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Abstract
In this work, we propose a bit-oriented QIA protocol based on special properties of
quantum rotation and the public key cryptographic framework. The proposed
protocol exhibited good resistance to both forward search and measure-resend
attacks, whereby its security performance was directly related to the length of the
authentication code. From our analysis, it was demonstrated that the protocol has
good performance, in terms of quantum bit efficiency. In addition, the protocol is
well-expandable. The developed protocol is resource-efficient and can be also
applied in quantum computing networks.

Keywords: Quantum identity authentication; Qubit rotation; High-dimensional
quantum state

1 Introduction
Quantum rotation is considered a basic mathematical tool for representing binary quan-
tum states. More specifically, an angular parameter is used to describe the vector state on
the Bloch sphere [1, 2]. Since the objects discussed in this paper are not limited to binary
qubit, it will be referred to as quantum rotation in this work.

Quantum rotation, with its unique properties, is regarded as the most fundamental con-
cept of quantum computing, especially in variational quantum circuits [3] and quantum
neural computing [4]. The dimension of quantum rotation refers to the dimension of the
quantum state that is affected by quantum rotation. From a geometric point of view, the
process by which quantum rotation produces its effect is similar to describing a plane rect-
angular coordinate system in polar coordinates. Combined with the Bloch ball, this can
be easily spotted.

Although there are substantial applications in quantum computing and quantum
physics, the implementation of quantum rotation in quantum cryptography is much rarer.
An important application of quantum rotation can be found in quantum public key cryp-
tography (QPKC). In 2008, Nikolopoulos designed a bit-oriented deterministic QPKC
protocol using quantum one-way functions constructed by quantum rotation [5] and pro-
posed a series of improvements over the next few years [6–8]. In our previously reported
work [9], the superposition of two-dimensional quantum rotation and extended quantum
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rotation to three-dimensions was demonstrated. These works provide an initial demon-
stration of the flexibility of quantum rotation in protocol design. The security of these
protocols can be also greatly enhanced as the parameters can be set over a wide range.
Hence, the protocol for using quantum rotation deserves undoubtedly further research.
On the other hand, a large number of experimental works on the preparation and control
of quantum states are based on quantum rotation [10, 11], which provides a realistic basis
for the feasibility of the above-mentioned protocols and future expansion.

The underlying principle of the quantum identity authentication (QIA) protocol is to
verify the identity of the legitimate user to protect quantum communication networks
from total breakdown [12]. In the QIA protocol, an authenticating party (Bob) uses quan-
tum means to verify an authenticated party’s (Alice) knowledge of a pre-shared key (iden-
tification code) [13]. In view of this nature, the means to achieve QIA are numerous, while
a general approach is to transform other quantum information protocols to be used for
identity authentication. Since the first QIA protocol [14] was proposed in 1995, quantum
key distribution (QKD) and quantum entanglement have been widely used to design QIA
protocols. Although the QKD-based protocol [15–17] can be easier implemented in re-
ality, the limitations of the QKD protocol itself prevent further security improvements
[18, 19]. Quantum entanglement provides high security [20–22], multi-party authentica-
tion [23, 24], and semi-quantum authentication [25, 26] for some QIA protocols. However,
obviously, these protocols must use quantum memory. As a minor protocol, QIA should
be used as little as possible to ensure that it does not burden the major protocol in quan-
tum communication networks. Some other protocols [27–29] face a similar problem of
using too many resources for additional purposes, which seem to deviate from the origi-
nal intent of QIA.

By considering the fundamental role of quantum rotation in quantum circuits, quantum
rotation can be used to design a QIA protocol with low resource consumption and high
security. On the other hand, it is feasible to convert a QPKC protocol into a QIA protocol
and retain the high security and scalability features of the QPKC protocol. Along these
lines, in this work, our previous research was first extended by expanding quantum rota-
tion to N-dimensions. On this foundation, a QIA protocol was designed, drawing on the
basic ideas of the QPKC protocol, and the security and efficiency of our protocol were
systematically analyzed.

The rest of this work is organized as follows. In Section II, the basic properties of quan-
tum rotation were introduced and expanded on the dimensions. In Section III, a detailed
description of the proposed QIA protocol was provided. Section IV analyzed the proposed
protocol in terms of security and efficiency, and discussed outstanding issues and protocol
expansions. Finally, in Section V, the main conclusions are presented.

2 Expansion of quantum rotation
In our previously reported work, quantum rotation was expanded to three-dimensional
situations [9]. The main focus was led on the unique property of the quantum rotation
parameter, namely superposition, which is the basis for many subsequent application pro-
tocols. In this section, the dimensionality of quantum rotation will be further expanded.
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Table 1 Geometric significance of quantum rotation

Initial state Rotation direction1 Final quantum state2

|0〉 Clockwise R(θ )|0〉 = cos( θ2 )|0〉 + sin( θ2 )|1〉
|0〉 Anti-clockwise R(–θ )|0〉 = cos( θ2 )|0〉 – sin( θ2 )|1〉
|1〉 Clockwise R(θ )|1〉 = –sin( θ2 )|0〉 + cos( θ2 )|1〉
|1〉 Anti-clockwise R(–θ )|1〉 = –sin( θ2 )|0〉 – cos( θ2 )|1〉

1 Rotation direction refers to the direction in the quantum state rotates on the Bloch circle, which takes the direction of –y as
the line of sight.
2 To better explain the geometric significance of quantum rotation, we denote sθn as θ and set θ > 0 in this table.

2.1 Properties of two-dimensional quantum rotation
A binary quantum state |ψs(θn)〉 on the xoz Bloch plane can be expressed as follows:

∣
∣ψs(θn)

〉 ≡ R(sθn)|0〉 = cos

(
sθn

2

)

|0〉 + sin

(
sθn

2

)

|1〉, (1)

where, n ∈N, s ∈ Zn := {0, 1, 2, . . . , n – 1|n ∈ N}, θn = π

2n–1 . On a quantum circuit, a quantum
rotation R(sθn) can regarded as a quantum gate with control parameter sθn. n and s are set
to limit the control parameters to [0, π

2 ] to avoid ambiguities caused by angles that differ by
one phase. Geometrically, R(sθn) causes the quantum state to rotate sθn around the y-axis
start |0〉 on the xoz plane in Bloch ball.

Superposition is about the important nature of the control parameters and is the basis
of the series protocol. For any αθn and βθn,

R(αθn)R(βθn)|0〉 = R(αθn + βθn)|0〉. (2)

Superposition can be intuitively expressed as multiple control parameters of the quan-
tum rotations can be superimposed. This is a property similar to homomorphic encryp-
tion. The detailed proof of superposition is shown in Ref [9]. Superposition in the two-
dimensional can be proved by using the quantum gate and the trigonometric function
property.

The superposition of quantum rotation has two important corollaries as follows:

R(αθn)R(βθn)|0〉 = R(βθn)R(αθn)|0〉, (3)

R(αθn)† = R(αθn)–1 = R(–αθn). (4)

By combining the geometric meaning of quantum rotation, it can be concluded that
the positive or negative of the parameter affects the direction rotation of the vector state
on the Bloch sphere. Tables 1 presents the geometric significance of quantum rotation.
Together with the two important corollaries that were above-mentioned, it provides the
basic tools for application protocols design.

The process of constructing quantum states by using two-dimensional quantum rotation
is similar to the transformation between a plane rectangular coordinate system, and a
polar coordinate system. Referring to this relationship, the conversion factor between the
spherical coordinate and the spatial rectangular coordinate systems can be introduced
to construct three-dimensional quantum rotation. by taking the three conversion factors
{x1, x2, x3} as the coefficients in front of the three-dimensional standard orthogonal basis
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in natural number order, the following expression for three-dimensional quantum rotation
can be obtained:

∣
∣ψs1,s2 (θn)

〉

= R(s1θn, s2θn)(�)|0〉
= x1|0〉 + x2|1〉 + x3|2〉

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

)

cos

(
s2θn

2

)

|1〉

+ sin

(
s1θn

2

)

sin

(
s2θn

2

)

|2〉,

(5)

where, the subscript � of R(s1θn, s2θn)(�) represents the Hilbert space where |0〉, |1〉, |2〉 is
located. The Equation (5) can be varied as follows:

R(s1θn, s2θn)(�)|0〉

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

)

cos

(
s2θn

2

)

|1〉 + sin

(
s1θn

2

)

sin

(
s2θn

2

)

|2〉

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

){

cos

(
s2θn

2

)

|1〉 + sin

(
s2θn

2

)

|2〉
}

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

)

R(s2θn)(ω12)|1〉

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

)

|ξ 〉

= R(s1θn)(ω0ξ )|0〉.

(6)

The proof of superposition in the three-dimensional requires the introduction of aux-
iliary quantum rotation. R(s2θn)(ω12) denotes a quantum rotation that occurs in Hilbert
plane ω12 determined by |1〉 and |2〉. Geometrically, plane ω12 is orthogonal to |0〉. Then,
as a vector on plane ω12, R(s2θn)(ω12)|1〉 was also orthogonal to |0〉. For the sake of formal
simplicity, R(s2θn)(ω12)|1〉 was noted as |ξ 〉. It can be found that the rewritten equation fits
the definition of a quantum rotation that occurs in Hilbert plane ω0ξ determined by |0〉
and |ξ 〉. Thus, it can be concluded that three-dimensional quantum rotation also satisfies
superposition.

From the point of view of quantum circuits, a three-dimensional quantum rotation can
be viewed as two times two-dimensional quantum rotations in different Hilbert plane.
This idea provides valuable insights for expanding quantum rotation to N-dimensional.

2.2 N-dimensional quantum rotation
In this section, the quantum rotation was extended to N-dimensions and the construction
method was summarized.

The coordinate conversion factors of the N-dimensional Cartesian coordinate system
and the hyper-spherical coordinate system can be introduced to construct N-dimensional
quantum rotation [30]. The conversion factor [31] between the two coordinate systems
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can be defined as follows:

x1 = r cos(φ1),

x2 = r sin(φ1) cos(φ2),

. . .

xN–1 = r sin(φ1) . . . sin(φN–2) cos(φN–1),

xN = r sin(φ1) . . . sin(φN–2) sin(φN–1),

(7)

where, {φ1,φ2, . . . ,φN–1} represents the angle of rotation from the corresponding coordi-
nate axis. Let r = 1,φi = siθn

2 , the factors can be expressed as follows:

x1 = cos

(
s1θn

2

)

,

x2 = sin

(
s1θn

2

)

cos

(
s2θn

2

)

,

. . .

xN–1 = sin

(
s1θn

2

)

· sin

(
sn–2θn

2

)

cos

(
sn–1θn

2

)

,

xN = sin

(
s1θn

2

)

· sin

(
sn–2θn

2

)

sin

(
sn–1θn

2

)

,

(8)

Obviously,
∑N

i=1 (xi)2 = 1.
Taking {φ1,φ2, . . . ,φN–1} as the coefficient before N – 1 standard orthogonal bases in

natural number order, then the following expression can be derived:

∣
∣ψs1,s2,...,sN–1 (θn)

〉

= R(s1θn, s2θn, . . . , sN–1θn)|0〉
= x1|0〉 + x2|1〉 + · · · + xN–1|N – 2〉 + xN |N – 1〉

=
N–1
∑

i=0

xi+1|i〉.
(9)

With reference to the situation in three-dimensional, the superposition of N-
dimensional quantum rotation can be proved.

Similar to Equation (6), Equation (9) can be transformed into the following form:

R(s1θn, s2θn, . . . , sN–1θn)|0〉
= x1|0〉 + x2|1〉 + · · · + xN–1|N – 2〉 + xN |N – 1〉

= cos

(
s1θ1

2

)

|0〉 + sin

(
s1θ1

2

)

cos

(
s2θ2

2

)

|1〉 + · · ·

+ sin

(
s1θ1

2

)

. . . sin

(
sn–2θn–2

2

)

cos

(
sn–1θn–1

2

)

|N – 2〉 (10)

+ sin

(
s1θ1

2

)

. . . sin

(
sn–2θn–2

2

)

sin

(
sn–1θn–1

2

)

|N – 1〉
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= cos

(
s1θ1

2

)

|0〉 + sin

(
s1θ1

2

){

cos

(
s2θ2

2

)

|1〉 + · · ·

+ sin

(
sn–2θn–2

2

){

cos

(
sn–1θn–1

2

)

|N – 2〉 + sin

(
sn–1θn–1

2

)

|N – 1〉
}}

. . .
}}

,

where {|0〉, |1〉, . . . , |N – 2〉, |N – 1〉} is a set of standard orthogonal bases, and all quantum
states are orthogonal to each other. Thus, the above-mentioned equations can be con-
verted step by step into a series of quantum rotations starting from cos( sn–1θn–1

2 )|N – 2〉 +
sin( sn–1θn–1

2 )|N – 1〉.
Note that the quantum rotation results with si as |ξsi〉, namely

|ξsi〉 = R(siθn)|a〉 = cos

(
siθn

2

)

|a〉 + sin

(
siθn

2

)

|b〉, (11)

where |a〉 orthogonal to |b〉.
As a result, Equation (10) can be expressed as follows:

R(s1θn, s2θn, . . . , s(n–1)θn)|0〉

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

){

cos

(
s2θn

2

)

|1〉 + · · ·

+ sin

(
sn–2θn

2

){

cos

(
sn–1θn

2

)

|N – 2〉

+ sin

(
sn–1θn

2

)

|N – 1〉
}}

. . .
}}

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

){

cos

(
s2θn

2

)

|1〉 + · · ·

+ sin

(
sn–2θn

2

)

|ξsN–1〉
}

. . .
}}

. . .

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

){

cos

(
s2θn

2

)

|1〉 + sin

(
s2θn

2

)

|ξsN–1,N–2,...,3〉
}

= cos

(
s1θn

2

)

|0〉 + sin

(
s1θn

2

)

|ξsN–1,N–2,...,3,2〉

(12)

Obviously, |0〉 is orthogonal to |ξsN–1,N–2,...,3,2〉. N-dimensional quantum rotation is
equivalent to a quantum rotation, where the control parameter is also determined by
{sN–1, sN–2, . . . , s3, s2}. In other words, the impact N-dimensional quantum rotation acting
on |0〉 is equivalent to the impact of N – 1 two-dimensional quantum rotations acting
on |0〉 successively in proper order. Therefore, the N-dimensional quantum rotation also
satisfies the superposition.

This proof process can be seen as a method of dimensionality reduction. High-
dimensional quantum rotation can play an important role in the design of quantum cir-
cuits and mixed-value quantum computing. In addition, it is feasible to design quantum
cryptography protocols with higher security and higher efficiency using quantum rota-
tion.
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3 Quantum identity authentication protocol based on quantum rotation
As was explained in the Introduction, a common way to construct QIA is to transform
other protocols for authentication. Quantum public key cryptography (QPKC), as a class
of protocols with more research, focuses on high security and efficiency in encryption and
decryption [32]. These features of QPKC meet both the security needs of QIA and the
resource savings that QIA should have as a minor protocol. By combining our research on
quantum rotation and the main idea of QPKC, the QIA protocol was formally presented
based on quantum rotation in this section.

The main difference between QPKC and QIA is that the former requires accurate ci-
phertext, while the latter only needs to verify that the ciphertext meets expectations. Fol-
lowing this idea, the QIA protocol was constructed to detect whether an encrypted quan-
tum state meets expectations after a series of quantum rotations act on it.

The detailed steps of QIA are shown in the following.
Public parameter. Authenticating party Bob and authenticated party Alice share authen-

tic n-bit strings kide as Bob’s identification code for authentication in the communication
network. kide was chosen independently from Zn and distributed as evenly as possible.
Note i-th position as ki

ide. kide and n are private, and one-to-one correspondence is re-
quired between the users in the multiuser network.

Step 1. Bob initiates an authentication request for Alice. Bob prepares a string l that is n
long, and notes i-th position as li ∈ {0, 1}. Bob prepares kb based on Alice’s ki

ide, and note
the i-th position as ki

b satisfied

ki
b =

⎧

⎨

⎩

2n–1 – ki
ide, li = 1,

–ki
ide, li = 0.

(13)

Step 2. Bob prepares an authentication application kapp with the corresponding check
code kver. ki

app and ki
ver in i-th satisfy the following conditions

ki
b = ki

app + ki
ver,

∣
∣ki

app
∣
∣ ∈ Zn,

∣
∣ki

ver
∣
∣ ∈ Zn. (14)

The following quantum states were prepared from |0〉⊗n by using quantum rotation as
follows:

∣
∣�app(θn)

〉

=
n

⊗

i=1

R
(

ki
appθn

)|0〉. (15)

Bob sends |�app(θn)〉 to Alice as an authentication request.
Step 3. Alice responded to the request. Alice receives the quantum state and acts

R(ki
ideθn) on the i-th position, obtain

∣
∣� ide(θn)

〉

=
n

⊗

i=1

R
(

ki
ideθn

)∣
∣�app(θn)

〉

(i)

=
n

⊗

i=1

R
(

ki
ideθn

)

R
(

ki
appθn

)|0〉.
(16)

and sends |� ide(θn)〉 back to Bob as a reply.
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Figure 1 Flowchart of the QIA protocol combining the examples in Table 2. In the flowchart, the quantum
state is represented as a vector in the xoz, and the quantum rotation is denoted as a quantum variational
circuit. Inputting a quantum state into the circuit means that a quantum rotation is applied to a quantum
state. The parameters in the three quantum variational circuits are determined by kapp , kide and kver according
to the quantum rotation expressions

Step 4. Bob checks for a reply. Bob acts R(ki
ideθn) on the i-th position gives |�ver(θn)〉 and

measure bit by bit using {|0〉, |1〉}. If Bob gets the corresponding measurement result |li〉,
the authentication results in success. In practical cases, this judging condition could be
loosened to an acceptable error threshold according to the channel noise environment.
Otherwise, authentication fails.

According to the superposition of quantum rotation, the correctness of the QIA proto-
col is presented as follows. The protocol is a bit-based deterministic protocol and qubits
are discrete and independent. For this reason, j-th position was selected for analysis. Fol-
lowing the protocol steps, the j-th quantum |�ver(θn)〉(j) before Bob makes the measure-
ment is as follows:

∣
∣�ver(θn)

〉

(j) = R
(

kj
verθn

)

R
(

kj
ideθn

)

R
(

kj
appθn

)|0〉
= R

[(

kj
ver + kj

ide + kj
app

)

θn
]|0〉

= R
[(

kj
ide + kj

b
)

θn
]|0〉

=

⎧

⎨

⎩

R(2n–1θn)|0〉 = sin( π
2 )|1〉 = |1〉, li = 1,

R(0)|0〉 = cos(0)|1〉 = |0〉, li = 0.

(17)

Obviously, the final output of the protocol is |li〉, which can show Alice’s identity whether
to meets expectations. Figure 1 and Table 2 depict the protocol process when the authen-
tication credential n = 4, kide = {0, 1, 2, 3}.

Special attention should be also paid to the fact that the authentication credentials kide of
the different users in a communication network cannot be multiplicative, such as {1, 1, 2, 2}
and {2, 2, 4, 4}. This has the potential to cause two users to exhibit exactly the same behav-
ior during a authentication process. Obviously, this situation can be easily avoided when
distributing kide for users.
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Table 2 QIA protocol example when n = 4

Initial state kide li kb kapp kver |�app(θn)〉 |� ide(θn)〉 |�ver(θn)〉 Results

|0〉 0 1 8 2 6 R(π4 )|0〉 R(π4 )|0〉 R(π )|0〉 |1〉
|0〉 1 0 –1 –10 9 R(– 5π

4 )|0〉 R(– 9π
8 )|0〉 R(0)|0〉 |0〉

|0〉 2 0 –2 –1 –1 R(–π
8 )|0〉 R(π8 )|0〉 R(0)|0〉 |0〉

|0〉 3 1 5 –11 16 R(– 11π
8 )|0〉 R(–π )|0〉 R(π )|0〉 |1〉

4 Analysis and discussion
In this section, the protocol and future development will be thoroughly analyzed.

4.1 Security analysis
The security of the proposed QIA protocol will be examined. The purpose of the external
attacker, Eve, is to try to fake Alice’s identity and make Bob believe that she is Alice. Fur-
thermore, Eve attempts to obtain Alice’s authentication code and disguise her identity for
a long time. The resistance of the protocol to impersonation attacks, known plaintext at-
tacks, measure-resend attacks, and entangle-discriminate attacks will be also investigated.

(1) Impersonation attack. In this kind of attack, Eve tries to impersonate the legal user
Alice and pass the authentication process. A general approach to impersonation is to mea-
sure the unknown quantum states on the channel and attempt to distinguish quantum
states. The density matrix and the Heisenberg uncertainty principle were used to calcu-
late the trace distance to distinguish the two quantum states on the channel to see if they
can be distinguished.

For the simplicity of the calculation, the case when a single quantum state is transmitted
over a quantum channel was considered. The control parameter of the quantum rotation
that determines the state of the quantum state, assume as ξ , leads to the quantum state as
|ψ(ξ )〉 = R(ξ )|0〉. Then, its density matrix can be expressed as follows:

∣
∣ψ(ξ )

〉〈

ψ(ξ )
∣
∣ =

[

cos

(
ξ

2

)

|0〉 + sin

(
ξ

2

)

|1〉
][

cos

(
ξ

2

)

〈0| + sin

(
ξ

2

)

〈1|
]

= cos2
(

ξ

2

)

|0〉〈0| + cos

(
ξ

2

)

sin

(
ξ

2

)

|0〉〈1|

+ cos

(
ξ

2

)

sin

(
ξ

2

)

|1〉〈0| + sin2
(

ξ

2

)

|1〉〈0|

=

(

cos2( ξ

2 ) cos( ξ

2 ) sin( ξ

2 )
cos( ξ

2 ) sin( ξ

2 ) sin2( ξ

2 )

)

.

(18)

It was also assumed that the two quantum states on the channel are determined by the
parameters ξ1 and ξ2, respectively. According to the theorems of quantum state discrim-
ination [33], the minimum error of discriminating the two states above is given by the
following equation:

Perr =
1
2

(

1 – Tr

(∣
∣
∣
∣

1
2
ρξ2 –

1
2
ρξ1

∣
∣
∣
∣

))

=
1
2

(1 – 0) =
1
2

.
(19)



Chen et al. EPJ Quantum Technology           (2023) 10:11 Page 10 of 18

Figure 2 The probability of Eve’s impersonation being detected varies with n. The x-axis stands for the
number of bits of the authentication code kide , namely n. The y-axis represents the probability of Eve’s
impersonation attack being detected. It should be noted that the protocol does not work when n = 1.
However, for a complete demonstration of the trend of the probability of Eve being found, this figure retains
this case

Therefore, when the code have n bits, the probability of an adversary passing Alice’s test
is at most

(1 – Perr)n =
1
2n . (20)

Compared to some QIA protocols [34] based on the mutually unbiased bases (MUBs),
Eve’s probability of passing detection has an extremely fast rate of decline. As can be ob-
served from Fig. 2, the probability of Eve’s impersonation being detected increases expo-
nentially with the number of bits of the authentication code n.

When n = 10, the probability of Eve being found is greater than 99.9%. This is a very good
performance, which comes from the incorporation of quantum rotation into the protocol
design. Another comparative advantage of introducing quantum rotation, in terms of se-
curity, is that the performance of security protection for authentication code is greatly
improved. When the authentication code is long enough, the key can be selected in a very
wide space, namely Zn, and the probability that Eve obtains the authentication credentials
by random selection is 1

nn , which is about 0.002% when n = 6. This security protection is
also reflected in the defense against other attacks.

(2) Forward search attack. In the above-mentioned attack, Eve wanted to disguise her
identity to pass Bob’s test. In the next series of attacks, Eve will try to steal as much in-
formation as possible about the authentication code. A forward search attack is known
to be a very effective way of attacking QPKC and derived protocols. Particularly, the basic
idea of the attack is to use a two-bit quantum gate, such symmetry-test circuit, to compare
the state of the quantum state before and after encryption to infer the ciphertext [6]. For
the proposed QIA protocol, Eva can compare the authentication request received by Alice
and the authentication reply sent by Alice to infer the authentication code.

Previously reported works in the literature have shown that using parity encoding with
Hamming weight [6] or using probabilistic encryption [7] can prevent forward search at-
tacks. However, the former brings a reduction in protocol efficiency, and the latter is as-
sociated with probabilistic decryption errors. In our previously reported work [9], it has
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been shown that using three-dimensional quantum rotation can have good resistance to
forward search attack without adding any plug-ins. Similarly, our QIA protocol is resis-
tant to such types of attacks. On the one hand, the ciphertext of our protocol, namely
the authentication code, is the quantum rotation parameter rather than {|0〉, |1〉}. Even if
there exists a quantum circuit that can accurately compare whether two quantum states
are different, it is not possible to infer the authentication code. On the other hand, there
do exist some cases, such as kide = 0 and kapp = 0, forward search attacks are able to infer
kide. Nevertheless, such cases obviously occur with very low probability and do not affect
the overall security of our protocol. For Eve, since kapp was independently selected by Al-
ice, she was also unable to confirm kapp = 0. In summary, the developed protocol has good
resistance to forward search attacks. A large part of the security of the protocol comes
from the random and decentralized selection of kapp and li. The selection process should
be independent in each authentication.

(3) Measure-resend attack. In this attack strategy, Eve will use carefully designed POVM
to measure the quantum state on the quantum channel, and send new states to Bob de-
pending upon the measurement result. Without loss of generality, it was assumed that Eve
performs a measure-resend attack on Alice’s reply to Bob. Regardless of how Eve designs
the measurement base to obtain more information, the maximum amount of information
Eve can extract from the quantum channel can be calculated by using Holevo bound [35].

The maximum amount of information that can be obtained from the quantum channel
satisfies the following inequality

S(ρ) –
∑

x
pxS(ρx) ≤ H(X), (21)

where, ρ =
∑

x pxρx.
In the proposed protocol, both kide and kapp were selected at complete random on Zn.

Then the quantum state on the channel with a 1
n probability is in

R(iθn)|0〉 = R
(

iπ
2n–1

)

|0〉 = cos

(
iπ
2n

)

|0〉 + sin

(
iπ
2n

)

|1〉, (22)

where, i ∈ Zn. Then the density matrix of quantum states is

(

cos2( iπ
2n ) cos( iπ

2n ) sin( iπ
2n )

cos( iπ
2n ) sin( iπ

2n ) sin2( iπ
2n )

)

. (23)

In summary, it can be obtained:

ρ =
n

∑

i=1

1
n

(

cos2( iπ
2n ) cos( iπ

2n ) sin( iπ
2n )

cos( iπ
2n ) sin( iπ

2n ) sin2( iπ
2n )

)

. (24)

A simple calculation leads to the eigenvalues of ρ , which is a function of n. From this,
relationship between Holevo bound for the quantum state on the channel and n can be
derived as Fig. 3.

During the increase in n, the amount of information available to Eve decreased rapidly
and fell below 0.000311 bit at n greater than 10. In the protocol setting, n � 1 should be
satisfied. Therefore, the protocol has good resistance to measure-resend attacks.
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Figure 3 The Holevo bound varies with n. The x-axis stands for n. The y-axis denotes Holevo bound for the
quantum state on the channel. The protocol does not work when n = 1, therefore in the figure n ≥ 2

It is worth noting that when n = 2, the protocol uses on the channel only {|0〉, |1〉, |+〉, |–〉}.
At this point, the protocol degenerates to a BB84-like protocol. From the perspective of
protocol design, the developed QIA protocol can be seen as a generalization of the BB84-
based QIA protocol. From the perspective of the quantum gates used, H used in the BB84
protocol equals to R( π

2 ). Quantum rotation, and a set of universal quantum gates were
used in our protocol, which greatly extends the flexibility of the protocol when encrypting
and decrypting.

Additionally, a special feature of this protocol is that, as a quantum bit-oriented proto-
col, each bit of quantum state is phase independent (this is supported by the analysis of
the impersonation attack). However, its security will change as the number of quantum
bits increases. This stems from the association of the quantum rotation parameter with
the authentication code in the protocol design. Combined with the analysis of the im-
personation attack, as the number of bits is increased, spoofing becomes more difficult,
and stealing useful information from the channel becomes more difficult, which increases
the security of the protocol in general. When n is large enough, the probability of success
of Eve’s measure-resend attack will be lower than the probability of directly guessing the
authentication code.

(4) Entangle-discriminate attack. In this attack, Eve entangles the quantum state on the
channel with her own probe register. After, Bob has executed the authentication protocol,
the probe is measured and potentially useful information is obtained. On this basis, Eve
can draw information on the state of the quantum in the quantum channel [36].

A brief demonstration of the flow of Eva’s attack using CNOT is presented here. Eve
uses CNOT to establish entanglement between |ψ〉 = cos(θ )|0〉 + sin(θ )|1〉 on the chan-
nel and preserved quantum state |χ〉. The state of the quantum system after establishing
entanglement is as follows:

|ψ〉|χ〉 CNOT−→ cos(θ )|ψ〉|χ〉 + sin(θ )X|ψ〉|χ〉, (25)

where, X = |1〉〈0| + |0〉〈1|. Afterwards, Eve measures the probe register based on her
knowledge of |χ〉 and infers θ based on the probability of the measurement result. Eve
can infer the quantum state structure step by step by repeating this attack many times.
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This attack is very effective against QIA protocols where the authentication code does
not change, especially BB84-like protocols that use MUBs. In addition to that, this attack
also works for QKD and quantum secret sharing. Moreover, the entangle-discriminate at-
tack can also be combined with a forward search attack based on symmetry-test quantum
circuits [6] to produce a higher attack effect.

However, such types of attacks are of little use to our QIA protocols. In this attack sce-
nario, the first difficulty Eve faces come from the final stage of the protocol: Bob will apply
kver before measuring. kver can have an unintended impact on the established entangle-
ment. Thus, the possible structure of the channel quantum states directly from the mea-
surements can difficult to be inferred.

In the most ideal case, Eve can get kapp +kide in an authentication. Eve can fall back on the
second best attempt to use kapp + kide to cheat Bob. Then, Eve will face a second difficulty.
kapp and li used by Bob in each authentication process are randomly assigned and both
are selected independently. The random process makes kapp + kide change in each com-
munication, and the number of possible changes is linearly related to n. It is difficult for
Eve to cheat Bob in the next authentication. This result approximates the influence of key
updating, namely, making it difficult for an attacker to accumulate an advantage in each
attack. In a practical scenario, a key-update threshold can be set for the developed proto-
col to further strengthen the security of the authentication code. Compared to protocols
that actually use a key-update policy, the proposed protocol is more convenient. Because
the authentication code of Alice in the protocol is practically unchanged, no additional
quantum operations are required, and Alice can secure the protocol by simply executing
an identical circuit. In reality, Eve needs to trade off the amount of information available
and the induced error rate resulting from different entanglement strategies and detection
state discrimination techniques. Eve may causes a disturbance to the channel in the estab-
lishment of entanglement, which can be detected in the final measurement detection in
combination with li.

4.2 Efficiency analysis
Afterwards, the efficiency performance of our protocol will be analyzed and some existing
protocols will be compared. Quantum bit efficiency [37] is considered one of the most
commonly used criteria to analyze the efficiency of quantum protocols. The quantum bit
efficiency is given by the following expression:

η =
bs

qt + bt
× 100%, (26)

where bs represents the number of useful quantum bits and classical bits, qt denotes the
total number of quantum bits, bt stands for the total number of quantum bits.

In the proposed protocol, the length of the authentication code is n. The length of the
classical li used for listening detection is n, namely bt = n. Besides, the total number of
quantum bits used is qt = n, and the protocol finally authenticates the qt = n bit authen-
tication code. Therefore, the lower bound of quantum bit efficiency for our protocol is
calculated as follows:

η0 =
n

n + n
× 100% = 50%. (27)
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Table 3 Comparison of protocol performance

Protocol Realization method1 Length of
identification code

Quantum bit
efficiency (%)2

Note3

[38] Bell states n 15 two-way certification
[39] Bell states 2n 33.3 key-update
[40] Bell states 6n 33.3 two-way certification
[41] Bell states 2n ≤ 88.9 two-way certification
[42] Cluster state n 16.7 two-way certification
[43] Cluster state 4n 33.3 –
[44] QKD with Mubs n 33.3 –
[45] QKD with Mubs n 50 –
[46] QKD with Mubs n 50 key-update
[47] QKD with Mubs 9n ≥ 45 key-update
[48] QKD with Bell state 2n 50 two-way certification
[49] Error avoidance code n 25 –
[21] Shared secret n 33.3 key-update
[50] QPKC n 50 –
[29] Quantum walks n –– two-way certification
Our Quantum rotation n ≥ 50 –

1 Realization method refers to the most significant quantum resources used by the protocol, and some auxiliary resources
are not marked.
2 Quantum bit efficiency stands for the approximate value calculated from the Equation (26) in the ideal state. The quantum
bit efficiency of some protocols is variable, and the range is given in this table. Among them, [29] cannot evaluate the
quantum bit efficiency due to the use of quantum walks.
3Note denotes additional purposes that can be achieved by QIA protocol. Some protocols enable multi-party
authentication. In some protocols, only part of the authentication code changes after each authentication or equivalently
achieves key-update, which is also marked as achieving key-update.

Although quantum bit efficiency is a more general evaluation criterion, this criterion
is inaccurate for the introduced protocol. The vast majority of quantum communication
protocols use quantum bits {|0〉, |1〉} and classical bits {0, 1}. Nonetheless, in the proposed
protocol, the object being authenticated is kide ∈ Zn, carrying more information than the
classical bits. For example, the binary of an integer 10, 1010(2), requires 4 bits of classical
bits for storage, and integer 100 requires 7 classical bits. Thus, fewer classical bits are
used here to authenticate content that requires a large number of classical bits for storage.
Equation (27) gives the quantum bit efficiency of the protocol when n = 2, namely kide ∈
{0, 1}. As n is increased, the number of useful classical bits N(n) also is increased and
min N(n) = n. In summary, the quantum bit efficiency can be expressed as follows:

η =
N(n)

2n
× 100% ≥ 50%. (28)

The precise evaluation of the efficiency of the developed protocols is still a matter of
discussion.

A simple comparison with similar QIA protocols in structure and steps from the as-
pects of realization method, length of identification code, and quantum bit efficiency is
presented in Table 3.

Table 3 shows some of the QIA protocols with similar structure and steps, namely, the
certified party reproducing information about the certification code to the quantum state
for authentication request reply in a round of communication.

By comparison, it can be found that the protocols that achieve two-way authentication
basically use quantum entanglement and have good performance in terms of quantum
bit efficiency. However, it is clear that protocols that use quantum entanglement, espe-
cially many-body entanglement and other special quantum resources, have difficulties in
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the physical implementation. As was stated in the Introduction, this is contrary to QIA’s
positioning as a minor protocol. Most of the QKD-based protocols achieve high quan-
tum bit efficiency, while QKD protocols using MUBs are vulnerable to various types of
attacks, such as entangle-discriminate attacks. The proposed protocol strikes a good bal-
ance between security and efficiency. More specifically, only quantum rotation is used as
a fundamental component of quantum computing and can be directly embedded in secu-
rity protocols related to quantum computing, such as quantum federation learning [51]
or other cloud-based quantum machine learning. In addition, during multiple runs of the
proposed protocol, Alice does not need to change its own quantum circuitry frequently to
ensure the protocol security, which can reduce the technical requirements of Alice with
only limited quantum capabilities in realistic scenarios. These advantages suggest that the
developed protocol can be better applied in future quantum big data scenarios.

4.3 Discussion
In this section, some unresolved issues in our QIA protocol will be discussed, and further
expansions will be provided. In real scenarios, imperfections in the quantum channel and
detection primitives can have a direct impact on the authentication accuracy and secu-
rity of a QIA protocol. As a bit-oriented QIA protocol, dark counts and channel loss can
cause authentication failures or give Eva the opportunity to hide in the noise for attacks.
The analysis of security in this work assumes an ideal environment. Hence, the attacker
Eva’s strategy of faking Alice’s identity with the help of noise will be discussed, while Bob’s
countermeasures will be covered in future work. Several works in the literature [45, 46]
have conducted noise analysis for QKD-based QIA and have shown good performance. In
further work, we will use quantum simulation tools for analysis of the protocol. Moreover,
as was explained in the efficiency analysis, the precise evaluation of the efficiency is an un-
resolved issue for our protocol. This problem can be extended to evaluate the efficiency
of multi-valued or even mixed-valued quantum circuits.

For the future expansion of the protocol, it should be noted that some protocols that
do not use entanglement [46, 47] are able to achieve key-updates using quantum gates.
The proposed QIA protocol is also capable of working with multiple quantum gates to
enable key updates. It can be also simply modified to add more quantum bits and one
quantum communication for achieving two-way authentication while avoiding the use of
entanglement. In addition, it can be combined with entanglement to extend a more secure
multi-party authentication protocol [52].

Fundamental concepts from quantum computing are also applied to the design of quan-
tum cryptography protocols. This shows that quantum circuits and computational tasks
in quantum computing, such as universal quantum circuits or blind quantum comput-
ing, can be introduced into the design of quantum protocols. Quantum homomorphic
encryption (QHE) is a kind of protocol that combines quantum computing with quan-
tum cryptography. The homomorphic nature of quantum rotation and their properties as
quantum universal gates seem to be used to design a QHE protocol, which is one of our
future research.

In terms of structure, the proposed QIA protocol has similarities with Nikolopoulos’s
QPKC protocol [5], namely quantum rotation works as a special quantum one-way func-
tion. The corresponding quantum rotations can be easily constructed using classical pa-
rameters, while it is very difficult to reduce the classical parameters from unknown quan-
tum rotations. This is the source of the ability to be below multiple attacks. Based on this
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idea, using the expansion of quantum rotation in dimensionality, high-dimensional QIA
protocols can be designed to further increase security. According to the relationship be-
tween the high-dimensional quantum rotation and two-dimensional quantum rotation, a
high-dimensional QIA protocol is equivalent to multiple two-dimensional QIA protocols
working together, which can further improve security.

In summary, in addition to its good performance, in terms of security and efficiency, our
protocol has good expandability.

5 Conclusion
In this work, the geometric properties of quantum rotations were first summarized based
on previous work and were expanded on the dimensionality. These property works provide
the basis for protocols based on quantum rotation. By combining the QPKC framework
with the superposition of quantum rotation, a bit-oriented QIA protocol was proposed.
After performing security analysis using the theorems of quantum state discrimination
and Holevo bound, it was demonstrated that the proposed protocol has high security and
good resistance to multiple attacks. This enhanced security comes from treating quantum
rotation as a one-way function. Moreover, as a bit-oriented protocol, each bit of quantum
state in the protocol is independent. However, the security of each bit is directly related
to the length of the authentication code, which is a special feature of the developed pro-
tocol. Authentication code length is regarded as a key factor affecting protocol security.
In terms of efficiency, the proposed protocol has good performance and demonstrates
advantages in comparison with other protocols. In addition to that, the introduced pro-
tocols are well-expandable. The proposed protocol is based on quantum rotation and no
additional quantum resources are used, which can be well applied to quantum computing
networks and other protocols based on quantum rotation.

Appendix: Symbol definition table

Table A1 Symbol definition table

Symbol1 Definition and Description

N {0, 1, 2, 3, . . . }
Z {0, 1, 2, . . . ,n – 1|n ∈ N}
θn

π

2n–1
n ∈ N

R(sθn) A quantum rotation, where s ∈ Zn

R(s1θn , s2θn)(�) Ternary quantum rotation occurring in Hilbert space �

|ξsi 〉 The quantum rotation results with si
n in protocol Number of bits of authentication code
kide String of authentication code
kapp String of authentication application, |kiapp| ∈ Zn

kver String of authentication verification, |kiver| ∈ Zn

kiide The i-th bit of the string, kiide ∈ Zn

l Auxiliary binary string
li The i-th bit of the auxiliary string, li ∈ {0, 1}
η Quantum bit efficiency

1 Only the main symbols are listed in this table. Some regional symbols are not listed
here, please refer to the definitions and descriptions of these symbols before use.
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2. Ambruş VE, Winstanley E. Rotating quantum states. Phys Lett B. 2014;734:296–301.
3. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L et al.

Variational quantum algorithms. Nat Rev Phys. 2021;3(9):625–44.
4. Schuld M, Sinayskiy I, Petruccione F. The quest for a quantum neural network. Quantum Inf Process. 2014;13:2567–86.
5. Nikolopoulos GM. Applications of single-qubit rotations in quantum public-key cryptography. Phys Rev A.

2008;77(3):032348.
6. Nikolopoulos GM, Ioannou LM. Deterministic quantum-public-key encryption: forward search attack and

randomization. Phys Rev A. 2009;79(4):042327.
7. Seyfarth U, Nikolopoulos G, Alber G. Symmetries and security of a quantum-public-key encryption based on

single-qubit rotations. Phys Rev A. 2012;85(2):022342.
8. Shang T, Tang Y, Chen R, Liu J. Full quantum one-way function for quantum cryptography. Quantum Eng.

2020;2(1):32.
9. Wang Y, Chen G, Jian L, Zhou Y, Liu S. Ternary quantum public-key cryptography based on qubit rotation. Quantum

Inf Process. 2022;21(6):197.
10. Kis Z, Renzoni F. Qubit rotation by stimulated Raman adiabatic passage. Phys Rev A. 2002;65(3):032318.
11. Nadj-Perge S, Frolov S, Bakkers E, Kouwenhoven LP. Spin–orbit qubit in a semiconductor nanowire. Nature.

2010;468(7327):1084–7.
12. Pirandola S, Andersen UL, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C et al.

Advances in quantum cryptography. Adv Opt Photonics. 2020;12(4):1012–236.
13. Dutta A, Pathak A. A short review on quantum identity authentication protocols: how would Bob know that he is

talking with Alice? Quantum Inf Process. 2022;21(11):369.
14. Crépeau C, Salvail L. Quantum oblivious mutual identification. In: Advances in cryptology—EUROCRYPT’95:

international conference on the theory and application of cryptographic techniques Saint-malo, France, May 21–25.
Proceedings 14. vol. 1995. France: Springer; 1995. p. 133–46.
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