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Abstract
Coherent detection (homodyne detection/heterodyne detection) and single photon
detection are commonly applied in classical communication and quantum
communication/receiver respectively. In this paper, we firstly propose a
quantum-enhanced receiver based on conjugated homodyne detection, which is
consisted of two classical balanced homodyne detectors, for discrimination among
quadrature-phase-modulated weak coherent states. Our detection part works as a
photon counter in every single-shot measurement during the process of detection
and feedback, which could help our quantum-enhanced receiver surpass the
standard quantum limit when an optimized detection threshold τ from 0.05 to 0.3 is
selected. Moreover, our proposed quantum-enhanced receiver with conjugated
homodyne detectors can obtain the same low error probability as conventional
quantum-enhanced receivers (with its superconducting nanowire single photon
detectors’ detection efficiency 60% for pulse separationM = 8 and 70% forM = 12
under the same adaptive feedback countermeasures.) Meanwhile, our scheme of the
quantum-enhanced receiver gains its incomparable advantages on
room-temperature working condition and low cost due to the application of
conjugated homodyne detectors. As far as we concerned, this is the first time to
explore the performance of the quantum-enhanced receiver with commercial
homodyne detectors. And the analysis in this paper may pave the way to reduce the
cost of the quantum-enhanced receiver and make it more adaptable for
long-distance optical communication systems.

Keywords: Quantum-enhanced receiver; Conjugated homodyne detector; QPSK
coherent states discrimination

1 Introduction
Precise discrimination of non-orthogonal coherent states remains an everlasting puzzle
for decades due to the intrinsic overlap among those states [1]. Efficient measurements
and discrimination strategies for these non-orthogonal states have been proposed and
applied to many related fields, such as quantum computation [2, 3], quantum-enhanced
metrology [4–6] and quantum key distribution (QKD) [7–9]. However, when conventional
receivers with homodyne or heterodyne measurement were applied to discriminate those
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non-orthogonal states from weak signals, their detection performance of discrimination
error obtainable would be limited to be below shot-noise limit [1] due to intrinsic noises.
And the error probability given by conventional detection measurements was defined
as the standard quantum limit (SQL). Moreover, when comes to deal with weak signals
with lower signal-noise-ratio, a quantum-enhanced receiver was put forward to surpass
the SQL even to approach the ultimate minimum discrimination error limit—“Helstrom
bound” (HB) by quantum mechanics [1].

The proposed quantum-enhanced receiver generally consists of a displacement opera-
tor, an optical coupler and a single photon detector (SPD). Once the signal with encoded
coherent states is displaced to a photon number state by interference through the effort of
the displacement operator in an optical coupler, the SPD will “click” as the response for the
detection event “photons received”, and null detection for no photons. Therefore, the pre-
cise detection towards photon number state—“click or not” of SPD will affect the perfor-
mance of the quantum-enhanced receiver. The application of superconducting transition-
edge sensors (TES) which enabled the single-photon-level detection, could be the start of
experimental demonstration of the quantum-enhanced receiver in 2011 [10]. Later on,
sorts of SPDs with higher efficiency and less dark count rate, like superconducting single
photon detectors (SSPD) or superconducting nanowire single photon detectors (SNSPD),
were widely applied to the quantum-enhanced receiver [11–15]. To further reduce the
error rate of photon detection, as summarized in [16], photon number resolving detec-
tor (PNRD), which could distinguish the number rather than only the existence of the
photons, was applied to the quantum-enhanced receiver [17–20]. And their below-SQL
performance was dramatically extended to higher input energies (larger photon numbers).

Though the sorts of SPDs (including TES) have made the experimental demonstration
of the quantum-enhanced receiver come true, their high cost, large size and tough exper-
imental condition (ultra-low working temperature under near-perfect vacuum) have also
slowed down the pace of putting the lab-based quantum-enhanced receiver into practice.
Coincidentally, noted that conjugated homodyne detectors, which is more affordable and
able to work at room temperature, have been tested to measure conjugated quadrature
and reconstruct photon number statistics of the input weak states [21]. Soon, the advan-
tage on cost-effective and high-bandwidth of conjugated homodyne detectors has been
further exploited, they have been applied to polarization encoding [22, 23] and phase en-
coding [24] discrete variable QKD. Inspired by the application of conjugated homodyne
detectors on discriminating the input states in BB84 QKD under “photon counting” mode
[22], we come up with an idea that the conjugated homodyne detectors are worth testing in
the quantum-enhanced receiver to recover detected photon number so as to discriminate
the input coherent states.

In this paper, we explore the performance of the conjugated homodyne detectors op-
erated in our scheme of quantum-enhanced receiver for the first time. Relative theoret-
ical analysis and simulations are made to discriminate the quadrature phase shift key-
ing (QPSK) coherent states. It is worthy noted that through the proper selection on the
detection threshold, we achieve a balance between the detection efficiency and the dark
count rate of the detectors. And the conjugated homodyne detection quantum-enhanced
receiver, which we called CHD quantum-enhanced receiver, could even match the perfor-
mance of the quantum-enhanced receiver with high-detection-efficiency SNSPDs.
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The paper is organized as follows: In Sect. 2, we first introduce the basic theory of
quantum-enhanced receiver for QPSK coherent states. In Sect. 3, we demonstrate QPSK
coherent states discrimination via our proposed CHD quantum-enhanced receiver. In
Sect. 4, we discuss our simulation results of the proposed CHD quantum-enhanced re-
ceiver, while the conclusion is summarized in Sect. 5.

2 Quantum-enhanced receiver with feedback for discriminating QPSK
coherent states

In this section, we introduce a conventional quantum-enhanced receiver with feedback
for the discrimination of the QPSK coherent states.

The input QPSK coherent states can be defined as |αk〉 = ||α|e (2k+1)iπ
4 〉, where k = 0, 1, 2, 3

and |α| represents the amplitude of the input signal state.
Figure 1 depicts a scheme of a conventional quantum-enhanced receiver with feedback

operation. The quantum-enhanced receiver consists of a displacement preparation part,
a beam splitter, a single-photon detector and a corresponding real-time feedback control
on displacement operation based on detection history of the SPD.

In our scheme, the process of the whole quantum-enhanced receiver could be concluded
as: An input QPSK coherent signal state with one spatial mode, prepared in a square pulse
with a time width of T , would be virtually separated to M parts. During ith part of the
whole signal pulse (i = 1, 2, . . . , M), a displacement operator D̂(βi), firstly prepared under
random choice from the QPSK states, will be combined together with the signal state in
a beam splitter to shift the ith signal coherent state into photon number state via inter-
ference. Once the displacement operator D̂(βi) is prepared as same as the signal state,
the shifted state will be a vacuum state, otherwise photons will be left. Correspondingly,
the SPD will provide a binary detection outcome ei ∈ {0, 1} or represented as Eq. (1) in
positive-operator-valued measures (POVMs) method [25].

⎧
⎨

⎩

�̂0 = e–ν
∑∞

n=0 (1 – η)n|n〉〈n|,
�̂1 = Î – �̂0,

(1)

where ν is denoted as the dark count rate and η represents the detection efficiency of the
SPD. Thus the probability of detection outcome could be given by Ref. [14]:

P(ei|αk ;βi) = 〈αk|D̂ † (–βi)�̂ei D̂ † (–βi)|αk〉
= (1 – ei)e–ν–η|αk –βi|2 + ei

(
1 – e–ν–η|αk–βi|2). (2)

Figure 1 A quantum-enhanced receiver with a beam splitter, displacement, single photon detection and
feedback operations for discrimination of QPSK coherent states
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And once the displacement operator D̂(βi) has the same amplitude as the amplitude |γ |
of the signal state |αk〉, the photon number |αk – βi|2 of the interference light in Eq. (2) can
be described as:

|αk – βi|2 = 2(1 – ξ cos θ )|γ |2, (3)

where θ is the relative phase between the displacement operator D̂(βi) and the signal state
|αk〉 from QPSK protocol. ξ is the interference visibility which can characterize the mis-
match between input signal and displacement operator (such mismatch can be originated
from differences on amplitude, polarization, frequency, spatial and temporal modes as
well as phase noise [19]).

The detection outcomes of the SPD will be recorded in a history outcome group {βi, ei}
which will be regarded as a priori belief. Corresponding feedback control towards the
displacement preparation part will refer to the history outcome group: Once the detection
outcome is off (ei = 0), which means that a destructive interference occurred between the
same QPSK coherent states of the signal and the displacement operator, the current belief
will be enhanced, and the current displacement operator will be maintained for the next
step in the (i + 1)th part; As the detection outcome is on (ei = 1), which strongly indicates
that the signal state was not shifted to vacuum state by the displacement operator. Hence,
the current displacement operator will be changed to another state in the QPSK coherent
states. Based on Bayesian theorem, the feedback operator could be obtained by a posteriori
probability P(αk|{βi, ei}) after detection of the ith part [26]. A more detailed process of
feedback will be illustrated in Appendix A.

Similar to the Ref. [14], based on the schematic of the conventional quantum-enhanced
receiver with feedback in Fig. 1, together with Eq. (2) and Eq. (A) in Appendix A, the
average error probability for distinguishing the QPSK coherent states could be obtained as:

Pe = 1 –
1
4

3∑

k=0

∑

{βi ,ei}∈�k

P
({βi, ei}|αk

)
, (4)

where the conditional probability P({βi, ei}|αk) represents the probability of having the
historical detection outcome {βi, ei} when the input coherent state |αk〉 is prepared. And
�k is denoted as the group of detection outcome when the input state |αk〉 is received.
Therefore, a model could be constructed by the evaluation on the error probability with
imperfections through the Eq. (4).

The ideal SQL bound for discriminating QPSK coherent states [14] could be calculated
by:

Pe(SQL) = 1 –
1
4

[

1 + erf

( |α|√
2

)]2

, (5)

where erf x is the error function.
Another ultimate limit—Helstrom bound, could also be well approximate calculated by

using the square-root measurement according to Ref. [1, 27].

Pe(HB) = 1 –
1

16

[ 4∑

i=1

√
√
√
√e–|α|2

4∑

k=1

e(1–i) ikπ
2 +|α|2e

ikπ
2

]2

. (6)



Wu et al. EPJ Quantum Technology           (2023) 10:12 Page 5 of 14

3 Quantum-enhanced receiver using conjugated homodyne detection for
discriminating QPSK coherent states

The exploration of the conjugated homodyne detection scheme in [21] convinces its ability
of discriminating photon number states and recovering photon statistics in both single-
shot measurement and repeated measurement, respectively. When operated in single-shot
measurement, the conjugated homodyne detectors could inherit the function of photon
counting from the conventional threshold SPD, which has been tested in the application
on polarization-encoded BB84 QKD [22, 23].

In this section, we introduce our quantum-enhanced receiver based on the conju-
gated homodyne detection scheme for the discrimination of input QPSK coherent quan-
tum states in every single-shot measurement. And our proposed structure of the CHD
quantum-enhanced receiver is shown in Fig. 2.

Our proposed quantum-enhanced receiver could be divided as two main parts: states
preparation region (Region I) and conjugated homodyne detection region (Region II). The
proposed receiver is operated as follows: In Region I, telecom-band laser pulses light from
a CW laser #1 is modulated as pulses by an intensity modulator and divided into two
parts: a weak part and a strong part. They are prepared as input coherent states |αk〉 and
displacement operators D̂(βi), respectively. Both |αk〉 and D̂(βi) are random-phase modu-
lated from QPSK protocol. Then the displacement operator shift the signal coherent state
into photon number state (Fock state |n〉) via interference as they are both coupled into
a 2 × 1 unsymmetric optical coupler. The output interferenced beam from the coupler is
supposed to be detected by single photon detectors in a conventional quantum-enhanced
receiver. And the basic theory of a conventional quantum-enhanced receiver for discrimi-
nating QPSK coherent states in Region I has been illustrated in Sect. 2 and the simulation
model of the parts from states preparation to displacement operation (interference) could
be built from Eqs. (1)–(4).

While in our proposed CHD quantum-enhanced receiver, in the detection part (Re-
gion II), conjugated homodyne detector takes the place of the conventional single photon
detectors to explore whether the photon number states after interference is vaccum or
not. In Region II, the output interferenced beam is regarded as the weak signal (S) of the
conjugated homodyne detector and modulated pulses from a CW laser #2 (we assume
both laser #1 and laser #2 have the same spatial mode, polarization and frequency) are re-

Figure 2 The schematic of a CHD quantum-enhanced receiver for discriminating QPSK coherent states. CW,
continuous-wave; IM, intensity modulator; OC, optical coupler; PM, phase modulator; MOVA, manual optical
variable attenuator; S, signal; LO, local oscillator; FPGA, field programmable gate array; DAC, digital-to-analog
converter
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garded as local oscillator (LO). Then both the LO and the S are coupled into the following
conjugated homodyne detector. Consisting of a 90◦ optical hybrid and two homodyne de-
tectors (here we assume 4 noiseless detectors with unity efficiency ηdet), the conjugated ho-
modyne detectors can simultaneously measure a pair of the detected outputs (quadrature
components X and P) in every single-shot measurement. And the observable probability
parameter of detection output Z, has been defined to describe these two components in
theory [21]:

Z = X2 + P2, (7)

where Z is intuitively proportional to the intensity or the photon number of the input
states.

Given the input signal states of interferenced beam is a photon number state (Fock state
|n〉), in the case of every one-shot measurement, the probability density function of a mea-
sured photon number z from the input interferenced beam satisfies [21]:

PZ(Z = z|n) = e–z zn

n!
, (8)

where n is the average input photon number.
Whether the detection outcome “a vacuum state” or “a state with left photons”, referred

as “the D̂(βi) is prepared as the same as the |αk〉” or not, is generally obtained from sin-
gle photon detectors in the conventional quantum receiver. Such the detection outcome
could also be recovered by the conjugated homodyne detectors and be recorded by the
FPGA in our proposed CHD quantum receiver. The corresponding records will be pro-
cessed as a feedback to order the next preparation step towards the displacement operator
D̂(βi), as Fig. 2 shown. The detailed description on feedback circuit could be referred in
Appendix A.

Similarily, to discriminate detection of the vacuum state or non-vacuum state, the con-
tinuous single-shot measurement result (detected photon statistic under realistic detec-
tor) z is required to be mapped with the possible detection outcome of “click or no click”
of the conjugated homodyne detector. Here, a pre-design detection threshold τ ∈ [0, +∞)
of the conjugated homodyne detector is set to distinguish the detection outcome as well
as the relative detection events [21, 22]. The output of the detector will be regarded as
click/no click when the measurement result z is larger/smaller than the threshold τ . Such
mapping process could be applied in the post-processing stage under a proper threshold
τ to obtain the lowest error probability on QPSK states discrimination.

Then we evaluate the performance of the conjugated homodyne detector under photon
counting mode as a threshold SPD which can only distinguish vacuum states from non
vacuum states rather than resolve photon number. And the detection efficiency η and dark
count rate ν , two important factors defined as the conditional probability that the SPD
clicks whether the input states obtain photons or not, will satisfy the following equation
in the conjugated homodyne detectors by Eq. (8):

η =
∫ ∞

τ

PZ(Z = z|1) dz = e–τ (τ + 1), (9)

ν =
∫ ∞

τ

PZ(Z = z|0) dz = e–τ . (10)
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Figure 3 Detection efficiency η and dark count rate ν against detection threshold τ

As both detection efficiency η (red line) and dark count rate ν (blue dash-dot line) are
present as functions of the threshold τ in Fig. 3, it is clear that both the detection efficiency
and the dark count rate will drop as the value of the detection threshold rises. We cannot
have a high detection efficiency and low dark count at the same time. Therefore, a proper
threshold are deserved to be explored for a better detection performance (higher efficiency
as well as a lower dark count rate) of the conjugated homodyne detection.

Moreover, given that our conjugated homodyne detector consisting of 4 detectors with
unity efficiency ηdet and an enough strong LO, the conjugated homodyne detector can
be regarded equally as a virtual beam splitter (transmission efficiency ηdet) together with 4
ideal detectors (detection efficiency 100%). The equivalent model of the conjugated homo-
dyne detector towards detection efficiency will be discussed in Appendix B. As 4 detectors
with realistic unity efficiency ηdet taken into account, the detection efficiency ηCHD of the
conjugated homodyne detector can be concluded based on Eq. (9):

ηCHD = ηdetη = ηdete–τ (τ + 1). (11)

Thus, the initial error probability of detection P(ei = 0|αk ;βi) from the conventional
quantum-enhanced receiver in Eq. (2) will be modified by the detection parameters—the
detection efficiency ηCHD and dark count rate ν from the Eq. (11) and Eq. (10) under “pho-
ton counting”mode in conjugated homodyne detection:

P(ei = 0|αk ;βi) = e–e–τ [1+ηdet(τ+1)|αk–βi|2], (12)

where τ denotes the pre-designed detection threshold in the conjugated homodyne detec-
tors. Moreover, as the displacement operator D̂(βi) is modulated to have the same ampli-
tude as the amplitude of the signal state |αk〉. We could take the photon number |αk – βi|2
of the interference light in Eq. (3) into consideration and the final formula of the detection
probability will be obtained:

P(ei = 0|αk ;βi) = e–e–τ [1+2ηdet(τ+1)(1–ξ cos θ )|γ |2]. (13)
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Based on Eq. (4), the average error probability for distinguishing the QPSK coherent
states in our CHD quantum-enhanced receiver could be obtained as:

Pe = 1 –
1
4

3∑

m=0

∑

{βi ,ei}∈�k

P
({βi, ei = 0}|αk

)
. (14)

4 Results and discussion
Based on the simulation model with Eqs. (13) and (14), we evaluated the average error
probability for QPSK state discrimination through Monte Carlo simulations. We change
the detection threshold τ of the conjugated homodyne detectors to explore a proper
value to pursue a lower error probability of our CHD quantum-enhanced receiver. And
we compare the simulation outcome with the detection performance of the conventional
quantum-enhanced receiver with SNSPDs under different detection efficiency, trying to
figure out to what extend our CHD quantum-enhanced receiver can match the perfor-
mance on discriminating coherent states. All the simulations are conducted under the
same parameters from reported experiments.

4.1 The average error probability of CHD quantum-enhanced receiver against
different τ

The theoretical value of the two imperial parameters: dark count rate (for per state)
ν = 9.1 × 10–3 and interference visibility ξ = 99.6% in our simulation are taken from the
reported references [12, 14] under experimental conditions. And 4 commercial detectors
with unity typical efficiency ηdet = 0.85 are taken into account.

Based on the designed parameters, we conduct the simulation on discriminating every
105 QPSK coherent states under the time-bin parts M = 4, 8 and 12, respectively. The
outcome are depicted as Fig. 4 shown.

Among Fig. 4, a dashed line and a thick dash-dotted line represent the Helstrom bound
and the SQL, respectively. And it is clear that a better performance (lower error probabil-
ity) of our CHD quantum-enhanced receiver can be obtained as more time-bin parts M
are taken to be tested by more displacement operators.

For M = 4, no matter what value of the detection threshold τ is taken, the SQL seems
to be a barrier for our CHD quantum-enhanced receiver to cross over. The reason can
be concluded as follows: every input signal state |αk〉 is divided into only 4 parts, making
the preparation of displacement operator D̂(βi) just going through 4 different states in the
QPSK protocol. During the period of each state |αk〉, the detection on every interference
between the |αk〉 and different D̂(βi) can be regarded as an isolated classical homodyne
detection, bring no effective adaptive feedback to enhance the correct rate of discrimi-
nation. As more parts are divided in each input state |αk〉, more chances will be left to
prepare different D̂(βi) based on the former detection outcome. More trials are made, the
higher probability will be obtained to get D̂(βi) the same as |αk〉. Therefore, when M = 8,
the error probability of the CHD quantum-enhanced receiver is getting lower as the de-
tection threshold τ is smaller. Especially, when τ is smaller than 0.7, the SQL is beat with
the input average photon number from 2 to 8. The detection performance takes a huge
leap for M = 12 on the whole. The error probability for CHD quantum-enhanced receiver
gets lower as the decrease of detection threshold τ from 2 to 0.3. This can be concluded
from Fig. 3 that the decrease of τ leads to the elevation of both efficiency η and dark count
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Figure 4 For different separations (a) M = 4, (b) M = 8 (c) M = 12, the average error probability of CHD
quantum-enhanced receiver with different pre-design detection threshold τ against average photon number

rate ν while the detection efficiency η plays a more important role on the detection perfor-
mance of CHD quantum-enhanced receiver. When τ = 0.05, 0.1 and 0.3, there is no clear
difference that the CHD quantum-enhanced receiver get the lowest error probability for
both M = 8 and M = 12. Therefore, as we set detection threshold τ from 0.05 to 0.3, we
can not only obtain the lowest error probability on state discrimination, but also strike a
balance between a higher detection efficiency and lower dark count in Fig. 3.

4.2 The performance comparison between the CHD quantum-enhanced receiver
and the conventional quantum-enhanced receiver with SNSPDs under
different detection efficiencies

As the proper detection threshold τ from 0.05 to 0.3 is selected, our CHD quantum-
enhanced receiver has achieved its theoretical lowest average error probability, which
largely beat the SQL while is still far behind the Helstrom bound. In this section, we try to
explore to what extend our CHD quantum-enhanced receiver can match the performance
of the conventional quantum-enhanced receiver with SNSPD under different detection ef-
ficiencies.

Similarily, both the CHD quantum-enhanced receiver and the conventional quantum-
enhanced receiver have a better performance as the number of the separations M is larger
as Fig. 5 shown. For M = 4, the conventional quantum-enhanced receiver with SNSPDs
under different efficiency 50%–90% all surpass the performance of the CHD quantum-
enhanced receiver with the average photon number of input states more than 4. When M =
8, the error probability of the CHD quantum-enhanced receiver with τ = 0.5, 0.1 and 0.3
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Figure 5 For time-bin separations (a) M = 4, (b) M = 8 and (c) M = 12, the average error probability of the
CHD quantum-enhanced receiver (τ = 0.05, 0.1 and 0.3) and conventional quantum-enhanced receivers with
SNSPDs under different detection efficiency against average photon number

(for light green, green and dark green lines respectively) all beats the SQL, being in line
with the conventional quantum-enhanced receiver with the SNSPD′s efficiency of 60%

(dark blue line) as the average photon number is under 8. However, the performance of the
CHD quantum-enhanced receiver degrades when the average photon number is over 8. It
can be explained that CHD quantum-enhanced receivers has difficulties on distinguish-
ing coherent states when a large number of photons crowd in. And for M = 12, our CHD
quantum-enhanced receiver has caught up with the conventional quantum-enhanced re-
ceiver performance under its SNSPD′s efficiency of 70% (black line), beating the SQL with
a huge advantage.

Based on the selected detection threshold τ from 0.05 to 0.3, the performance of our
CHD quantum-enhanced receiver is comparable to the conventional quantum-enhanced
receivers with its SNSPD′s efficiency of 60% for M = 8 and 70% for M = 12, respec-
tively. The simulation outcome has implied that conjugated homodyne detectors are suit-
able for application in the quantum-enhanced receiver and the proposed CHD quantum-
enhanced receiver has a great potential to take the place of the high-detection-efficiency
conventional quantum-enhanced receiver on discriminating QPSK coherent states.

5 Conclusions
Based on the reported theoretical analysis that the received photon number of a quantum
state can be reconstructed, the conjugated homodyne detector can work as an SPD on dis-
tinguishing whether a photon is received or not. We firstly proposed a novel structure of
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CHD quantum-enhanced receiver consisting of a displacement operation, two commer-
cial conjugated homodyne detectors, and feedback operation. Through our simulations,
as the proper detection threshold τ from 0.05 to 0.3 is selected, the conjugated homo-
dyne detectors strike a balance between low dark count rate and high detection efficiency.
And the CHD quantum-enhanced receiver obtains the ability of discriminating QPSK sig-
nals with an error probability beating the SQL at telecom wavelength. We further inves-
tigate the performance between our CHD quantum-enhanced receiver with conjugated
homodyne detectors and the conventional quantum receiver with commercial SNSPDs.
It is worth noting that our CHD quantum-enhanced receiver is comparable with the per-
formance of the conventional quantum-enhanced receiver with its commercial SNSPD′s
efficiency from 60% to 70%, which means conjugated homodyne detectors can be a more
cheap alternative for SNSPDs in conventional quantum-enhanced receiver to some ex-
tent.

Our work has explored the potential of applying the conjugated homodyne detectors to
the quantum-enhanced receiver. As far as we can see, this is the first time to propose the
novel CHD quantum-enhanced receiver with a comparable performance on distinguish-
ing QPSK states. Due to the lower cost and room-temperature operation of the CHDs,
our proposed quantum-enhanced receiver is expected to be more suitable for applications
like continuous-variable quantum key distribution, long-distance coherent optical com-
munication especially for commercial scenes which requests room-temperature working
condition and massive production. Additionally, capable of discriminating coherent laser
signals with average low intensity (only several photon numbers), the CHD quantum-
enhanced receiver could also be practically applied to deep space communication links
to enhance the power budget of satellites or increase the free-space communication range
and communication rates. Meanwhile, the elevation on the performance of our proposed
CHD quantum-enhanced receiver could also be witnessed soon as higher-quality con-
jugated homodyne detectors are applied or a more exquisite detection structure is de-
signed.

Appendix A: Analysis of feedback circuit
Based on the analysis of the quantum-enhanced receiver shown in Fig. 1 and Fig. 2, the
theoretical model of feedback circuit is illustrated as Fig. A.

Firstly, coherent states |αk〉 = ||α|e (2k+1)iπ
4 〉, k = 0, 1, 2, 3 with one spatial mode is prepared

in a square pulse with a time width of T . Each pulse will be encoded randomly from QPSK
protocol (here, we take a pulse with its encoded state |α1〉 as an example shown in Fig. A).
Then we virtually separated the pulse to M parts and prepare different kind of displace-
ment operator D̂(βi), i = 0, 1, 2, 3 from QPSK protocol during parts from 1 to M one by
one.

During 1st part, assuming that we prepare a displacement D̂(β2) to interference with
input coherent state |α1〉 in the beam splitter (or an optical coupler in Fig. 2). A priori
belief was that the displacement operators is encoded as same as the input coherent state,
and the input coherent state |α1〉 will be shifted to vacuum state with no photons detected
(detection event satisfies ei = 0), this belief would be ensured and the same displacement
operator D̂(β2) would be maintained for the next preparation. If not, photons will be left
in the output interferenced beam and be detected by the conjugated homodyne detector
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Figure A The schematic of the feedback circuit in our proposed CHD quantum-enhanced receiver, BS, beam
splitter; SPD, single photon detector

(detection event satisfies ei = 1). And another displacement operator (D̂(β3) for example)
would be prepared for the 2nd part. The detection event history {ei} will be recorded by
and the instruction of preparing next displacement operator (maintained or changed) will
be transformed from digital to analogue by DAC module. Similar process will be repeated
in the following parts along the whole pulse duration T .

For the jth part, on the basis of the photon-detection history {ei}, input state |αk〉 and the
current preparation displacement operator D̂(βi), the posteriori probability after detection
could be obtained by:

P
(
αk|{βi, ei = 0}) =

�
j
h=1P(eh|αk/

√
M;βh)

∑3
l=0 �

j
h=1P(eh|αl/

√
M;βh)

. (A)

Appendix B: Models of realistic detectors with detection efficiency
According to [28], given the LO is enough strong, a single DC-balanced homodyne detec-
tor consisting two detectors with efficiency ηD can be modeled by the one that a virtual
beam splitter with transmission efficiency ηD before the input port of ideal detectors (ef-
ficiency 100%). Therefore, 4 lossy detectors with unity efficiency ηdet in the conjugated
homodyne detector can be replaced as 4 beam splitter with transmission efficiency ηdet

before 4 ideal detectors (efficiency 100%) respectively, as shown in Fig. B(a).
Furthermore, when a conjugated homodyne detector is applied to recover the photon

statistics of input signal under photon-counting mode, Ref. [21] has verified that the a con-
jugated homodyne detector consisting of 4 lossy detectors (with unity efficiency ηdet) are
equivalent as the one consisting 4 ideal detectors while a beam splitter with transmission
efficiency ηdet virtually placed before the input port of signal. Two models in Fig. B are
equivalent to each other.

Hence, to calculate the equivalent detection efficiency of the conjugated homodyne de-
tector, the additional unity efficiency ηdet of 4 lossy detectors have been taken into account,
as Eq. (11) shown.
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Figure B Models of proposed conjugated homodyne detector (4 noiseless detectors with unity efficiency
ηdet). (a) The actual setup (b) An equivalent model of actual setup
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