise.

Suppose the noise map N acting on the quantum system can be formally inverted, that
is there exist a linear (not CP) map N –1 such that (N –1 ◦ N )(ρ) = ρ for all ρ . Then, we
say that the noise can be deconvoluted in the following sense: instead of measuring the
original observable O, we can evaluate the expectation value of the noise-inverted operator
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N̂ –1(O), thus obtaining as a result the desired noise-free ideal result 〈O〉, that is

〈
N̂ –1(O)

〉
ρ̃

= Tr
[
N̂ –1(O)N (ρ)

]

= Tr
[
ON –1(N (ρ)

)]

= Tr[Oρ] = 〈O〉,
(17)

where N̂ –1(·) denotes the adjoint of the inverse map N –1(·), and in the second line we
made explicit use of the definition of the adjoint map.

The conditions for deconvolving the effect of a noise channel N are [36, 37]:
• the inverted noise map exists, that is there is a N –1 such that (N –1 ◦N )(O) = O

∀O ∈L(H).
• the quantum estimator E[O](Qλ) is in the domain of N –1.
• the map N –1(E[O](Qλ)) is a function of Qλ.
If these hold, then one can substitute the quantum estimator in Eq. (13), with the de-

convolved quantum estimator N̂ –1(E[O](Qλ)), yielding

∫




dλTr
[
N̂ –1(

E[O](Qλ)
)
N (ρ)

]
(18)

=
∫




dλTr
[
E[O](Qλ)N –1(N (ρ)

)]

=
∫




dλTr
[
E[O](Qλ)ρ

]

= Tr[Oρ] = 〈O〉.

This procedure yields the ideal expectation value of any observable O on the state ρ , even
if having access only to a noisy version of it and provided that the noise map is known (and
invertible). Note that this definition is similar to that recently reported in ref [6], regarding
invertible noise channels with non-CPTP inverse. Specializing it for qubits, using Eq. (18)
in (16), leads to (see Appendix C for further details)

〈O〉 =
1
2

Tr[O] +
1
2

∑

α=x,y,z
Tr[Oσα]

〈
N̂ –1(σα)

〉
ρ̃

. (19)

Similarly to standard tomographic reconstruction, noise deconvolution can be applied
also to multi qubits systems, in which case the mitigated tomographic estimates are ob-
tained considering the tensor product of the deconvolved quantum estimator of each sub-
system. Clearly, this holds only for single-qubit noisy channels acting independently on
each qubit. In addition, generally non-invertible maps could still be deconvoluted if one
restricts the attention only to a subset of states of interest upon which the given map is
invertible [40, 41].

As shown later, the correction of the expectation value of a Pauli matrix is obtained by
multiplying the noisy estimate—the one the experimenter has access to—by a constant
depending on the noise, i.e. 〈σα〉mitig = c〈σα〉noisy. This clearly increases the variance of
the estimation, since Var[〈σα〉mitig] = c2 Var[〈σα〉noisy] ∼ c2/M, where M is the number of
measurements performed on the system, and thus the experimenter need to increase the
outcome statistics proportionally to c2 to reach a desired target precision.
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We now proceed discussing how the deconvolution behaves in the presence of multiple
noise channels. Consider two noise processes N0 andN1 separated by a unitary gateU (·) =
U · U†, as shown in Fig. 1(d). The action of the circuit is

(N1 ◦ U ◦N0)(ρ) = N1
(
UN0(ρ)U†

)

= N1(ρ̃U )

with ρ̃U = UN0(ρ)U†. Using (18), it is possible to deconvolve the outermost noise N1 with

Tr
[
N̂ –1

1 (O)N1(ρ̃U )
]
, (20)

but not N0, since the unitary U is in the way. Actually, one could decide to deconvolve the
unitary as well, using the trivial inverse U–1

1 (·) = U†
1 · U1, and thus making it possible to

deconvolve also the first noise channel N0, as

Tr
[
N̂ –1

1
((

UN̂ –1
0 (O)U†

)
N1(ρ̃U )

]

= Tr
[(

UN̂ –1
0 (O)U†

)
UN0(ρ)U†

)]

= Tr
[
N̂ –1

0 (O)N0(ρ)
]

= Tr[Oρ].

However, this procedure cannot be employed to invert the noise that happens before a
generic unitary U , since it essentially offloads the computation from the quantum com-
puter to the classical one, by simulating the inverse evolution of the quantum system.

A more interesting case is obtained when the error map happens to commute with all
the remaining operation in the computation, as is the case for the depolarizing noise, de-
scribed by the map

Ndep(ρ) =
p1
2

+ (1 – p)ρ, (21)

for which it is easy to see that (Ndep ◦ U )(ρ) = (U ◦Ndep)(ρ) ∀U (·) = U · U†. Suppose one
is performing a quantum computation given by a sequence of operations Ui, each one
followed by depolarizing noise

ρ =

( d∏

i=1

N (i)
dep ◦ Ui

)
(ρ0) (22)

=

( d∏

i=1

N (i)
dep ◦

d∏

i=1

Ui

)
(ρ0) (23)

= N tot
dep(ρU ), (24)

with N tot
dep =

∏
N (i)

dep the composition of all the depolarizing channels, and ρU =
∏

Ui(ρ0)
the state obtained by the ideal noise-free computation. Most importantly, one can check
that the composition of multiple depolarizing channels is still a depolarizing channel with
probability parameter 1 – ptot =

∏
(1 – pi), where pi is the probability associated with each
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depolarizing noise. In such case it is possible to deconvolve all noise at once, using the de-
convolution formula for the depolarizing noise with the total noise parameter ptot (see
Eq. (39)). Similarly, this also holds for computations involving multi qubits subject to
global depolarizing errors. The authors in ref. [42] leverage this property to perform a
simple yet effective error mitigation technique for quantum computers, based on the as-
sumption that noise in quantum circuits is well described by global depolarizing error
channels. While exact depolarizing errors (either local or global) are hardly found in real-
istic quantum circuits where errors are both due to coherent (i.e. unitary) and incoherent
noise (i.e. interaction), Pauli twirling and randomized compiling techniques [43–46] can
be used to approximately tailor noise to stochastic Pauli channels, preferably depolarizing
noise, and then use the procedure above to mitigate it [47].

4 Inversion of common noise maps
We now proceed by explicitly evaluating the inverse maps of some of the most common
noisy channels, leveraging the Pauli Transfer Matrix formalism introduced in Sect. 2. The
general method for finding the inverse map goes as follows: we first evaluate the matrix
representation (7) of the channel, we then invert this matrix, and from this recover the
operator sum representation of the inverse channel whenever this exists. We start from
simpler cases to build some intuition on the construction of the inverse maps, and then
proceed towards more complicated cases. In Table 1 we summarize the results obtained in
this section, comprising all noise channels considered in this analysis together with their
inverse maps.

4.1 Bit-flip, phase-flip and bit-phase-flip
The bit-flip, phase-flip and bit-phase-flip channels are described by the Kraus operators,
A0 = √p1 and A1,α =

√
1 – pσα , with σα ∈ {σx,σz,σy} respectively. For simplicity, in the

Table 1 Table summarizing the results of the present analysis, consisting of some of the most
common single-qubit noisy channelsN , along with their inverse noise mapsN –1, defined as the
map such that (N –1 ◦N )(ρ) = ρ ∀ρ . Clearly, all noise channels are CPTP maps, while the inverse
channels are not, yet they admit an operator-sum representation. All the noise maps except for
amplitude damping and 2-Kraus channel have trivial adjoint channels, so one must pay attention in
using the adjoint channel inside the deconvolution formula (19)

Noise channelN (ρ) Inverse mapN –1(O)

Bit-Flip (1 – p)ρ + pσxρσx
1–p
1–2pO – p

1–2pσxOσx

Phase-Flip (or dephasing) (1 – p)ρ + pσzρσz
1–p
1–2pO – p

1–2pσzOσz

Bit-Phase-Flip (1 – p)ρ + pσyρσy
1–p
1–2pO – p

1–2pσyOσy

Depolarizing (1 – p)ρ + p1
2

1
1–p (O – p

2 Tr[O]1)

General Pauli Channel p0ρ + pxσxρσx + pyσyρσy + pzσzρσz β0O + β1σxOσx + β2σyOσy + β3σzOσz

(see Eq. (41) for the coefficients)

Amplitude Damping V0ρV0 + V1ρV
†
1 K0OK0 – K1OK

†
1

V0 = |0〉〈0| +√
1 – γ |1〉〈1| K0 = |0〉〈0| +

√
1

1–γ |1〉〈1|
V1 =

√
γ |0〉〈1| K1 =

√
γ
1–γ |0〉〈1|

2-Kraus Channel A0ρA0 + A1ρA
†
1 B1OB

†
1 – B2OB

†
2

A0 = cosα|0〉〈0| + cosβ|1〉〈1| B0 =
√
2cosβ√

cos 2α+cos2β
|0〉〈0|+

√
2cosα√

cos 2α+cos2β
|1〉〈1|

A1 = sinβ|0〉〈1| + sinα|1〉〈0| B1 =
√
2 sinβ√

cos 2α+cos2β
|0〉〈1|+

√
2 sinα√

cos 2α+cos2β
|1〉〈0|
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following we focus only on the bit-flip channel (generated by σx), but the results hold
equivalently also for the other two channels. The bit-flip channel acts as:

Nx(ρ) = (1 – p)ρ + pσxρσx (25)

and its PTM is given by

�x =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 – 2p 0
0 0 0 1 – 2p

⎤

⎥⎥⎥⎦ . (26)

In order to find an operator sum expression for the inverse map N –1
x , we consider the

inverse matrix �–1
x

�–1
x =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1

(1–2p) 0
0 0 0 1

(1–2p)

⎤

⎥⎥⎥⎥⎦
. (27)

It’s clear that �x can be inverted provided that p �= 1/2, since in that case det�x = 0. This
is not a problem for realistic case scenarios, where the probability of errors are small, so
that one can safely assume 0 < p < 1/2. We now proceed using a similar procedure found
in [25].

Note that �–1
x is diagonal in the Pauli basis, thus has eigenvectors {|1〉〉, |σx〉〉|σy〉〉|σz〉〉}

with eigenvalues λ = {1, 1, (1 – 2p)–1, (1 – 2p)–1} respectively. Now, consider the generic
map

E(O) =
3∑

j=0

βjσjOσj. (28)

Also this map has eigenvectors {1,σ }, but with eigenvalues β = {β0,β1,β2,β3}. Since two
maps are equal if they have the same action on a basis, if we can find a way to match the
two sets of eigenvalues λ and β , we would then recover the operator-sum representation
for �–1

x .
By evaluating the PTM �E of E , we can relate the coefficients in the operator-sum rep-

resentation (28), with those appearing in the expression for �–1
x (see Appendix D for a

derivation). In particular, we want these to hold:

(
�–1

x
)

11 = β0 + β1 – β2 – β3, (29)
(
�–1

x
)

22 = β0 – β1 + β2 – β3, (30)
(
�–1

x
)

33 = β0 – β1 – β2 + β3 (31)

plus the trace-preserving condition 1 = β0 + β1 + β2 + β3, that the inverse map must satisfy
because the direct map is trace-preserving. This condition is inherently satisfied by �–1

x ,
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since its first row has the form (1, 0, 0, 0). This system has solutions β0 = (1 – p)/(1 – 2p),
β1 = –p/(1 – 2p), and β2 = β3 = 0, and substituting them back into Eq. (28), we obtain the
operator-sum representation of the inverse bit-flip map

N –1
x (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σxOσx. (32)

By virtue of Corollary II, and noticing that the coefficients appearing in the expression
above have always opposite signs, we are sure that this map is not CP, as expected, yet it
possesses an operator sum representation. Note how similar the direct and inverse map
are, a feature which we will encounter in all the cases discussed here.

The same procedure can be applied to phase-flip (or dephasing, generated by σz), and
bit-phase-flip (generated by σy) channels, yielding inverse maps

N –1
z (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σzOσz, (33)

N –1
y (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σyOσy. (34)

We can plug these inversion maps in the deconvolution formula (19) to obtain noise-
free expectation values. In particular, assume we are measuring a Pauli matrix O = σα , and
that the system is subject to one of the noise processes ρ → ρβ = Nβ (ρ) with β = {x, y, z}.
Then the ideal expectation values 〈σα〉ρ = Tr[σαρ] can be expressed in compact form as
(see Appendix D for the explicit derivation)

〈σα〉 = δαβ〈σα〉ρβ
+ (1 – δαβ )

1
1 – 2p

〈σα〉ρβ
. (35)

It is then clear that if the noise happens along the measurement direction (α = β), then
the noise does not affect the measurement statistics, as the ideal and noisy value coincide.
While for orthogonal directions (α �= β), these are equally contracted by a factor 1 – 2p,
thus recovering the usual pictorial representation of the contracting Bloch sphere on the
plane orthogonal to the noise [15].

4.2 Depolarizing noise
The depolarizing noise, introduced above,

Ndep(ρ) = (1 – p)ρ +
p1
2

, (36)

leaves the state untouched with probability 1–p, and sends it to the completely mixed state
1/2 with probability p. The channel can be expressed in Kraus form in multiple ways, one
of them being [15]

Ndepol(ρ) =
(

1 –
3p
4

)
ρ +

p
4

(σxρσx + σyρσy + σzρσz), (37)

with Kraus operators {A0 =
√

1 – 3p/41, A1 = √pσx/2, A2 = √pσy/2, A3 = √pσz/2}. Follow-
ing the same procedure used for the bit-flip channel, one obtains the inverse linear map
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(see Appendix D)

N –1
depol(O) =

1
1 – p

(
O –

p
2

Tr[O]1
)

. (38)

While this is already a known result in the literature [10, 36, 39, 48, 49], it is presented
without an explicit constructive derivation, as given here.

Using this formula in the deconvolution tomographic reconstruction (19), we find

〈O〉 =
1
2

Tr[O] +
∑

α

Tr[Oσα]
1 – p

〈σα〉Ndep(ρ), (39)

where it is clear that to counterbalance the effect of the depolarizing channel, whose effect
on the Bloch sphere is to contract it uniformly, one needs perform an expansion of the
same amount, obtained dividing by 1 – p.

While our analysis is focused only on single qubit systems, it is worth noticing that a
similar approach can be used to correct correlated and asymmetric depolarizing channels
acting on multi-qubits systems [50], as recently shown in [27].

4.3 General Pauli channel
A more general and interesting case is the general Pauli channel, where noise intensities
are different along the three Pauli axes

Np(ρ) = p0O + pxσxρσx + pyσyρσy + pzσzρσz. (40)

The channel is parametrized by the probabilities p = (p0, px, py, pz), with the trace-
preserving condition implying p0 = 1 – px – py – pz . Upon choosing appropriate values
for p, this channel reduces to all noise maps treated before. Though of considerable more
general structure, the inverse map of this channel is derived using the same machinery
developed above, and eventually one obtains

N –1
p (O) = β0O + β1σxOσx + β2σyOσy + β3σzOσz with

β0 =
1
4

(
1 +

1
1 – 2(px + py)

+
1

1 – 2(px + pz)
+

1
1 – 2(py + pz)

)
,

β1 =
1
4

(
1 –

1
1 – 2(px + py)

–
1

1 – 2(px + pz)
+

1
1 – 2(py + pz)

)
,

β2 =
1
4

(
1 –

1
1 – 2(px + py)

+
1

1 – 2(px + pz)
–

1
1 – 2(py + pz)

)
,

β3 =
1
4

(
1 +

1
1 + 2(px + py)

–
1

1 – 2(px + pz)
–

1
1 – 2(py + pz)

)
.

(41)

One can check that varying p it is possible to recover the inverse maps of all the cases
treated before. For example, for p = (1 – p, p, 0, 0) corresponding to the bit-flip channel,
one gets β0 = (1 – p)/(1 – 2p) and β1 = –p/(1 – 2p), as in Eq. (32).
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The noise deconvolution applied to measurements of Pauli matrices O ∈ {σx,σy,σz},
leads to the following relations

〈σx〉 =
1

1 – 2(py + pz)
〈σx〉Np(ρ),

〈σy〉 =
1

1 – 2(px + pz)
〈σy〉Np(ρ),

〈σz〉 =
1

1 – 2(px + py)
〈σz〉Np(ρ),

(42)

which can be used together with (19) to reconstruct the expectation value of a general
observable O. Again, we see that the noise disturbs the estimation along orthogonal direc-
tions, as in all previous cases. Note that the explicit inversion of the general Pauli channel
was also recently reported in ref. [5].

4.4 Amplitude damping
The amplitude damping (AD) channel describes the energy loss of a quantum system,
for example obtained through relaxation from the excited to the ground state. Its Kraus
representation is

NAD(ρ) = V0ρV †
0 + V1ρV †

1 ,

V0 =

[
1 0
0

√
1 – γ

]
, V1 =

[
0 √

γ

0 0

]
,

(43)

where γ ∈ [0, 1] is a parameter that encodes the strength of the energy loss process, which
for real systems is often expressed in terms of characteristic decay times, as discussed in
Sect. 5.

While still being trace preserving (TP), amplitude damping channel is not unital, since
NAD(1) = 1 + γ Z. This in turn implies that the Pauli Transfer Matrix �AD is not diagonal,
but has an addition nonzero element in the last row of first column. This changes the
derivation of the inverse map with respect to the previous cases, but it can still be carried
out without major changes (see Appendix E). The inverse linear map in operator sum
representation is then found to be

N –1
AD(ρ) = K0OK†

0 – K1OK†
1 ,

K0 =

[
1 0
0 1√

1–γ

]
, K1 =

[
0

√
γ

1–γ

0 0

]
.

(44)

Up until now, all noisy channels (and their inverse maps) had trivial adjoint map, since
all Kraus operators were Hermitian. However this is not the case for amplitude damping,
since both V1 �= V †

1 and K1 �= K†
1 . Thus, one must be careful in applying the adjoint inverse

N̂ –1 in Eq. (19), and not just N –1 of (44) (see Appendix E for an extended discussion).
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Deconvolution of amplitude damping for measurements of the Pauli matrices leads to

〈σx〉 =
1√

1 – γ
〈σx〉NAD(ρ),

〈σy〉 =
1√

1 – γ
〈σy〉NAD(ρ),

〈σz〉 =
1

1 – γ

(〈σz〉NAD(ρ) – γ
)
.

(45)

Similarly, one can also obtain the inverse map of the generalized amplitude damping
(GAD) channel, used to model the interaction of a qubit with an environment at a finite
temperature [15, 51]. Such channel is parametrised by two parameters γ and p, and it is
defined as

NGAD(ρ) = A0ρA†
0 + A1ρA†

1 + A2ρA†
2 + A3ρA†

3,

A0 =
√

p

[
1 0
0

√
1 – γ

]
, A1 =

√
p

[
0 √

γ

0 0

]
,

A2 =
√

1 – p

[√
1 – γ 0
0 1

]
, A3 =

√
1 – p

[
0√
γ 0

]
.

(46)

One can check that the following map is the inverse of the GAD channel

N –1
GAD(ρ) = B0ρB†

0 – B1ρB†
1 + B2ρB†

2 – B3ρB†
3,

B0 =
√

p

[
1 0
0

√
1

1–γ

]
, B1 =

√
p

[
0

√
γ

1–γ

0 0

]
,

B2 =
√

1 – p

[√
1

1–γ
0

0 1

]
, B3 =

√
1 – p

[
0√
γ

1–γ
0

]
,

(47)

with corresponding noise deconolved Pauli expectation values given by

〈σx〉 =
1√

1 – γ
〈σx〉NGAD(ρ),

〈σy〉 =
1√

1 – γ
〈σy〉NGAD(ρ),

〈σz〉 =
1

1 – γ

(〈σz〉NGAD(ρ) – γ (2p – 1)
)
.

(48)

4.5 Two-Kraus channels
We now move our attention to the set of channels generated by two parametrized Kraus
operators

Ntwo(ρ) =
∑

i=1,2

AiρA†
i , (49)

with A1 = cosα|0〉〈0| + cosβ|1〉〈1|, and A2 = sinβ|0〉〈1| + sinα|1〉〈0|. This channel reduces
to bit-flip for α = β , and to amplitude damping for α = 0.



Mangini et al. EPJ Quantum Technology            (2022) 9:29 Page 15 of 30

Following a procedure similar to the amplitude damping case, the inverse map of the
two-Kraus channels is found to be

Ntwo(O)–1 = B1OB†
1 – B2OB†

2 with

B1 =

[ √
2 cosβ√

cos 2α+cos 2β
0

0
√

2 cosα√
cos 2α+cos 2β

]

B2 =

[
0

√
2 sinβ√

cos 2α+cos 2β√
2 sinα√

cos 2α+cos 2β
0

]
(50)

Similarly to amplitude damping, one of the generators (B2) is not Hermitian, thus we
must employ the adjoint inverse map when evaluating the deconvolved expectation values.
By straightforward calculations the following holds:

〈σx〉 =
1

cos(α – β)
〈σx〉Ntwo(ρ),

〈σy〉 =
1

cos(α + β)
〈σy〉Ntwo(ρ),

〈σz〉 = hαβ

(
cos2 β + sin2 α – 1 + 〈σz〉Ntwo(ρ)

)
,

(51)

with hαβ = 2/(cos(2α) + cos(2β)).
Note that upon varying the parameters α and β , the formulas above correctly reduce

to the other limiting channels. For example, setting α = 0 leads to amplitude damping
channel (45), with cos(β) :=

√
1 – γ .

5 Experimental deconvolution
In this section we provide some concrete applications of the noise deconvolution proce-
dures for qubit tomography outlined above. In particular, we show both numerically and
by experimentation on quantum hardware by Rigetti how to address a dechoerence noise
model, and we also provide numerical evidence for the deconvolution of the general Pauli
channel (40). All simulations are performed using PyQuil and the real quantum device
usded is “Aspen-9”, accessed via Rigetti’s Quantum Cloud Services (QCS) [23, 52].

5.1 Decoherence noise model
The concurrent action of a dephasing channel followed by amplitude damping is referred
to as decoherence noise, which is an effective way to describe the noisy evolution a qubit
undergoes due to uncontrolled interaction with its external environment. Using the defi-
nitions (25) and (43), one obtains

Ndec(ρ) =
(
NAD(γ ) ◦Nz(p)

)
([

a b
c 1 – a

])

=

[
1 – (1 – a)(1 – γ ) (1 – 2p)

√
1 – γ b

(1 – 2p)
√

1 – γ c (1 – γ )(1 – a)

]

=

[
1 – (1 – a)e–t/T1 e–t/T2 b

e–t/T2 c e–t/T1 (1 – a)

]
,

(52)



Mangini et al. EPJ Quantum Technology            (2022) 9:29 Page 16 of 30

where we have introduced the relaxation times T1 and T2 characterizing the “quality” of
the physical qubits. These are related to the noise parameters γ and p through the follow-
ing relations

γ = 1 – e–t/T1 ,

p =
1
2
(
1 – e–(t/T2–t/2T1)),

(53)

where t is a time parameter indicating the duration of the noise process.
Since the correction terms in the deconvolution formulas for dephasing (45) and ampli-

tude damping (35) are multiplicative, for a decoherence channel these combine as

〈σx〉 =
1

(1 – 2p)
1√

1 – γ
〈σx〉Ndec(ρ),

〈σy〉 =
1

(1 – 2p)
1√

1 – γ
〈σy〉Ndec(ρ),

〈σz〉 =
1

1 – γ

(〈σz〉Ndec(ρ) – γ
)
.

(54)

Additionally, if the quantum system under investigation is subject to repeated applica-
tions of a decoherence noise channel, i.e. N ◦m

dec (ρ) = N (1)dec ◦N (2)
dec · · · ◦N (m)

dec (ρ), then the
ideal expectation values are obtained through the following equations

〈σx〉 =
1

((1 – 2p)
√

1 – γ )m 〈σx〉Ndec(ρ),

〈σy〉 =
1

((1 – 2p)
√

1 – γ )m 〈σy〉Ndec(ρ),

〈σz〉 =
1

(1 – γ )m

(〈σz〉Ndec(ρ) – 1 + (1 – γ )m)
.

(55)

In Fig. 2 we show the application of these formulas to deconvolve the decoherence noise
occurring on a qubit. The specific quantum circuit used for the experiments is showed in
Fig. 2(a): first the system is prepared in the superposition state |+〉 = H|0〉 = (|0〉 + |1〉)/√2,
then we let qubit decohere for a certain amount of time dictated by the number m of
(noisy) identities each of which takes a time t, and at last we measure the expectation value
of the operator σx. Clearly, in a noise-free scenario, the result would always be 〈σx〉 = 1, in-
dependent of the depth m. Figure 2(c) shows a simulation of these circuits with stochastic
measurement outcomes for different values of m, and for a given choice of noise parame-
ters p and γ . For comparison, the individual effect of dephasing and amplitude damping
channels alone are also showed. Thanks to Eq. (55) we can invert the effect of the deco-
herence noise, and so retrieve the ideal noise-free results.

We also tested this procedure on quantum hardware provided by Rigetti, in particular
on the device “Aspen-9”, whose topology is reported in Fig. 2(b). The device comes with the
calibration data reporting the T1 and T2 parameters for any qubit, as well as the time du-
ration of a single gate. Identities in the circuits are used to introduce time delays, and thus
let the qubit decohere for longer intervals of time, depending on the depth m. Differently
from the previous simulations where only the identities are supposed to introduce (de-
coherence) noise, in the real case scenario noise happens along the whole computation,
including state preparation, application of all gates in the circuit (both Hadamards and
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Figure 2 Deconvolution of decoherence noise both on a simulator and the real quantum device Aspen-9 by
Rigetti. (a) Scheme of the quantum circuit used in the simulations and runs on the actual quantum device.
A qubit is prepared in the superposition state and then it is left to decohere for a certain amount of time,
dependent on the numberm of identities in the circuit. Eventually the qubit is measured in the x basis to
estimate the expectation value σx . (b) Scheme of Aspen-9, the real quantum device by Rigetti used to run the
quantum circuit. (c) Simulation of the decoherence noise for dephasing (p) and damping (γ ) intensities equal
to those characterizing qubit 25 of Aspen-9, with gate duration of 40 ns. For comparison, the effect of the
action of these channels alone is also showed. Using the deconvolution formulas for decoherence noise (55),
it is possible to mitigate the decay caused by the noise, and recover the ideal result. Each expectation value is
estimated evaluating the mean over nshots = 2048 measurement outcomes, and the error bars showed are
the statistical error of the mean. (d) Results obtained from running the circuit on qubit 4 of Aspen-9,
characterized by relaxation times T1 = 17.43 · 10–6 s and T2 = 10.67 · 10–6 s, with nshots = 2048, and the error
bars are twice the error of the mean. See main text for comments on the results. (e) Results obtained from
running the circuit on qubit 25 of Aspen-9, characterized by relaxation times T1 = 35.91 · 10–6 s and
T2 = 25.11 · 10–6 s, with nshots = 1024. Also in this case the error bars are equals to twice the error of the mean.
See main text for comments on the results

Identities), and finally measurement errors. Of these, the most detrimental are undoubt-
edly readout errors, and we addressed them by using the standard mitigation technique of
calibrating the device and inverting the assignment probability matrix to recover readout
mitigated results. Calibration data reports that the time it takes to execute a single qubit
identity gate is t = 40 ns, and together with T1 and T2, these are used to calculate the pa-
rameters p and γ of the decoherence noise, using relations (53). These are in turn used
inside the deconvolution formulas to recover the noise-free results. Figures 2(d) and 2(e)
show the results of the execution of circuit Fig. 2(a) on qubits 4 and 25, respectively.

The noise mitigation procedure on qubit 4 shown in panel 2(d), yields slightly unphysical
results, in the sense that the mitigated value exceeds one, which is of course not possible.
A naive solution to this problem could be to impose that the mitigation results are in
the physical range [–1, +1], so that if the result exceed the limits, it should be substituted
with the appropriate physical bound. Though, assuming a gate time duration of t = 35 ns
instead of standard 40 ns, yields results which are more in agreement with the expected
theoretical behaviour for decoherence noise, as the deconvoluted results are compatible
with one, as expected. This hints that either the quality of the qubit is better then reported
in the available calibration data (either due to shorter gate times t, or larger T1 and T2),
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or that the decoherence model alone poorly describes the noise happening on idle qubit
4 left interacting with the external environment. However, the good accordance between
the deconvoluted results with t = 35 ns and the experiments suggests the first hypothesis
to hold.

Such conclusion is also corroborated by the experimental results obtained with qubit
25. In fact, using the deconvolution formulas with reported T1, T2 and standard gate time
(t = 40 ns), we are able to mitigate the effect of noise with good accuracy, as showed in
Fig. 2(e), hinting that indeed the decay law of the qubit is well described through a de-
coherence noise model. Also, note that the simulation in Fig. 2(c) is tuned with the same
noise parameters p and γ characterizing qubit 25. Apart from fluctuations due to, e.g im-
perfect readout, stochastic measurement outcomes, and noisy Hadamards, there is good
agreement between the simulated (red curve in panel (c)) and experimental result (red
curve in panel (e)). We do not report analogues experiments using other qubits in the
device that produced obviously biased data.

5.2 Arbitrary Pauli channel
We implemented a simulation of the noise deconvolution of the general Pauli channel (40),
using the quantum virtual machine (QVM) simulator provided with PyQuil [52]. The sim-

Figure 3 Simulation of the deconvolution process for the general Pauli channelNp (40). The noise
parameters along the three Pauli axes are set to px = 0.1, py = 0.05, pz = 0.2. The results are obtained
simulating the circuit portrayed on top of the image for nshots = 1024 shots and for multiple values of the
angle θ . Then, the deconvolution formulas (42) are used to retrieve the ideal noise-free result. It is clear that
the deconvolution effectively mitigates the Pauli noise yielding a final result which is much closer to the ideal
noise-free one, up to differences due to stochastic measurement outcomes. In particular, the estimation of σy

is dominated by the statistical error, which is amplified by the correction factor 1/(1 – 2(px + pz )) = 2.5
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ulated circuit is showed on top of Fig. 3. A qubit starting in the ground state is rotated in
the Bloch sphere around the y axis via Ry(θ ) = e–iθσy/2, and then it is subject to the general
Pauli noise (yellow box), simulated applying a Pauli transformation chosen randomly with
probabilities px, py and pz . At last, we estimate the expectation value of the three Pauli ma-
trices by appending the appropriate change of basis gate, i.e Mj ∈ {1, H , HS†} for {σz,σx,σy}
respectively. The noise parameters (px, py, pz) are used within the deconvolution formu-
las (42) to recover the mitigated results (green curve), which are, as expected, in perfect
agreement with the ideal noise-free ones, obtained from executing the quantum circuit
without the noisy channel (red curve).

6 Conclusions
In conclusion we have shown how mathematically invertible noise maps can always be
removed from the final measurement stage, so that one can obtain unbiased expectation
values of general observables provided that the noise process in known. We illustrated the
method on most known qubit noise maps, and systematically derived their inverse maps
(see Table 1). We simulated the noise deconvolution procedure for the case of a general
Pauli channel (Fig. 3) and illustrated our method on noise on actual quantum hardware
(Fig. 2).

Appendix A: Kraus decomposition
A quantum physical evolution is represented by (i) linear, (ii) completely-positive and
(iii) trace-preserving (CPTP) maps taking quantum density operators to quantum den-
sity operators. A map satisfying these three properties is called a quantum channel, and
can be interpreted as a quantum evolution obtained through the interaction of the system
with an external environment. A map is a quantum channel if and only if it admits a Kraus
(or operator-sum) representation as

ρ −→ E(ρ) =
∑

k

AkρA†
k , (A.1)

with the trace preserving condition requiring

TrE(ρ) = Trρ 
⇒
∑

k

A†
kAk = 1. (A.2)

The operators {Ak}k are called the Kraus operators of the channel, which are however
non-unique [15]. Such channels are often referred to as stochastic channels [29, 30], and if
they also preserve the identity (E(1) = 1), they are called unital (or bistochastic). Unitality
corresponds to the requirement that also

∑
k AkA†

k = 1, from which it is clear that a suf-
ficient condition for a CPTP map to be unital is for its Kraus operators to be self-adjoint
Ak = A†

k ∀k.

Appendix B: Tomographic reconstruction formula for qubits
In this appendix we show how the tomographic reconstruction formula for systems made
of qubits H = C

2 can be recovered starting from the standard basis expansion in terms
of the Pauli matrices [35]. The set of matrices {1,σx,σy,σz} form an orthonormal set, and
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constitutes a basis for the space of 2 × 2 complex matrices L(H) = C
2×2. So, given an

operator O ∈L(H), the following holds:

O =
1Tr[O] + σx Tr[Oσx] + σy Tr[Oσy] + σz Tr[Oσz]

2

=
Tr[O]

2
1 +

∑

α=x,y,z

Tr[Oσα]
2

σα

=
∑

α=x,y,z

1
3

(
3 Tr[Oσα]

2
σα +

Tr[O]
2

1
)

=
∑

α=x,y,z

1
3
E[O](σα), (B.1)

where

E[O](σα) =
(

3 Tr[Oσα]
2

σα +
Tr[O]

2
1
)

(B.2)

is the desired quantum estimator, with {σx,σy,σz} constituting the quorum of observables
of the tomographic reconstruction. Equation (B.1) has the same form of the tomographic
reconstruction formula in Eq. (12), with substitutions

∫




−→
∑

λ

,

dλ −→ 1/3,

λ −→ {x, y, z},
{Qλ} −→ {σx,σy,σz},

which account for the fact that we are dealing with a discrete, and not continuous, basis
expansion.

Also, note that (B.1) is not the unique choice for the tomographic formula. In fact, one
could use a continuous parametrization of the group SU(2) given by operator R(�n,ψ) =
ei�s·�nψ , where �s is the spin of the particle (�s = �σ /2 for qubits), �n = (cosφ sin θ , sinφ sin θ ,
cosφ), θ ∈ [0,π ] and φ,ψ ∈ [0, 2π ] [35].

Appendix C: Noise deconvolution for qubits
In this appendix we derive the noise deconvolution formula for qubits. Let ρ be a quantum
state, and N a noise channel admitting an inverse map N –1, and N̂ –1 its adjoint map.
Then, using Eq. (18) in (16), yields

〈O〉 =
∑

α

1
3

Tr
[
N̂ –1(

E(O)[σα]
)
N (ρ)

]

=
∑

α

1
3

Tr

[(
3
2

Tr[Oσα]N̂ –1(σα)

+
1
2

Tr[O]N̂ –1(1)
)
N (ρ)

]
(C.1)
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=
∑

α

1
3

(
3
2

Tr[Oσα]
〈
N̂ –1(σα)

〉
N (ρ)

+
1
2

Tr[O] Tr
[
N̂ –1(1)N (ρ)

]
︸ ︷︷ ︸

=Tr[1ρ]=1

)

=
1
2

Tr[O] +
1
2

∑

α=x,y,z
Tr[Oσα]

〈
N̂ –1(σα)

〉
N (ρ).

Equation (C.1) lets us deconvolve the effect of noise by evaluating the expectation value
of the noise-inverted Pauli matrices σα on the noisy state N (ρ). In particular, note that the
formula remains valid whether the noise is unital—that is, N (1) = N –1(1) = 1—or not. In
fact, in the second line we can always move the adjoint inverse noise N̂ –1 from the identity
to the noisy state N (ρ), thus obtaining Tr[N̂ –1(1)N (ρ)] = Tr[1N –1(N (ρ))] = Tr[ρ] = 1.

Appendix D: Inverse maps of noise channels
In this appendix we explicitly calculate the inverse map of the noise channels discussed in
the main text.

D.1 Bit-flip, phase-flip, and bit-phase-flip channels
In the following we focus on the bit-flip channel, but the calculations are identical for the
phase-flip and bit-phase-flip channels. The bit-flip channel is described by Kraus opera-
tors A0 =

√
1 – p1 and A1 = √pσx so that its action is given by

Nx(ρ) = (1 – p)ρ + pσxρσx. (D.1)

The Pauli Transfer Matrix �x is defined as

(�x)ij =
1
2

Tr
[
σiNx(σj)

]
. (D.2)

By straightforward calculation one obtains

(�x)11 = (1 – p) + p = 1,

(�x)22 = (1 – p) – p = 1 – 2p,

(�x)33 = (1 – p) – p = 1 – 2p,

(�x)ij = 0, for i �= j

thus yielding

�x =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 (1 – 2p) 0
0 0 0 (1 – 2p)

⎤

⎥⎥⎥⎦ , (D.3)
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whose inverse is trivially

�–1
x =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1

(2p–1) 0
0 0 0 1

(2p–1)

⎤

⎥⎥⎥⎥⎦
. (D.4)

The eigenvectors of such Pauli Transfer Matrix are clearly the Pauli matrices {|1〉〉, |σx〉〉,
|σy〉〉, |σz〉〉} with eigenvalues λ = (1, 1, 1/(1 – 2p), 1/(1 – 2p)).

The operator sum representation of N –1
x can be reconstructed by noticing that the map

E(O) =
3∑

j=0

βjσjOσj, (D.5)

has also the Pauli matrices as eigenvectors, but with eigenvalues β = (β0,β1,β2,β3). Since
two maps are equals if they have the same action on a basis, then we can find the operator-
sum representation of N –1

x by finding those βj such that λ = β . If we can find such map-
ping, then plugging those value in (D.5), we recover the operator sum of the inverse map.

The PTM matrix �E of E amounts to

�E = diag(β0 + β1 + β2 + β3,

β0 + β1 – β2 – β3,

β0 – β1 + β2 – β3,

β0 – β1 – β2 + β3).

The equality �–1
x = �E correspond to the system of equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 = β0 + β1 + β2 + β3,

1 = β0 + β1 – β2 – β3,
1

1–2p = β0 – β1 + β2 – β3,
1

1–2p = β0 – β1 – β2 + β3,

(D.6)

where the first equation is the trace-preserving condition, dictated by the fact that the
direct map is TP, and so the inverse map has to be. This condition is also evident from
the expression of �–1

x and �E , since the first row is of the form (1, 0, 0, 0). The system of
equations (D.6) has solutions

β0 =
1 – p

1 – 2p
,

β1 = –
p

1 – 2p
,

β2 = β3 = 0
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and substituting these values in Eq. (D.5) leads to the desired operator-sum representation

N –1
x (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σxOσx. (D.7)

Similarly, the same procedure can be carried out for the dephasing (generated by σz) and
bit-phase-flip channel (generated by σy), leading to

N –1
z (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σzOσz, (D.8)

N –1
y (O) =

1 – p
1 – 2p

O –
p

1 – 2p
σyOσy. (D.9)

Note that for all these three cases the adjoint channels are equal to the direct ones, i.e.
N̂ –1 = N –1, since the generating operators are all Hermitian (see Appendix E for a case
where this is not true).

We now proceed evaluating the explicit form of the deconvolution formula. Let β ∈
{x, y, z} index one of the noise channels Nβ ∈ {Nx,Ny,Nz}, the action of the inverse map
on a Pauli matrix σα amounts to

N –1
β (σα) =

1
1 – 2p

(
(1 – p)σα – pσβσασβ

)

=
1 – 2δαβp

1 – 2p
σα ,

where in the second line we made use of the fact that σβσασβ = (2δαβ – 1)σα . Substituting
this in Eq. (C.1), one obtains

〈O〉β =
1
2

Tr[O] +
1

2(1 – 2p)
∑

α=x,y,z
Tr[Oσα](1 – 2δαβp)〈σα〉Nβ (ρ),

where the subscript β in 〈O〉β is just used to denote that we are deconvolving with respect
to noise Nβ , but remember that it correspond to the mitigated noise-free result.

Clearly, when the observable to be measured is itself a Pauli matrix O = σγ , this further
simplifies to

〈σγ 〉β =
1

2(1 – 2p)
∑

α=x,y,z
Tr[σγ σα]
︸ ︷︷ ︸

=2δγα

(1 – 2δαβp)〈σα〉Nβ (ρ)

=
1 – 2δγβp

1 – 2p
〈σγ 〉Nβ (ρ).

D.2 Depolarizing channel
The Depolarizing channel is represented by the map

Ndep(ρ) =
(

1 –
3p
4

)
ρ +

p
4

(σxρσx + σyρσy + σzρσz),

having Kraus operators {A0 =
√

1 – 3p/41, A1 = √pσx/2, A2 = √pσy/2, A3 = √pσz/2}.
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By straightforward calculation, the Pauli Transfer Matrix amounts to

�dep =

⎡

⎢⎢⎢⎣

1 0 0 0
0 1 – p 0 0
0 0 1 – p 0
0 0 0 1 – p

⎤

⎥⎥⎥⎦ , (D.10)

with inverse

�–1
dep =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1

1–p 0 0
0 0 1

1–p 0
0 0 0 1

1–p

⎤

⎥⎥⎥⎥⎦
, (D.11)

Following the same procedure used for the bit-flip channel, one arrives at the system of
equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 = β0 + β1 + β2 + β3,
1

1–p = β0 + β1 – β2 – β3,
1

1–p = β0 – β1 + β2 – β3,
1

1–p = β0 – β1 – β2 + β3

(D.12)

which has solutions β0 = (4 – p)/4(1 – p) and β1 = β2 = β3 = –p/4(1 – p). Substituting these
values in (D.5), and using the relation 2 Tr[O]1 = O + σxOσx + σyOσy + σzOσz, one obtains

N –1
depol(O) =

1
1 – p

(
O –

p
2

Tr[O]1
)

. (D.13)

Plugging this in the tomographic deconvolution formula (C.1), leads to:

〈O〉 =
1
2

Tr[O] +
1
2
∑

α

Tr[Oσα]
1 – p

〈σα〉Ndep(ρ), (D.14)

from which it is clear that whenever a Pauli matrix is to be measured, O = σk , then the
expectation values are contracted by a factor 1 – p, i.e. 〈σk〉 = 〈σk〉dep/(1 – p).

D.3 General Pauli channel
The most general channel involving only Pauli operators is the arbitrary Pauli channel,
given by

Np(ρ) = p0O + pxσxρσx + pyσyρσy + pzσzρσz (D.15)

characterized by probabilities p = (p0, px, py, pz), with the trace-preserving condition im-
plying p0 = 1 – px – py – pz . The PTM of this map is diagonal

�p = diag(1, p0 + px – py – pz,

p0 – px + py – pz, (D.16)

p0 – px – py + pz),
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and has trivial inverse

�–1
p = diag

(
1, (p0 + px – py – pz)–1,

(p0 – px + py – pz)–1, (D.17)

(p0 – px – py + pz)–1).

Again, using the same procedure as before, one arrives at the system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 = β0 + β1 + β2 + β3,
1

p0+px–py–pz
= β0 + β1 – β2 – β3,

1
p0–px+py–pz

= β0 – β1 + β2 – β3,
1

p0–px–py+pz
= β0 – β1 – β2 + β3,

(D.18)

whose solution is reported in Eq. (41) in the main text. The action of the inverse map on
the Pauli matrix σx is

N –1
p (σx) = β0σx + β1σxσxσx + β2σyσxσy + β3σzσxσz

= (β0 + β1 – β2 – β3)σx

=
1

1 – 2(py + pz)
σx,

and a similar expression also hold for σy and σz, from which one obtains the deconvolution
formulas in Eq. (42).

Appendix E: Amplitude damping
The amplitude damping channel is given by the map

NAD(ρ) = K0ρK†
0 + K1ρK†

1 ,

K0 =

[
1 0
0

√
1 – γ

]
, K1 =

[
0 √

γ

0 0

]
.

(E.1)

Differently from all the other cases treated above, this channel is not generated by cou-
pled sigma matrices, and in addition one of its generators is not Hermitian. This has two
consequences: first, we cannot straightforwardly apply the same eigenvalue matching pro-
cedure used above, second one must consider the adjoint channel when deconvolving.

The PTM of the amplitude damping channel is

�AD =

⎡

⎢⎢⎢⎣

1 0 0 0
0

√
1 – p 0 0

0 0
√

1 – p 0
p 0 0 1 – p

⎤

⎥⎥⎥⎦ (E.2)
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whose inverse is

�–1
AD =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1√

1–p 0 0
0 0 1√

1–p 0
–p

1–p 0 0 1
1–p

⎤

⎥⎥⎥⎥⎦
. (E.3)

In this case the eigenvalues of �AD and �–1
AD are not the Pauli matrices, and so we cannot

use the eigenvalue matching with the general map in (2). However, the two PTMs have
the same structure, so one may easily guess that the operator-sum representation of the
two maps share the same operators, something that also always happened in all previous
cases. Let us then suppose that the inverse map N –1

AD has the form

N –1
AD(·) = K̃0 · K̃†

0 – K̃1 · K̃†
1 (E.4)

with K̃0 = |0〉〈0| + κ|1〉〈1|, and K̃1 = τ |0〉〈1|, with κ , τ free parameters to be determined.
This map has PTM

�(κ , τ ) =

⎡

⎢⎢⎢⎣

1+κ2–τ2

2 0 0 0
0 κ 0 0
0 0 κ 0

1–τ2–κ2

2 0 0 1+τ2+κ2

2

⎤

⎥⎥⎥⎦ , (E.5)

and by requiring that �(κ , τ ) = �–1
AD, we obtain

κ =
1√

1 – γ
, τ =

√
γ

1 – γ
,

thus recovering the inverse map

N –1
AD(O) = K̃0OK̃†

0 – K̃1OK̃†
1 ,

K̃0 =

[
1 0
0 1√

1–γ

]
, K̃1 =

[
0

√
γ

1–γ

0 0

]
.

(E.6)

In order to evaluate the deconvolution formula, we first need to calculate the adjoint of
the inverse channel. Be � a linear map, its adjoint �̂ is defined as the unique map satisfying
the following relation

〈
A,�(B)

〉
=
〈
�̂(A), B

〉
, (E.7)

where 〈·, ·〉 denotes the Hilbert-Schmidt inner product 〈A, B〉 ≡ Tr[A†B]. Let’s consider a
generic linear map of the form

�(A) =
∑

k

αkVkAV †
k , αk ∈R, (E.8)
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which is, in general, neither CP nor TP, since we make no further hypothesis on αk and
Vk . By direct application of the definition of adjoint map, we obtain

〈
A,�(B)

〉 ≡ Tr
[
A†�(B)

]
= Tr

[
A†

∑

k

αkVkBV †
k

]

= Tr

[∑

k

αkV †
k A†VkB

]

= Tr

[(∑

k

αkV †
k AVk

)†

B
]

=
〈∑

k

αkV †
k AVk , B

〉

⇒ �̂(A) =
∑

k

αkV †
k AVk ,

where we used the linearity and cyclic property of the trace, as well as the fact that the
coefficients are real, α∗

k = αk ∈ R. We see that for any map of the form (E.8), its adjoint
is obtained by simply substituting the operators with their adjoint, i.e. Vk → V †

k . If the
map � leverages only Hermitian operators Vk = V †

k , as it happens with every Pauli noise
channel, than the adjoint and the direct map of course coincides, �̂(·) = �(·). However, the
Amplitude Channel uses non Hermitian generators Vk , thus has a non-trivial, yet simple,
adjoint map.

Straightforward application of the deconvolution formula then leads to the deconvolved
expectation values

〈σx〉 =
1√

1 – γ
〈σx〉NAD(ρ),

〈σy〉 =
1√

1 – γ
〈σy〉NAD(ρ),

〈σz〉 =
1

1 – γ

(〈σz〉NAD(ρ) – γ
)
.

(E.9)

Appendix F: 2-Kraus channel
The set of channels considered here is generated by two parametrized Kraus operators

Ntwo(ρ) =
∑

i=1,2

AiρA†
i , (F.1)

with A1 = cosα|0〉〈0|+cosβ|1〉〈1|, and A2 = sinβ|0〉〈1|+sinα|1〉〈0|. The PTM of this chan-
nel and its inverse are respectively

�two =

⎡

⎢⎢⎢⎣

1 0 0 0
0 cos(α – β) 0 0
0 0 cos(α + β) 0

cos(2α)–cos(2β)
2 0 0 cos(2α)+cos(2β)

2

⎤

⎥⎥⎥⎦ , (F.2)
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�–1
two =

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1

cos(α–β) 0 0
0 0 1

cos(α+β) 0
cos(2β)–cos(2α)
cos(2α)+cos(2β) 0 0 2

cos(2α)+cos(2β)

⎤

⎥⎥⎥⎥⎦
. (F.3)

Using the trigonometric relation

cos(2α) + cos(2β) = 2 cos

(
2α – 2β

2

)
cos

(
2α + 2β

2

)

= 2 cos(α – β) cos(α + β)

we can rewrite the elements of �–1
two as

(
�–1

two
)

11 = hαβ cos(α + β),
(
�–1

two
)

22 = hαβ cos(α – β),

(
�–1

two
)

33 = h2
αβ

cos(2α) + cos(2β)
2

,

(
�–1

two
)

30 = hαβ

cos(2β) – cos(2α)
2

,

with hαβ = 2
cos(2α)+cos(2β) . Written in this way, these matrix elements are very similar to those

in the PTM of the direct channel �two. The differences are in the presence of the pre-factor
hαβ , as well as in the signs of the angles in elements (�–1

two)11 and (�–1
two)22, and in the sign in

the difference in element (�–1
two)30. This suggests that the operator-sum representation of

the inverse map can be obtained starting from the direct one with some small changes, as
it happened with the amplitude damping channel. First of all, we can multiply the Kraus
operators by

√
hαβ to introduce the pre-factor, then, to account for the difference in ele-

ments (�–1
two)11 and (�–1

two)22, we can subtract the two operators instead of summing them.
At last, element (�–1

two)30 can be fixed by changing α ↔ β in the first Kraus operator A1.
Incidentally, these changes also fix the (�–1

two)33 element to the correct value. Eventually,
making these changes leads to defining new operators

B1 =
√

hαβ cos(β)|0〉〈0| +
√

hα,β cos(α)|1〉〈1|,
B2 =

√
hαβ sin(β)|0〉〈1| +

√
hα,β sin(α)|1〉〈0|,

hαβ =
2

cos(2α) + cos(2β)
,

to be used within the inverse map

N –1
two(·) = B1 · B†

1 – B2 · B†
2.

One can check that this map has the desired Pauli Transfer Matrix �–1
two.

As with the amplitude damping case, one the generators (B2) is not Hermitian, thus one
must be careful in considering the adjoint inverse map when evaluating the deconvolved
mean values. By explicit calculations the following holds:

〈σx〉 =
1

cos(α – β)
〈σx〉Ntwo(ρ),
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〈σy〉 =
1

cos(α + β)
〈σy〉Ntwo(ρ), (F.4)

〈σz〉 = hαβ

(
cos2(β) + sin2(α) – 1 + 〈σz〉Ntwo(ρ)

)
.
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