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Abstract
Studying the propagation of failure probabilities in interconnected systems such as
electrical distribution networks is traditionally performed by means of Monte Carlo
simulations. In this paper, we propose a procedure for creating a model of the system
on a quantum computer using a restricted representation of Bayesian networks. We
present examples of this implementation on sample models using Qiskit and test
them using both quantum simulators and IBM Quantum hardware. The results show
a correlation in the precision of the results when considering the number of Monte
Carlo iterations alongside the sum of shots in a single quantum circuit execution.

Keywords: Bayesian network; Quantum computing; Risk analysis; Resilience analysis;
Reliability analysis

1 Introduction
Efficient electricity distribution networks constitute a crucial component of modern so-
ciety today. Therefore, the grid must not only be reliable, but also resilient. Consequently,
modelling such systems for the purpose of mitigating possible failures and power outages
is an important area of research [1].

Resilience planning starts with a reliability analysis. Formally, we define the reliability
of a system as the probability that the system in question will operate or perform a cer-
tain function under fixed conditions and for a specified period. In this study, we consider
electrical substations as one of the most important components of an electric power dis-
tribution network, and we know that combinations of unit element failures in these net-
works can result in a critical loss of load. Therefore, calculating the most likely modes
of failure, or those involving fewer individual elements can help in planning preventive
maintenance [2]. Using aging models in combination with data from sensors on the ele-
ments themselves, we can calculate the probability of a given element failing in the distri-
bution network. In this study we calculate the probability that the electrical substations
will remain in operation based on the joint probabilities of failure of each of their individ-
ual components: transformers, bars, switches, and lines, as well as the protection systems
themselves.

To work with conditional probabilities of this type we use Bayesian network models,
which are commonly used in this type of research [3]. The difficulty associated with these
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models is their high computational complexity. As the size of the problem increases, and in
the case of Bayesian networks this is measured by the number of nodes and arcs needed to
model the problem, the time and computational memory required by classical algorithms
to solve these Bayesian network models grow exponentially, up to a point at which their
resolution becomes classically unfeasible [4].

In this regard, it is worth noting that gate-based quantum computers are expected to
help solve problems in quantum chemistry [5–7], machine learning [8, 9], financial simu-
lation [10–13] and the application of combinatorial optimization [14, 15].

As predicted by Preskill [16], Noisy Intermediate-Scale Quantum (NISQ) computers
with more than 100 qubits are now a reality and may be able to perform tasks which sur-
pass the capabilities of today’s classical digital computers, but noise in quantum gates lim-
its the size of quantum circuits that can be executed reliably. To obtain all the advantages
of this technology, we will need more accurate quantum gates and, eventually, fully fault-
tolerant quantum computing.

In this paper, we evaluate whether this technology will also be able to help in resilience
and failure risk analysis.

Quantum advantage refers to the ability of a quantum computer to solve a problem faster
or more efficiently than a classical computer [17, 18]. Achieving quantum advantage is a
major goal and challenge for quantum computing, as it would demonstrate the practical
benefits and applications of this emerging technology.

At this point we can highlight the main contributions in this work:
• We define a new Restricted Quantum Bayesian Network (RQBN) procedure for

modelling the reliability of complex systems.
• We evaluate the viability of the procedure for performing reliability analysis,

obtaining the same accuracy as classical Monte Carlo methods by adjusting the
number of shots in a single quantum circuit execution.

• We test the impact of real quantum computer noise on the elements in the model.
This paper proposes a procedure for the general application of the quantum modelling

of the propagation of failure probabilities in an electrical distribution system, as well as a
procedure for the calculation of this model.

Several electrical power distribution systems (in particular, a typical electrical substa-
tion and a protection system) are modelled by Bayesian networks as examples. The failure
modes of the substations are calculated with both classical algorithms and quantum algo-
rithms.

We approach the solving of Bayesian networks in a classical way using pomegranate,
a Python library that is able to implement probabilistic models [19]. We then look to model
and solve Bayesian networks in a quantum regime using Qiskit [20], in view of its lower
code effort [21].

This approach allows us to validate the results and analyze the performance of both
solutions.

We conclude by discussing the future directions and open questions for achieving quan-
tum advantage for failure risk analysis. Currently, quantum computing for this problem is
not completely solved. There are still gaps in scaling and error mitigation. To bridge these
gaps, we propose or suggest exploring other methods to build Quantum nodes (i.e., quan-
tum neurons [22, 23]) that could enhance our quantum solution or enable new quantum
solutions. However, there are also limitations or barriers that prevent or hinder achieving



Carrascal et al. EPJ Quantum Technology           (2023) 10:13 Page 3 of 19

quantum advantage for this problem, such as the length of the circuits and the coherence
time of the current quantum computers. Therefore, we identify and highlight some open
questions or challenges that need to be addressed or solved for achieving quantum advan-
tage for this problem.

The rest of the paper is organized as follows. Section 2 reviews the foundations needed
by the Restricted Quantum Bayesian Network model described in Sect. 3.1. Sections 3.2
and 3.3 explore two case studies for the defined procedure. Section 3.4 discusses the im-
plications of noise in real quantum computers, and Sect. 4 contains the conclusions.

2 Methods
2.1 Reliability analysis
The resilience of a system is related to its ability to withstand stress, adapt to this stress,
avoid disruptions, and recover from them. Resilience is linked to the traditional concept
of reliability but encompasses additional concepts. Planning for resilience requires taking
into account both the risks and the costs of mitigating those risks [1].

Electrical substation reliability has been approached classically by many authors using
different methods, including fault tree and event tree analysis [24], failure modes and effect
evaluation [25], and also Bayesian networks [4], and with this the reliability of the system
can be obtained using probability propagation techniques. This allows the modelling of
complex systems, such as those of the bridge type, and dependencies between failures,
which are difficult to obtain with conventional reliability analysis techniques.

Failure risk analysis is a problem that involves high-dimensional probabilistic inference
on complex systems, such as electrical distribution networks. Classical methods, such as
Monte Carlo simulations, can be computationally expensive and inaccurate for such prob-
lems, especially when dealing with large-scale networks with many variables and depen-
dencies. Quantum computers, on the other hand, can exploit the principles of quantum
mechanics, such as superposition and entanglement, to manipulate information in ways
that are not possible for classical computers. This could potentially give them an edge for
solving problems that are very complex, such as optimizing large-scale networks.

2.2 Bayesian networks
A Bayesian network is a probabilistic graphical model used to represent situations with
associated uncertainties, where nodes represent random variables (discrete or continu-
ous) and arcs connecting pairs of nodes represent connections (dependencies) between
the nodes. Figure 1 shows a simple network and the elements that make it up.

In our problem we only work with discrete variables so we only model discrete Bayesian
networks. The strength of the relationship between the variables is quantified by condi-
tional probability tables (CPTs) associated with each node.

Figure 1 Example of a Bayesian network (Z = N1∧ N2)
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The only restriction on the arcs connecting the nodes in a Bayesian network is that there
must be no cyclic relationships, that is, you cannot return to a node simply by following a
series of arcs. Such networks are called directed acyclic graphs (DAGs).

The function of Bayesian networks is to calculate the a posteriori distribution of a set
of nodes, given the values of other nodes which constitute evidence or observations. This
process is called updating probabilities and is much like representing a flow of information
through the network.

To perform such updates, Bayesian networks require the iterative application of Bayes’
theorem, and for this purpose exact or approximate inference algorithms can be used.

There are some software programs that use such algorithms and make it possible to build
and use Bayesian networks without knowing all the details of the underlying probability
update algorithms. Specifically, in this study we use a Python library called pomegranate
[26], which uses either maximum-likelihood estimates or expectation-maximization.

For larger networks, the use of an exact algorithm may become unfeasible, and in that
case approximate algorithms are usually applied, but, in general, both exact and approxi-
mate algorithms theoretically have exponential complexity and so the problem is still con-
sidered to be NP hard [27].

In practice, the speed of the approximate algorithm will depend on factors such as the
structure of the network, the number of connections, or the location of the observation
nodes.

2.3 Quantum gates
To be able to model these conditional probabilities, we need the following quantum gates:

X gate The quantum X gate is the equivalent of the classical NOT gate. This swaps, or
flips, basis states and is represented as:

X = U3

(
π , –

π

2
,
π

2

)
=

[
0 1
1 0

]
. (1)

RY gate This gate corresponds to a rotation of θ radians around the y-axis of the Bloch
sphere. It is represented as:

RY (θ ) = U3(θ , 0, 0) =

[
cos( θ

2 ) – sin( θ
2 )

sin( θ
2 ) cos( θ

2 )

]
. (2)

Two-qubit quantum gates The elementary gate composed of two qubits is the controlled-
NOT (CNOT or CX) gate. The qubits on which this gate is implemented are known as
control and target qubits.

When the control qubit has value |0〉, the target qubit does not change its state, whereas
when the control qubit has value |1〉, the X gate is applied to the target qubit to change its
state. On the computational basis with states |00〉, |01〉, |10〉, and |11〉, the matrix repre-
senting the CNOT gate is as follows:

CNOT =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎥⎦ . (3)
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Figure 2 Expansion equivalent to controlled gate

Another gate similar to the CNOT gate is the CRY(θ ) gate, which implements a rotation
RY(θ ) when the control qubit has the value |1〉. It is represented as:

CRY(θ ) =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos( θ

2 ) – sin( θ
2 )

0 0 sin( θ
2 ) cos( θ

2 )

⎤
⎥⎥⎥⎦ . (4)

Three qubit and other quantum gates The two three-qubit gates we use for our algorithm
are the CCNOT (CCX or Toffoli) and the CCRY(θ ) gates. In these gates, two qubits act as
control qubits and the final qubit in the register acts as the target qubit. In the case of the
CCNOT gate, when the two control qubits have the value |1〉, the X gate is applied to the
target qubit. In the case of the CCRY(θ ) gate the RY(θ ) gate is applied. Thus, we can now
define the gates CnX and CnRY(θ ) for n control qubits and a target qubit.

Expansion of controlled gates To be able to model conditional probabilities, we need
to perform controlled rotations in our quantum circuits. This controlled rotation can be
efficiently mapped to simple, one-qubit, rotations and CNOT gates.

We can use the following expansion equivalence to implement controlled rotation gates
(Fig. 2).

3 Results and discussion
3.1 Restricted quantum Bayesian network model
In a general way, Sima E. Borujeni et al. established a method for mapping conditional
probabilities from a Bayesian network to a quantum circuit [28], resulting in high depth
circuits with 2n operations per node, with n being the number of parent nodes of the node
in question.

To model the failure probability of the electrical grid, we have a particular case of the
Bayesian network in which the leaf nodes are the random variables representing the failure
probability of each individual element. The rest of the nodes can be modeled with com-
binations of “AND” and “OR” nodes, depending on the serial or parallel configuration of
the elements, respectively.

Under these circumstances, in this paper, we define what we call a Restricted Quantum
Bayesian Network (RQBN) that leads to a lower depth circuit than the generic implemen-
tation, with only one operation per node. This formation is more suitable for being run on
current NISQ-type quantum hardware.

To solve this problem in the quantum regime, we employ the following steps to design
a quantum circuit that represents our Bayesian network:

1. Assign each node of our Bayesian network to a qubit. All the nodes that we refer to in
this paper have only two states (0 if the element works, 1 if it fails). Since qubits can
represent two states, we can assign each node to a different qubit.
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2. Assign the marginal or conditional probabilities of each node to the probability
amplitudes associated with the states of the qubits.

3. Obtain the desired probability amplitudes of qubit states using controlled rotation
gates.

Root nodes To represent a root node with two states we apply an RY(θ ) gate with an
appropriate angle θ . Thus, the probabilities of the root nodes can be assigned to the prob-
abilities (and therefore to the probability amplitudes) of the basic states |0〉 and |1〉. Let θ

Vi be the angle representing the angle of rotation associated with a two-state node Vi. If
the initial state of a qubit is |0〉, RY(θ ) transforms |0〉 to cos(θ/2) |0〉 + sin(θ/2) |1〉. There-
fore, the probabilities associated with the states |0〉 and |1〉 are cos 2(θ/2) and sin 2(θ/2),
respectively. If P(Vi = 0) and P(Vi = 1) represent the probabilities of the states 0 and 1 of
Vi, then we can calculate the rotation angle for the node Vi as:

θVi = 2 × tan–1

√
P(|1〉)
P(|0〉) = 2 × tan–1

√
P(Vi = 1)
P(Vi = 0)

. (5)

“AND” node for serial elements A serial system like the one in Fig. 3 can be modeled with
a Bayesian network such as the one in Fig. 1.

Nodes N1 and N2 refer to elements 1 and 2 of the system in series, while node Z corre-
sponds to the probability that the entire system will continue to operate. Each element that
is part of the system has a probability of operation of P (Ni) = pi and a failure probability
of P (¬Ni) = qi.

These probabilities are estimated by domain experts and are calculated by considering
several factors such as the type of element involved, the length of time it has been running,
or whether it has undergone any previous repair.

On the other hand, the probability of operation of the Z node (i.e., of the complete sys-
tem) is conditioned by nodes N1 and N2 and is quantified using the conditional probability
table shown in Table 1.

In a serial system, we need the operation of both elements for the system to be successful,
so we can use the Conditional Probability Table (CPT) of node Z as a truth table of a logical
conjunction. Thus, the reliability of this system (i.e., the probability that the system will
work) is:

P(z) = 1 · p1p2 + 0 · q1p2 + 0 · p1q2 + 0 · q1q2. (6)

Figure 3 Simple serial system

Table 1 CPT for serial system. Node type “AND”

(0,0) (0,1) (1,0) (1,1)

P (Z = 0|N1, N2) 1 1 1 0
P (Z = 1|N1, N2) 0 0 0 1
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Figure 4 “AND” node for 2 control qubits

Figure 5 Simple parallel system

Table 2 CPT for parallel system. Node type “OR”

(0,0) (0,1) (1,0) (1,1)

P (Z = 0|N1, N2) 1 0 0 0
P (Z = 1|N1, N2) 0 1 1 1

And the probability of system failure is:

P(z) = 0 · p1p2 + 1 · q1p2 + 1 · p1q2 + 1 · q1q2. (7)

We can implement this behavior as a multiple controlled rotation of π radians. The
multiple controlled gates provide this P(z) desired behavior, depending on the values of
the probabilities of the control qubits (p1, p2).

We use the expansion of controlled gates to obtain the circuit in Fig. 4.

“OR” node for parallel elements Similarly, we can explain how to implement a parallel
system such as the one shown in Fig. 5.

The same Bayesian network of the serial system can be used in this case. The only differ-
ence is that for the parallel system to continue functioning successfully, it needs only one
of the elements (1 or 2) to be functional. Therefore, the CPT of node Z acts as the truth
table of a logical disjunction, as in Table 2.

We can implement this behavior as an expansion in a similar way to that previously used
for the “AND” node, but in this case substituting the Toffoli gates with a circuit implement-
ing the OR logic, as depicted in Fig. 6.

The circuit in Fig. 6 uses 5 qubits: 4 for the nodes representing the inputs and one for the
node representing the output (remember, a quantum circuit must be reversible). In this
circuit, the column of X gates before the multiple CNOT ensures any input different from
‘0000’ will result in the flip of the target qubit, and the second column of X will return the
input qubits to their original state.

This implementation is scalable to any number of control qubits, representing nodes in
the Bayesian network connected to the node in question.
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Figure 6 “OR” node for 4 control qubits

Figure 7 Single bus substation (Source: Electrical Engineering Portal [29])

Finding most common failure modes By using this representation, we can obtain the
probability of each combination of failure scenarios for the root elements, as well as the
corresponding state of the combination nodes, including the final node that represents the
failure of the complete circuit. Thus, it is straightforward to obtain all the measurements
that represents a failure looking at the value of the final node, and the cause of the failure,
simply by observing the results corresponding to each of the other individual elements.

3.2 Case study: substation failure
Single bus substation A single bus substation is the simplest configuration for an electri-
cal substation.

This consists of four breakers and a bar that transfers the energy from the lines to the
transformers, as shown in Fig. 7.
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Figure 8 Bayesian network for a single bus substation (Source: ŁukaszWojdowski [3])

We can perform a path analysis to create a Bayesian network representing this substation
configuration [3] as follows.

Each individual element in the substation can be represented by a root node, with the
associated failure probability of this element. Items labelled 1 and 2 are the lines in this
case, 3, 4, 5 and 6 represent the breakers, 7 and 8 the transformers and 9 the bus. In a real
scenario, it is possible to assign an individualized failure probability to each element, based
on the nature of the element, its associated failure and repair history, the environmental
conditions, and sensor measurements, amongst other factors.

We can determine the different paths available for the electricity flow, and these paths
can be represented by “AND” nodes because they are formed of elements in series.

To model the complete system status, all the paths must be combined at an “OR” node,
representing the case in which all these paths are possible parallel circuits for the electricity
flow. The resulting Bayesian network is shown in Fig. 8.

With this approach we can model more complex real-life scenario circuits. We have
selected this example for ease of explanation.

Results We modeled the aforementioned Bayesian network classically using the open-
source library pomegranate, and using Qiskit for our quantum circuit.

Each state of the system is represented by a list of ones and zeroes, each one correspond-
ing to the state (working = 1 or failing = 0) of each node in the Bayesian network. The first
elements correspond to the individual elements in the circuit, and then the following ones
are the dependent nodes.

The last one corresponds to the last node in the network, which represents whether the
system is working or not.

To obtain the classical probabilities, we used each of the possible states as an input and
ran a loop on the pomegranate model to calculate the probability of each one.

To obtain the quantum probabilities, we ran the quantum circuit once and measured
the probabilities of each possible state.

The resulting circuit is shown in Fig. 9. The module in charge of the measurements in
the circuit (one measurement for each qubit) is not shown to reduce the size of the image.
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Figure 9 Quantum circuit for a single bus substation

Figure 10 Bayesian network results for a single bus substation (red - classical, blue - quantum)

A comparison of the probabilities of each mode obtained classically and with the quan-
tum model is shown in Fig. 10.

The numbers of the percentages in the bars are not essential in this figure as the idea is
just to see that the shapes are similar.

In Fig. 10 the results ending in “1” correspond to “working modes”, and the results ending
in “0” correspond to “failure modes”.

Thus, if we only consider the results ending in “0”, it is possible to compare the failure
probability of each combination of failing elements, as shown in Fig. 11.

3.3 Case study: protection systems
Probability of failure of a protection system A substation bus is a unit of aggregation in
the electrical grid that consists of a modular set of elements connected at the same voltage
level, and constitutes the unit of operation of the network. A bus is typically protected by
a dedicated system. When a fault is detected in any of the elements connected to the bus,
this protection system closes the position, preventing the fault from propagating further
through the network. A failure in the protection system can therefore result in a large-scale
network outage.

A protection system is formed of a set of “protections”, which are digital or analogue
units that perform different monitoring functions. Typically, each protection unit can per-
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Figure 11 Failure modes for a single bus substation (red - classical, blue - quantum)

form a set of functions, and different units are combined to provide the complete set of
protection functions required by the bay, usually in a redundant way. If a protection unit
fails, the specific protection functions it performs are lost.

The purpose of this case study is to estimate the failure probabilities of the protection
system, that is, the probability of the system not fulfilling its purpose for different com-
binations of failures of individual protection units based on the given failure probabilities
of the individual units in the system. Specifically, we searched for the most probable com-
bination of unit failures that can lead to a system failure, and for the combination that
involves the minimum number of failing units that then leads to a system failure. These
aforementioned functions have been categorized as “essential” and “non-essential”. With
this classification, a protection system is said to fail if and only if:

1. ONE essential function is lost. That is, if any of the essential functions are not
safeguarded by any of the working protection units.

Or:
2. ALL non-essential functions are lost. That is, if there are no working units that are

able to provide non-essential functions.
For example, if a protection system requires functions A, B and C (essential) and D and

E (non-essential), the system will fail if all the units safeguarding A fail (or B or C), or if
all units providing D and all units providing E fail. For each protection system we identify
each of the essential and non-essential functions with a sequential ID.

For each of the protection units, the functions they provide are stored in two vectors
that encode their essential and non-essential functions in terms of the set of functions of
the system. For example: if the system has 3 essential and 2 non-essential functions, a pro-
tection unit characterized by [1, 0, 1], [0, 1] will imply that it performs essential functions
0 and 2 and non-essential function 1.

We could not find publicly available data sets, that contain both the failure probabilities
and the dependencies of the components in an electrical distribution network. Moreover,
we had to deal with the issues of data quality, privacy, and security when working with
real-world data. Therefore, we decided to use synthetic data for our experiments, which
allowed us to control the parameters and test our procedure under different scenarios.
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A function for generating a random dataset for a protection system was created. The
number of units, essential functions and non-essential functions are configurable. How-
ever, we acknowledge that using synthetic data limits the generalizability and applicability
of our results, emphasizing the need for further experiments with real-world data in the
future.

Solution approach 1: exact calculation A straightforward way to compute the failure
probability of the system is to enumerate all combinations of unit failures, compute the
probability of each of these and then determine, for each unit, whether they result in a
system failure based on the failure rules described previously.

For this purpose, we first need a protocol that, given a combination of failed units, the
functions provided by these units, and the necessary functions at the system level, deter-
mines whether this combination results in a system failure.

Then we need a protocol that generates all possible samples, or combinations of failures,
given a number of units. Note that the number of samples grows exponentially with the
number of units (2n).

We also need a function that computes the probability of a sample given the failure
probability of each individual unit.

While the exact calculation is possible for small systems, it becomes unfeasible for
larger ones. In fact, exact calculations for more than 20 units and 10 functions are consid-
ered computationally expensive on modern hardware (i.e., public cloud resource intensive
working nodes, suitable for HPC [30]), both in terms of memory and CPU time. It is worth
noting that systems with more than 20 units are not uncommon in practice, and they can
even have more than 50.

Solution approach 2: Monte Carlo estimation In this Monte Carlo approach, instead of
considering all possible samples, random samples are generated according to their prob-
ability of occurrence. As in the exact method, we then determine whether each of the
samples generated results in a system failure based on the aforementioned failure rules.
Finally, the system failure probability is calculated as the proportion of resulting failures
over the total number of samples.

In this approach, the number of samples is parameterized. More samples will mean a
better estimation of the system probability. In Fig. 12, we can see a comparison of execu-
tion time calculating the overall failure probability for the system for a range of units from
2 to 20 using the exact approach and the Monte Carlo approach with a fixed number of
218 iterations (executions on a 2.4 GHz 8-Core Intel Core i9; 32 GB 2667 MHz DDR4).

It should be noted that, in a more realistic scenario, to maintain the precision of the
Monte Carlo method, we must increase the number of iterations as the number of units
increases.

Solution approach 3: quantum Bayesian networks We can model the behavior of the
protection systems with a Restricted Quantum Bayesian Network. The root nodes can
represent the individual units with an RY gate rotating the qubit in order to represent the
failure probability of the corresponding unit.

A first layer of AND nodes aggregates each of the protection functions, and on a second
layer, one AND node aggregates the non-essential functions, and an OR node the essen-
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Figure 12 Comparison of overall failure calculation time, exact vs Monte Carlo

tial ones. Each root node is connected only to those nodes representing the functions
protected by this unit.

On the top layer, a final AND node aggregates the previous two nodes, representing the
overall status of the system.

Figure 13 shows an example of a Bayesian network for 10 protection units providing 4
non-essential functions and 7 essential ones.

The lower row of nodes (root nodes) represent the failure probability of each protection
system. In the second row, the nodes starting with E_ represent the essential functions
and those starting with N_ the non-essential ones. In the third row the logic of all the
non-essential functions failing (AND_N), or any of the essential functions failing (OR_E)
is implemented. The final “OR” node represents the overall behavior of the system.

Figure 14 provides a representation of the quantum circuit developed from the network
in Fig. 13. Again, to reduce the size of the image, the measurement modules have been
omitted.

In order to provide a comparison with the Monte Carlo approach, a random system with
16 protection units providing 7 essential functions and 4 non-essential functions was also
generated, and a random failure probability was also assigned to each unit.

For this comparison, only the overall failure probability of the complete system was cal-
culated in an exact way, with both the Monte Carlo and with the Restricted Quantum
Bayesian Network (RQBN) approaches. Figure 15 shows the mean error compared with
the exact calculation for both the Monte Carlo and the RQBN approach.

It is important to note that in Fig. 15, the X-axis represents the number of iterations for
the Monte Carlo algorithm but also the number of shots in an individual execution of the
RQBN circuit. Thus, we can adjust the desired accuracy of our quantum method with the
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Figure 13 Bayesian network for 10 protection units providing 4 non-essential functions and 7 essential ones

Figure 14 Quantum circuit for 10 protection units providing 4 non-essential functions and 7 essential ones

number of shots to match the corresponding accuracy of the Monte Carlo method with a
given number of iterations.

3.4 Execution on real quantum computers
Limited number of qubits To validate the feasibility of the RQBN procedure on real NISQ
quantum computers, and to simplify the comparison of the experimental results, we eval-
uated the Bayesian network shown in Fig. 8 on several Quantum computers provided by
IBM’s Quantum cloud services.1

1https://quantum-computing.ibm.com/services?services=systems&systems=yours

https://quantum-computing.ibm.com/services?services=systems&systems=yours
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Figure 15 Comparison of overall failure calculation error, Monte Carlo vs RQBN

Noise implications On NISQ computers, noise accumulates with the depth of the cir-
cuits and affects the capability of theoretical algorithms to speed up the process of solving
realistic problems.

Noise imposes a natural constraint on accessible circuit depths, and it scales exponen-
tially to penalize greater circuit depths, leading to an exponential decoherence of quantum
states.

As a result, more shots are needed to battle the noisy information.
Of course, we should not forget that equivalent quantum circuits for the Bayesian net-

works may already result in better quality quantum computers than the ones available
today. Observing these quantum speedups in practice is not yet possible.

Experimental results We tested a simple Bayesian network consisting of only one “AND”
node on two different real quantum computers: “ibmq_quito”, with 5 qubits and Quantum
Volume 16 (CNOT average error 1.337e–2), and “ibmq_manila”, also with 5 qubits but
Quantum Volume 32 (CNOT average error 7.673e–3).

In both cases the measurements were taken with 8182 shots. The results have shown in
Fig. 16 and Fig. 17. For purposes of comparison, we have added the red bars, which repre-
sent the theoretical exact results. As one can see, due to errors, some results that should
be 0 appear with a non-zero probability in the results from the real quantum computers
(blue bars).

The results for “ibm_quito” are slightly less accurate due to a higher error rate. This is
more easily observed in the “111” result, as it has the lowest probability and so is more
easily mistaken than with results such as those from errors associated with “110” or “001”.

To test the performance of our quantum algorithm on different hardware platforms, we
also ran our experiments on another quantum processor, “ibm_hanoi”. This is a 27-qubit
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Figure 16 Bayesian network results for a single “AND” node (red - classical, blue - real quantum computer
“ibmq_quito”)

Figure 17 Bayesian network results for a single “AND” node (red - classical, blue - real quantum computer
“ibmq_manila”)

Falcon processor with a quantum volume of 64 at the time of this experiment. However,
we were not able to obtain systematically significative results with this processor, as the
circuits were too long for the current coherence time. This indicates that our quantum al-
gorithm requires further optimization and error mitigation techniques to run successfully
on noisy intermediate-scale quantum (NISQ) devices.

IBM has recently announced its goal of building a tool capable of calculating unbiased
observables of circuits with 100 qubits and depth-100 gate operations in a reasonable run-
time by the end of 2023 [31], which would be a major milestone for the quantum industry.
Achieving this goal would require overcoming many technical challenges, such as improv-
ing qubit quality, connectivity, and coherence, as well as developing efficient algorithms
and error correction schemes. Our quantum algorithm is one example of how we can
leverage the power of quantum computing to solve complex optimization problems, but
it also shows the limitations and difficulties of running such algorithms on current NISQ
devices.

We are also working on entanglement forging [32] and circuit knitting [33] to reduce the
length of the circuits. Entanglement forging is a technique that uses a classical computer
to capture quantum correlations and effectively split the problem in half, making it possi-
ble to run a given quantum circuit using only half as many qubits on a quantum computer.
This reduces the quantum resource overhead and improves the accuracy. However, entan-
glement forging requires some conditions to be met, such as weak entanglement between
the two halves of the original system.

Circuit knitting is a process of decomposing a quantum circuit into smaller circuits, exe-
cuting those smaller circuits on quantum processors, and then knitting their results into a
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reconstruction of the original circuit’s outcome. Circuit knitting includes techniques such
as circuit cutting, and classical embedding. Circuit knitting can help reduce the circuit
length by partitioning large quantum circuits into subcircuits that fit on smaller devices,
at the cost of a calculation overhead.

Also, as future lines of research, we could use variational quantum circuits or quantum
machine learning techniques (i.e., quantum neurons [22, 23]) to construct more expres-
sive and adaptive quantum nodes that could capture more complex dependencies and
functions. This could potentially improve the accuracy and efficiency of our procedure
for failure risk analysis.

However, we also note that using other methods of building quantum nodes could in-
troduce new challenges and trade-offs. For example, we would need to find optimal ways
to train and optimize the quantum nodes, to deal with the noise and errors in the quan-
tum hardware, and to balance the trade-off between expressivity and complexity of the
quantum nodes.

4 Conclusions
It is possible to represent the conditional probabilities of failure of an electrical distribution
network in an efficient way on a quantum computer. For this purpose, we have proposed
a Restricted Quantum Bayesian Network (RQBN) procedure that leads to substantially
shorter circuits than a general representation.

RQBN is a novel and efficient way to encode the system variables into quantum states,
to implement the Bayesian network structure and operations on a quantum circuit, and to
extract meaningful information from the quantum measurements. We show that our pro-
cedure can scale well with the system size. We also show that our procedure can be imple-
mented on both quantum simulators and IBM Quantum hardware using Qiskit, a quan-
tum software framework.

We have implemented this model for different scenarios and validated the viability of
such a representation. Comparing with Monte Carlo methods, the results obtained are
similar in accuracy for the same number of shots in a single quantum circuit execution
as the number of iterations of the classical Monte Carlo simulation. This provides some
preliminary results that suggest that our procedure could achieve quantum advantage for
failure risk analysis in the future. Mainly because quantum computers are still in the early
stages of developing and, even though there are some of them with more than 100 qubits,
1) their access is very restricted even for IBM employees and, 2) they still suffer from
noise, so in practice it is not possible yet to perform large-scale experiments with coherent
results.

Finally, viability and implications of noise on real quantum computers have been tested
with promising results.
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