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Abstract
Finance is one of the promising field for industrial application of quantum computing.
In particular, quantum algorithms for calculation of risk measures such as the value at
risk and the conditional value at risk of a credit portfolio have been proposed. In this
paper, we focus on another problem in credit risk management, calculation of risk
contributions, which quantify the concentration of the risk on subgroups in the
portfolio. Based on the recent quantum algorithm for simultaneous estimation of
multiple expected values, we propose the method for credit risk contribution
calculation. We also evaluate the query complexity of the proposed method and see
that it scales as˜O(

√

Ngr/ε) on the subgroup number Ngr and the accuracy ε , in
contrast with the classical method with˜O(log(Ngr)/ε2) complexity. This means that,
for calculation of risk contributions of finely divided subgroups, the advantage of the
quantum method is reduced compared with risk measure calculation for the entire
portfolio. Nevertheless, the quantummethod can be advantageous in high-accuracy
calculation, and in fact yield less complexity than the classical method in some
practically plausible setting.

Keywords: Quantum algorithm; Financial risk management; Multiple expected
value estimation

1 Introduction
Following the recent advance of quantum computing technology, people are now looking
for industrial applications. Finance is one of promising fields (see [1–4] as comprehensive
reviews). In particular, credit portfolio risk measurement is a problem for which applica-
tions of quantum algorithms are actively investigated. Every bank has a credit portfolio
that consists of loans it has issued, and it is exposed to the credit risk, that is, the risk to
incur the loss by defaults of obligors. In order to monitor such a risk, banks calculate risk
measures that quantify the amount of the risk, such as the value at risk (VaR), the per-
centile (e.g. 99%) of the loss distribution, and the conditional VaR (CVaR), the conditional
expectation of the loss given that it exceeds the VaR (see [5] as a recent review). They are
often evaluated by the Monte Carlo method [6], in which defaults are randomly generated
by some mathematical model and many sample values of the loss are taken. Generating
many samples, whose number is typically of order 106, for a large credit portfolio, which
can contain millions of obligors for major banks, is of high computational cost. On the
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other hand, there are some quantum algorithms for Monte Carlo integration [7–9] based
on quantum amplitude estimation [8, 10–17]. Although the classical Monte Carlo inte-
gration has sample complexity scaling as O(ε–2) on ε, the error tolerance for the integral,
query complexity in the quantum counterparts scales as O(ε–1), which is often referred
to as quantum quadratic speedup. Therefore, quantum Monte Carlo integration has been
applied to credit portfolio risk measurement in previous studies [18–20], and is expected
to provide speedup and sophistication for credit risk management in banks in the future.

In this paper, we focus on another problem in credit risk management, that is, calcu-
lation of risk contributions. VaR and CVaR indicate the amount of the risk in the entire
portfolio, but we sometimes want to know how each subportfolio contributes to the risk
measures. In other words, we want to quantitatively evaluate the concentration of the risk
to subgroups of obligors. If a bank has such measures, they will help it to analyze and dis-
perse the risk. For example, it can notice that the risk concentrates on obligors in some
specific industrial sector or some specific region, and that some business division in it
are taking the risk too much. In fact, such measures called risk contributions have been
defined and how to calculate them has been studied [5, 21–29]. They are written as condi-
tional expected values, and therefore calculating them by Monte Carlo is more costly than
the entire risk measures, since only a small fraction of samples matches the conditions and
we need to generate more samples.

Then, this paper aims at quantum speedup of credit risk contribution calculation. Note
that original quantum algorithms for Monte Carlo integration [7–9] output an estimate
of a single expected value, and that sequentially applying such an algorithm to calcula-
tion of risk contributions of Ngr obligor groups, which leads to O(Ngr/ε) complexity, is not
efficient. Instead, we resort to the recently proposed quantum algorithm for simultane-
ous calculation of expected values of multiple random variables [30] (see also [31]). This
algorithm outputs d expected values with accuracy ε, making ˜O(

√
d/ε) queries1 to two

oracles, of which one generates a state that encodes the probability distribution in ampli-
tudes and the other computes the random variables. Presenting how to construct these
oracles concretely, we show that this quantum algorithm can be in fact applied to risk
contribution calculation. We then see that the number of queries to building-block oper-
ations in the proposed method scales as ˜O(

√

Ngr/ε) on Ngr and ε. This means quantum
quadratic speedup with respect to ε, but not with respect to Ngr, since the classical Monte
Carlo method has ˜O(log(Ngr)/ε2) complexity. In general, the more finely divided obligor
groups we set, the more the advantage of the quantum method is reduced. Nevertheless,
as we will see later, in some practically plausible problem setting, the proposed method
seems to be advantageous against the classical method in terms of query complexity.

The rest of this paper is organized as follows. In Sect. 2, we review the Merton model
[32], a widely-used mathematical model for credit portfolio risk measurement, and intro-
duce risk measures such as VaR and CVaR and risk contributions. Section 3 is the main
part of this paper. In this section, as preparations, we present some oracles used as build-
ing blocks in the proposed method such as arithmetic operations, controlled rotation and
generation of a state corresponding to a standard normal random variable, and introduce
quantum multiple expected value estimation [30] and fixed-point quantum amplitude am-
plification (QAA) [33], which is another important base quantum algorithm. Then, we

1
˜O(·) denotes O(·) in the big-O notation with some logarithmic factors hidden.
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present the proposed quantum method as Theorem 3, the main result of this work, and
discuss its complexity and comparison with the classical method. Section 4 summarizes
this paper.

1.1 Notations
Here, we summarize some notations we later use. R+ denotes the set of all positive real
number: R+ := {x ∈ R|x > 0}. For n ∈ N, we define [n] := {1, . . . , n}. For ε ∈ R+, we say that
x ∈R is a ε-approximation of y ∈R if |x – y| ≤ ε. 1C denotes the indicator function, which
takes 1 if the condition C is satisfied and 0 otherwise. δa,b denotes the Kronecker delta: for
integers a and b, δa,b = 1 if a = b and 0 otherwise.

2 Credit risk measures and risk contributions
In this section, we introduce some risk measures and risk contributions for a credit port-
folio.

2.1 Credit risk model
First, we introduce a mathematical model for credit portfolio risk measurement, the Mer-
ton model [32], which is widely used in practical business and considered in this pa-
per. Let us consider a credit portfolio consisting of Nobl obligors, whose exposures2 are
e1, . . . , eNobl ∈ R+. Then, in the Merton model, we model the loss L in the portfolio as fol-
lows, using independent random variables X0, X1, . . . , XNobl that follows the standard nor-
mal distribution:

L(X0, X1, . . . , XNobl ) =
Nobl
∑

k=1

ekYk(X0, Xk). (1)

Here, for each k ∈ [Nobl], Yk is defined as

Yk(X0, Xk) := 1Zk (X0,Xk )<zk , (2)

and Zk is defined as

Zk(X0, Xk) := akX0 +
√

1 – a2
kXk , (3)

with constants zk ∈R and ak ∈ (0, 1). Yk = 1 and Yk = 0 mean that the kth obligor defaults
and not, respectively. Zk is called the value of the firm of the kth obligor, and it defaults if
Zk falls below some threshold zk . It is set according to the default probability of the obligor,
which is usually set based on some credit rating model. Note that X0 is common for all the
obligors but X1, . . . , XNobl affect only the first,. . . , Noblth obligors, respectively. X0 is called
a systematic risk factor, which reflects the situation of macro economy, and X1, . . . , XNobl

are called idiosyncratic risk factors, which reflect the matters unique to the credit of the
individual obligor.3 Zk is the linear combination of X0 and Xk as (3), and follows the stan-
dard normal distribution too. The coefficients a1, . . . , aNobl control correlations between

2An exposure of an obligor is the amount of loss that occurs when it defaults. It is expressed as the product of the loan
amount and the loss given default (LGD), the fraction of the amount which is not recovered. Although the LGD is some-
times modeled as a random variable, it is treated as a constant and therefore so is the exposure in this paper.
3Although the model with multiple systematic risk factors are often used, we consider the single-factor case for simplicity
in this paper. Extending the discussion in this paper to the multi-factor case is straightforward.
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the values of the firms: Cor(Zk , Zk′ ) = αkαk′ for different k, k′ ∈ [Nobl]. Therefore, setting
these coefficients close to 1 leads to strong correlations, which make simultaneous defaults
of many obligors more probable and fatten the tail of the loss distribution. Also note that,
under the condition that X0 takes a value x0 ∈ R, Yk follows a Bernoulli distribution with
the probability that Yk = 1 being

Pdef
k (x0) := �SN

(

zk – akx0
√

1 – a2
k

)

, (4)

where �SN is the cumulative distribution function (CDF) of the standard normal distri-
bution.

2.2 Risk measures
In order to quantitatively assess the risk in a portfolio, some risk measures have been pro-
posed. Most widely used one is the VaR. Given α ∈ (0, 1), which is typically set so that
1 – α = 0.99 (99%) or 0.999 (99.9%), we define the 100(1 – α)% VaR as

Vα := inf
{

x ∈ R|Pr
(

L(X0, X1, . . . , XNobl ) ≥ x
) ≤ α

}

. (5)

This means that the probability that the loss larger than 100(1 – α)% VaR occurs is at
most α.

Another widely used measure is the CVaR, which is also known as the expected shortfall.
Given v ∈R+, we define

Cv := EMer
[

L(X0, X1, . . . , XNobl )|L(X0, X1, . . . , XNobl ) ≥ v
]

, (6)

where EMer[·] denotes the (conditional) expected value with respect to randomness of
X0, X1, . . . , XNobl . Then, 100(1 – α)% CVaR is defined as CVα , that is, (6) with v = Vα . In
practice, we first obtain some estimation v of the VaR, and then calculate Cv as an estima-
tion of the CVaR.

2.3 Risk contributions
In practice, calculating only risk measures for the entire portfolio is not sufficient. Some-
times, we need to decompose the risk measures to contributions from the subgroups in
the portfolio, in order to, for example, analyze concentration of the risk. There are some
studies on how to define and calculate such risk contributions [21–29], which we now
outline.

First, we present how to represent the subgroups. We assume that the obligors in the
portfolio are divided into Ngr groups, in which the numbers of obligors are n1, . . . , nNgr ∈N.
Without loss of generality, we can assign small indexes to the obligors in the group with a
small index. That is, for each K ∈ [Ngr], we assume that the K th group contains κK

1 th,. . . ,
κK

nK
th obligors, where

κK
k :=

⎧

⎨

⎩

k; for K = 1, k ∈ [n1],
∑K–1

K ′=1 nK ′ + k; for K ∈ {2, . . . , Ngr}, k ∈ [nK ].
(7)
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Under this indexing, the loss in the K th group is given as

LK (X0, XκK
1

, . . . , XκK
nK

) :=
κK

nK
∑

k=κK
1

ekYk(X0, Xk). (8)

We set the group according to how finely we want to analyze the risk. For example, if
we want risk contributions of all individual obligors, we set Nobl groups, each of which
contains only one obligor. If not, we try appropriate grouping according to our purpose.
For example, we can group obligors by their industrial and/or regional sectors, in order to
monitor which sector the risk concentrate on and how large it is.

Now, we define the risk contributions as follows. With respect to the VaR, the risk con-
tribution of the K th group is

V K
α := EMer[LK |L = Vα], (9)

and that with respect to the CVaR is

CK
v := EMer[LK |L ≥ v]. (10)

Note that the sum of risk contributions over the groups is equal to the risk measure for
the entire portfolio:

∑Ngr
K=1 V K

α = Vα and
∑Ngr

K=1 CK
v = Cv, which makes these definitions of

risk contributions plausible.
Also note that Monte Carlo estimation of risk contributions is harder than that of the

risk measure for the entire portfolio. This is because of the definitions of risk contribu-
tions as conditional expected values. When we randomly generate samples of the random
variable set (X0, X1, . . . , XNobl ) or (X0, Y1, . . . , YNobl ), only the small fraction of them satisfy
the condition L = Vα or L ≥ v. Although we can nonetheless estimate CVaR contributions
with the probability that L ≥ v being not too small (say 0.01), estimating VaR contribu-
tions is much harder since the probability that the loss takes a specific value Vα is much
smaller. Even if we resort to quantum algorithms, estimating VaR contributions is hard,
since the probability that the condition for the conditional expected value is satisfied af-
fects the complexity, as we will see below. In light of this, we hereafter focus on CVaR con-
tributions, only referring to some existing studies on VaR contribution calculation, such
as the Monte Carlo method combined with importance sampling [26] and semi-analytical
methods based on saddle-point approximation [27–29].

3 Quantum algorithm for measuring risk contributions in a credit portfolio
3.1 Fixed-point binary representation by qubits
Before we present the quantum algorithm for CVaR contribution calculation, we need
some preparations. First of all, we now present the current setting for numerical calcula-
tion on a quantum computer. In this paper, we consider systems consisting of some qubits,
and use the bit string on a quantum register as the real number in fixed-point binary rep-
resentation. More strictly, in this paper, a quantum register, or simply a register, means a
system consisting of Ndig qubits, where Ndig is sufficiently large, and, for every x ∈ R, |x〉
denotes a computational basis state on such a register with a bit string corresponding to
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argmina∈G |x – a|, where G is some set of fixed-point binary numbers with Ndig digits. We
assume that G covers the sufficiently wide range on the real axis with the sufficiently small
interval, and that therefore approximating a real numbers with an element of G yields only
a small error, which we hereafter neglect. Besides, for �v = (v1, . . . , vd)T ∈ R

d , |�v〉 denotes a
state on d-registers system such that |�v〉 := |v1〉 · · · |vd〉.

3.2 Building-block oracles
Next, we introduce some oracles, which are used as parts of the algorithm.

Definition 1 We call the following oracles on a multi-register system arithmetic circuits.
• Addition Uadd: for any x, y ∈R, Uadd|x〉|y〉 = |x〉|x + y〉
• Multiplication Umul: for any x, y ∈R, Uadd|x〉|y〉|0〉 = |x〉|y〉|xy〉
• Comparison Ucomp: for any x, y ∈R, Ucomp|x〉|y〉|0〉 = |x〉|y〉(1x≥y|1〉 + 1x<y|0〉)
• Standard normal CDF U�SN : for any x ∈R, U�SN |x〉|0〉 = |x〉|�SN(x)〉
• Arccos and square root Uacsr: for any x ∈ [0, 1], Uacsr|x〉|0〉 = |x〉|arccos(

√
x)〉

In fact, many proposals on circuit implementations for addition and multiplication have
been made [34–45]. Comparison of x and y is virtually a subtraction y – x, since, when we
use the 2’s complement method to represent a negative number, the top bit of y – x is 1
if y – x ≤ 0 and 0 otherwise. Also note that subtraction can be done as addition in the 2’s
complement method. For the CDF of the standard normal distribution �SN, or, equiva-
lently, the error function erf(x) = 2�SN(

√
2x) – 1, many accurate approximations with el-

ementary functions have been proposed: for example, erf(x) ≈ 1 – 1/(1 + a1x + · · ·a6x6)16

with a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 =
0.0002765672, a6 = 0.0000430638 [46]. Therefore, U�SN can be approximately imple-
mented with circuits for addition, multiplication and division (note that division cir-
cuits have also been proposed [47–50]). For Uacsr, we can use implementation of inverse
trigonometric functions in [51], and that of square root in [52].

Definition 2 We call the following oracles UCRY on a system consisting of a quantum
register and a qubit the angle-controlled Y rotation:

UCRY :=
∑

θ∈G
|θ〉〈θ | ⊗ RY (θ ) (11)

Here, RY (θ ) :=
( cos θ sin θ

– sin θ cos θ

)

for any ϕ ∈R.

That is, UCRY is the rotation on the Bloch sphere around the Y -axis, whose angle θ

is specified by another register. These gates can be implemented as a series of multi-
controlled rotation gates with fixed angles [18].

Definition 3 We call the following oracle on a quantum register the SN state generation
oracle:

USN|0〉 = |SN〉 :=
NSN
∑

i=1

√

pSN
i

∣

∣xSN
i

〉

, (12)
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where NSN is an integer not less than 2,

pSN
i :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

xSN
1 +xSN

2
2

–∞ φSN(x) dx; for i = 1;
∫

xSN
i +xSN

i+1
2

xSN
i–1+xSN

i
2

φSN(x) dx; for i ∈ {2, . . . , NSN – 1},
∫ ∞

xSN
NSN–1+xSN

NSN
2

φSN(x) dx; for i = NSN,

(13)

φSN is the probability density function for the standard normal distribution, and, for i ∈
[NSN], xSN

i := –D + 2D(i – 1)/(NSN – 1) with D ∈R+.

This can be interpret as an oracle to generate a state in which the standard normal dis-
tribution is approximately encoded in the amplitudes. That is, with sufficiently large NSN

and D, the random variable XDiscSN that takes xSN
1 , . . . , xSN

NSN
with probabilities pSN

1 , . . . , pSN
NSN

,
respectively, can be viewed as a discretized approximation of a standard normal random
variable, and we obtain xSN

i with probability pi when we measure |SN〉. We hereafter use
XDiscSN as if it followed the standard normal distribution and neglect any errors caused by
this approximation.

Some implementations for this type of oracle have been proposed. Originally, the im-
plementation as a series of arithmetic circuits and controlled rotation was proposed in
[53], and some extensions and modifications on this have been also proposed recently
[54–56]. In another direction, some state preparation methods based on variational algo-
rithms with parametric quantum circuits have been considered [57–61].

3.3 Quantum algorithm for estimating multiple expected values
We next explain the quantum algorithm for simultaneous estimation of expected val-
ues of multiple random variables, which is the core of the proposed CVaR contribu-
tion calculation method. There are some recent proposals on such a quantum algorithm
[30, 31]. In this paper, we use the algorithm in [30]. Formally, we have the following theo-
rem.

Theorem 1 (Theorem 3.4 in [30]) Let (
, 2
,P) be a probability space where the sample
space 
 is finite and elements ω in 
 are associated with mutually orthogonal states |ω〉 on
a quantum register. Let �ξ be a R

d-valued random variable on (
, 2
,P), and suppose that
�ξ has a mean �μ = (μ1, . . . ,μd)T ∈ R

d and a covariance matrix 
 ∈ R
d×d . Suppose that we

have accesses to an oracle UP on a quantum register, which acts as

UP|0〉 =
∑

ω∈


√

P(ω)|ω〉, (14)

and an oracle U�ξ on a (d + 1)-registers system, which acts as

U�ξ |ω〉|0〉⊗d = U�ξ |ω〉∣∣�ξ (ω)
〉

(15)

for any ω ∈ 
. Then, for given δ ∈ (0, 1) and n ∈ N such that n ≥ log(d/δ), there is a quan-
tum algorithm QEstimatord(�ξ , n, δ) that outputs an estimate �μ′ = (μ′

1, . . . ,μ′
d)T of �μ such
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that

∣

∣μi – μ′
i
∣

∣ ≤
√

Tr
 log(d/δ)
n

(16)

for every i ∈ [d] with probability at least 1 – δ, making ˜O(n) calls to UP and U�ξ .

On the oracles UP and U�ξ needed for this algorithm, we will later present the concrete
way to construct for CVaR contribution calculation. Note that, along with UP and U�ξ ,
QEstimatord(�ξ , n, δ) contains ˜O(dn) uses of arithmetic circuits, since we calculate the inner
product �u · �ξ with some �u ∈R

d in the algorithm [30]. However, we neglect them when we
later count arithmetic computations in the proposed quantum method, since UP and U�ξ
in the method contain more arithmetic computations. That is, as we will see later, they use
arithmetic circuits O(Nobl) times, and the total number in QEstimatord(�ξ , n, δ) is therefore
O(nNobl), which is larger than ˜O(dn) since d = Ngr ≤ Nobl in the current problem.

3.4 Fixed-point quantum amplitude amplification
We also explain the fixed-point QAA presented in [33], which is an important subrou-
tine in the proposed method. This is a modified version of the original QAA algorithm
in [10]. Unlike the original one, the fixed-point QAA, as an unitary operation, amplifies
the squared amplitude of the marked state in a superposition state to the value arbitrar-
ily close to 1, without the unintended amplitude decay by too much iterative operations.
Formally, we have the following theorem.

Theorem 2 ([33]) Let |�〉 = √p|φ〉|1〉+
√

1 – p|φ′〉|0〉 be a state on a system R with a qubit
A attached, where |φ〉 and |φ′〉 are states on R and p ∈ (0, 1). Suppose that we are given an
access to the oracle U that prepares |�〉: U|0〉|0〉 = |�〉. Then, for any δ ∈ (0, 1), there is an
unitary V that prepares a state |�′〉 in the form of |�′〉 =

√
1 – δ′|φ〉|1〉 +

√
δ′|φ′′〉|0〉, where

δ′ ∈ [0, δ) and |φ′′〉 is some state on R, making O( log(δ–1)√p ) calls to U .

Here, we assume that the marked state and other states are distinguished by whether a
specific qubit A is |1〉 or |0〉, which suffices for the current problem of CVaR contribution
calculation. [33] assumes that we can use the oracle UT such that, for the market state |T〉
with an ancilla qubit, UT |T〉|b〉 = |T〉|b ⊗ 1〉, and that, for any state |T ′〉 orthogonal to |T〉,
UT |T ′〉|b〉 = |T ′〉|b〉, where b ∈ {0, 1}. Now, this is just a CNOT gate controlled by A, and
therefore we will not consider the number of calls to it hereafter.

3.5 Proposed algorithm
We finally present the quantum algorithm for calculating CVaR contributions. Formally,
we have the following theorem.

Theorem 3 Suppose that Nobl ∈ N, e1, . . . , eNobl ∈ R+, a1, . . . , aNobl ∈ (0, 1), z1, . . . , zNobl ∈
R, α ∈ (0, 1) and δ ∈ (0, 1) are given. Suppose that Ngr ∈ N and n1, . . . , nNgr ∈ N such that
∑Ngr

K=1 nK = Nobl are given. Let v be a positive real number such that p := Pr(L ≥ v) > 0, where
L is given in (1). Suppose that we are given Cmax ∈ R satisfying

max
{

C1
v (e1, . . . , eNobl ), . . . , CNgr

v (e1, . . . , eNobl )
} ≤ Cmax. (17)
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Suppose that we are given σmax ∈R satisfying

max{σ1, . . . ,σNgr} ≤ σmax, (18)

where (σK )2 is the conditional variance of the random variable LK in (8) given that L ≥ v.
Suppose that we have an access to the SN state generation oracle USN. Then, for any ε ∈R+

satisfying ε ≤ σmax
√

Ngr, there is a quantum algorithm that, with probability at least 1 –
δ, outputs the ε-approximations c1, . . . , cNgr ∈ R of C1

v (e1, . . . , eNobl ), . . . , CNgr
v (e1, . . . , eNobl ),

respectively, using USN

˜O
(

σmax
√

Ngr

ε
√p

log

(

max

{

Cmax

ε
,

Emax

σmax

})

log

(

Ngr

δ

))

(19)

times, and arithmetic circuits and angle-controlled Y rotations

˜O
(

σmaxNobl
√

Ngr

ε
√p

log

(

max

{

Cmax

ε
,

Emax

σmax

})

log

(

Ngr

δ

))

(20)

times. Here, Emax := max{E1, . . . , ENgr}, where, for K ∈ [Ngr], EK :=
∑κK

nK
k=κK

1
ek .

Proof Consider the following probability space (
, 2
,P). The sample space is


 = [NSN] × {0, 1}Nobl . (21)

The probability measure P takes the form that, for each ω = (i, y1, . . . , yNobl ) ∈ 
,

P(ω) =

⎧

⎨

⎩

1–ε′
p P(i; y1, . . . , yNobl ); if

∑Nobl
k=1 ekyk ≥ v,

ε′
1–p

˜P(i, y1, . . . , yNobl ); otherwise.
(22)

Here,

P(i; y1, . . . , yNobl )

:= pSN
i

Nobl
∏

k=1

(

Pdef
k

(

xSN
i

)

δyk ,1 +
(

1 – Pdef
k

(

xSN
i

))

δyk ,0
)

(23)

is the probability that X0 = xSN
i , Y1 = y1, . . . , YNobl = yNobl , and 1

pP(i; y1, . . . , yNobl ) is the condi-
tional probability of the same event given

∑Nobl
k=1 ekyk ≥ v. ε′ is some real number satisfying

0 ≤ ε′ ≤ min

{

ε

2Cmax
,
(

σmax

Emax

)2}

. (24)

˜P is some probability measure on a measurable space (
, 2
). Note that

ε′ ≤ 1 (25)
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holds because of (σmax)2 ≤ (Emax)2, which follows from LK ≤ Emax for every K ∈ [Ngr],
and that (25) makes P non-negative and therefore well-defined. Besides, consider the
following random variable �ξ = (ξ1, . . . , ξNgr )T ∈ R

Ngr on (
, 2
,P): for any K ∈ [Ngr] and
ω = (i, y1, . . . , yNobl , w) ∈ 
,

ξK (ω) :=

⎧

⎨

⎩

∑κK
nK

k=κK
1

ekyk ; if
∑Nobl

k=1 ekyk ≥ v,

0; otherwise.
(26)

Then, the expected value of ξK is

E[ξK ] =
(

1 – ε′)CK
v (e1, . . . , eNobl ). (27)

Because of (17) and (24),

∣

∣CK
v (e1, . . . , eNobl ) – E[ξK ]

∣

∣ ≤ ε

2
(28)

holds. Therefore, if we obtain ε/2-approximations ξ̄1, . . . , ξ̄Ngr of E[ξ1], . . . ,E[ξNgr ], they are
also ε-approximations of C1

v , . . . , CNgr
v .

Thus, we hereafter consider how to obtain such ξ̄1, . . . , ξ̄Ngr by QEstimator. To use this,
we need the oracles UP in (14) and U�ξ in (15). First, let us consider UP. Define

|�≥v〉

:=
1√p

NSN
∑

i=1

∑

y1,...,yNobl ∈{0,1}
∑Nobl

k=1 ek yk≥v

√

P(i; y1, . . . , yNobl )
∣

∣xSN
i

〉|y1〉 · · · |yNobl〉, (29)

as a quantum state on a system S consisting of a quantum register and Nobl qubits. On the
system consisting of S and an additional qubit, we can perform the following operation:

|0〉|0〉⊗Nobl |0〉

→
NSN
∑

i=1

√

pSN
i

∣

∣xSN
i

〉|0〉⊗Nobl |0〉

→
NSN
∑

i=1

√

pSN
i

∣

∣xSN
i

〉

(
√

Pdef
1

(

xSN
i

)|1〉 +
√

1 – Pdef
1

(

xSN
i

)|0〉
)

⊗ · · · ⊗
(√

Pdef
Nobl

(

xSN
i

)|1〉 +
√

1 – Pdef
Nobl

(

xSN
i

)|0〉
)

|0〉

=
NSN
∑

i=1

∑

y1,...,yNobl ∈{0,1}

√

P(i; y1, . . . , yNobl )
∣

∣xSN
i

〉|y1〉 · · · |yNobl〉|0〉

→
NSN
∑

i=1

∑

y1,...,yNobl ∈{0,1}

√

P(i; y1, . . . , yNobl )
∣

∣xSN
i

〉|y1〉 · · · |yNobl〉

⊗ (1∑Nobl
k=1 ek yk≥v

|1〉 + 1∑Nobl
k=1 ek yk <v

|0〉)
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=
√

p|�≥v〉|1〉 +
√

1 – p|�gar〉|0〉, (30)

where |�gar〉 is some state on S and some ancillary registers are not displayed. In (30),

we use USN at the first arrow. At the second arrows, we calculate arccos(
√

Pdef
1 (xSN

i )), . . . ,

arccos(
√

Pdef
Nobl

(xSN
i )) onto undisplayed ancillary registers using arithmetic circuits, and

then operate UCRY with the rotation angles specified by these ancillary registers. At the
third arrow, we calculate

∑Nobl
k=1 ekyk by Nobl additions and multiplications, then use Ucomp.

We denote by U≥v the oracle that acts as (30). Then, because of Theorem 2, we can gen-
erate a state

|�≥v〉 :=
√

1 – ε′|�≥v〉|1〉 +
√

ε′∣∣� ′
gar

〉|0〉, (31)

where |� ′
gar〉 is some state and ε′ is some real number satisfying (24), making

O
( log(max{Cmax

ε
, Emax

σmax
})

√p

)

(32)

calls to U≥v. Note that |�≥v〉 is in fact
∑

ω∈


√
P(ω)|ω〉 with identification that

|ω〉 =

⎧

⎨

⎩

|xSN
i 〉|y1〉 · · · |yNobl〉|1〉; if

∑Nobl
k=1 ekyk ≥ v,

|xSN
i 〉|y1〉 · · · |yNobl〉|0〉; otherwise,

(33)

for each ω = (i, y1, . . . , yNobl ) ∈ 
. Therefore, we hereafter denote by UP the oracle that gen-
erates |�≥v〉 from |0〉|0〉⊗Nobl |0〉.

On the other hand, constructing U�ξ is more simple. Given a state |ω〉 in (33) for ω ∈ 
,
we can add Ngr registers and perform the operation

∣

∣xSN
i

〉|y1〉 · · · |yNobl〉|w〉|0〉Ngr

→ ∣

∣xSN
i

〉|y1〉 · · · |yNobl〉|w〉
Ngr
⊗

K=1

∣

∣

∣

∣

∣

w
κK

nK
∑

k=κK
1

ekyk

〉

, (34)

where w ∈ {0, 1}. This can be done by O(Nobl) multiplications and additions. Note that (34)
is in fact U�ξ for �ξ in (26), since w = 1 is

∑Nobl
k=1 ekyk ≥ v and 0 otherwise.

With UP and U�ξ constructed as above, we perform QEstimatorNgr (�ξ , n, δ) with

n =
⌈2

√
2σmax

√

Ngr log(Ngr/δ)
ε

⌉

. (35)

Because of (16), each of outcomes ξ̄1, . . . , ξ̄Ngr of this satisfies

∣

∣ξ̄K – E[ξK ]
∣

∣ ≤
√

Tr˜
 log(Ngr/δ)
n

≤
√

Ngr(̃σmax)2 log(Ngr/δ)
n
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≤
√

2Ngr(σmax)2 log(Ngr/δ)
n

≤ ε

2
, (36)

where ˜
 is the covariance matrix of ξ1, . . . , ξNgr , and (̃σmax)2 is its largest diagonal element,
that is, the maximum of the variances of ξ1, . . . , ξNgr . The third inequality in (36) holds since

(̃σmax)2 ≤ 2(σmax)2, (37)

whose proof is postponed to Appendix 4. (36) means that ξ̄1, . . . , ξ̄Ngr are ε/2-
approximations of E[ξ1], . . . ,E[ξNgr ], and also ε-approximations of C1

v , . . . , CNgr
v , as dis-

cussed above.
Finally, let us count the numbers of calls to building-block circuits in this algorithm.

QEstimatorNgr (�ξ , n, δ) calls UP and U�ξ ˜O(n) times, that is,

˜O
(

σmax
√

Ngr log(Ngr/δ)
ε

)

(38)

times. UP makes iterative calls to U≥v, whose number is evaluated as (32). In U≥v, USN is
called once, and arithmetic circuits and UCRY are called O(Nobl) times. On the other hand,
U�ξ consists of O(Nobl) arithmetic circuits. In total, for the numbers of calls to building-
block circuits, we obtain evaluations (19) and (20). �

3.6 Comparison with the classical Monte Carlo method
We have seen that the proposed quantum algorithm estimates Ngr CVaR contributions
with accuracy ε and has query complexity scaling on Ngr and ε as O(

√

Ngr/ε). Seemingly,
this means so-called quadratic quantum speedup with respect to both Ngr and ε. How-
ever, if we do not require the scaling on ε to be O(ε–1), we can achieve the better depen-
dence on Ngr classically. In classical Monte Carlo integration, we generate many samples
of X0 and Y1, . . . , YNgr , calculate ˜L1, . . . ,˜LNgr for these samples, and take averages. By this
procedure, we obtain ε-approximations for Ngr CVaR contributions with high probability
with ˜O(log Ngr/ε–2) sample complexity [30]. This implies that, depending on Ngr and ε,
the quantum method might not be the best way.

In order to identify the situation where the quantum or classical method is better more
precisely, let us evaluate the complexity in the classical method in more detail. The sample
complexity to obtain ε-approximations for C1

v , . . . , CNgr
v with probability at least δ in the

classical method is [30]

˜�

(

(σmax)2 log(Ngr/δ)
ε2p

)

. (39)

Here, the factor 1/p appears since we randomly generate �(N/p) samples of X0, Y1, . . . ,
YNobl in order to obtain N samples such that L ≥ v. In one sample generation, one standard
normal random variable is generated, �(Nobl) arithmetic operations are done, and Nobl

Bernoulli random variables are generated. In total, in the classical method, the number
of standard normal random variable generations is evaluated as (39), and the numbers of
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arithmetic operations and Bernoulli random variable generations are

˜�

(

(σmax)2Nobl log(Ngr/δ)
ε2p

)

. (40)

Then, let us compare these complexity estimations with those for the proposed quantum
method. We see that the quantum method is advantageous in query complexity if

(σmax)2

ε2p
� Ngr, (41)

although this is a rough discussion with logarithmic factors neglected.
As an extreme case, let us assume that we want CVaR contributions for all the individual

obligors. In this case, Ngr takes the maximum Nobl, and therefore it is most disadvanta-
geous for the quantum method. Besides, we roughly evaluate (σmax)2 as p̄def (1 – p̄def )ē2,
where p̄def and ē are the typical scale of conditional default probabilities of obligors given
L ≥ v and that of exposures, respectively. Moreover, we set the accuracy ε relative to Cmax

and roughly evaluate Cmax as p̄def ē. With these evaluations, (41) becomes

(

Cmax

ε

)2 1 – p̄def

pp̄def
� Nobl. (42)

Under a plausible assumption that p = 0.01, pdef ∼ 0.01, Cmax/ε ∼ 0.01, the left hand side
of (42) is of order 108, and therefore the quantum method is promising to be advantageous
when Nobl � 108, which is usually satisfied. In the case that Ngr � Nobl, which means that
we need CVaR contributions not for individual obligors but for some obligor groups, the
quantum method becomes more advantageous.

4 Summary
In this paper, we considered application of quantum algorithms to CVaR contribution cal-
culation, which is an important problem in financial risk management but has not been
focused in the context of quantum computing. We clarified how to apply the recent quan-
tum algorithm for multiple expected value estimation [30] to this problem as estimation of
many conditional expected value, constructing the oracles needed in the algorithm with
fixed-point QAA [33]. We then evaluated the numbers of queries to the building-block or-
acles, arithmetic operations, controlled rotation and SN state generation, as (19) and (20).
In terms of query complexity, the proposed method achieves quantum quadratic speedup
with respect to the accuracy ε, but the scaling of complexity on the number of obligor
groups Ngr is better in the classical method. This means that, for small ε and Ngr, the
proposed method becomes advantageous against the classical method. We saw that, even
when we calculate CVaR contributions for all the individual obligors, which is most dis-
advantageous for the quantum method, its query complexity is smaller than the classical
method in some plausible setting.

But, unfortunately, it is obvious that the need for risk contributions of many finely di-
vided obligor groups, which enable a bank to analyze the risk in details, reduces the quan-
tum advantage compared with calculating only the risk measures for the entire portfolio,
which was originally considered in [18]. As future works, not only for credit risk man-
agement but also for other types of financial problems, we should extend discussion on
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quantum computing application to various problem settings arising in practice and scru-
tinize the degree of quantum advantage.

Appendix: Proof of (37)
Let P0 be a probability measure on the measurable space (
, 2
) such that

P0(ω) =

⎧

⎨

⎩

1
pP(i; y1, . . . , yNobl ); if

∑Nobl
k=1 ekyk ≥ v,

0; otherwise,
(43)

for each ω = (i, y1, . . . , yNobl ) ∈ 
. For each K ∈ [Ngr], the variances of ξK with respect to P0

is equal to (σK )2, and written as

(σK )2 =
∑

ω∈
≥v

P0(ω)
(

ξK (ω)
)2 –

(

∑

ω∈
≥v

P0(ω)ξK (ω)
)2

, (44)

where 
≥v := {(i, y1, . . . , yNobl ) ∈ 
|∑Nobl
k=1 ekyk ≥ v}. On the other hand, since P(ω) = (1 –

ε′)P0(ω) for ω ∈ 
≥v, we have

(̃σK )2 =
∑

ω∈
≥v

P(ω)
(

ξK (ω)
)2 –

(

∑

ω∈
≥v

P(ω)ξK (ω)
)2

=
(

1 – ε′) ∑

ω∈
≥v

P0(ω)
(

ξK (ω)
)2 –

(

1 – ε′)2
(

∑

ω∈
≥v

P0(ω)ξK (ω)
)2

= (σK )2 – ε′ ∑

ω∈
≥v

P0(ω)
(

ξK (ω)
)2 + ε′(2 – ε′)

(

∑

ω∈
≥v

P0(ω)ξK (ω)
)2

≤ (σK )2 + ε′(1 – ε′) ∑

ω∈
≥v

P0(ω)
(

ξK (ω)
)2. (45)

In (45), at the inequality, we use (25) and
∑

ω∈
≥v P0(ω)(ξK (ω))2 ≥ (
∑

ω∈
≥v P0(ω)ξK (ω))2,
which follows from the fact that the variance (σK )2 is non-negative. Then, applying ξK (ω) ≤
Emax, (24) and (25) to (45), we obtain

(̃σK )2 ≤ (σK )2 + (σmax)2, (46)

which implies (̃σmax)2 ≤ 2(σmax)2.
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