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Abstract
Random numbers are of vital importance in fields such as cyptography and scientific
simulations. However, it is well known how difficult it is for classical computers to
generate random numbers. This is not the case for quantum computers, which are
able to genuinely generate random numbers thanks to the property of superposition
and their counter-intuitive concept of measurement. However, despite the simplicity
of designing a circuit that generates a random number between 0 and 2N – 1 (being
N the number of available qubits), designing a quantum circuit to generate a number
within a specific interval is far from trivial. This paper proposes a customizable circuit
design to generate random numbers. The circuit is non- hardware dependent, it
allows fault-tolerance, and it can be used by current quantum devices. Therefore, it is
a valuable tool for all those quantum applications and algorithms that need to work
with random numbers. Moreover, a comparator circuit has also been designed as part
of this work. This comparator is the best currently available in the literature in terms of
qubits, T-count, and T-depth. It is therefore a useful tool for any other circuit or
algorithm where this operation is needed.

Keywords: Quantum random numbers; Random number generation; Quantum
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1 Introduction
Random numbers have a wide variety of applications such as cryptography [1], numer-
ical modelling [2], blockchain [3], or cybersecurity [4]. The quality of random numbers
is of vital importance for such applications. For instance, in the case of cryptography, us-
ing predictable random numbers would have serious security implications [5]. Generating
random numbers using a classical computer is a deterministic process, which is theoret-
ically predictable [6]. Even the modern lattice or hashed-based quantum-safe cryptogra-
phy methods and algorithms are unable to genuinely generate random numbers [7]. These
pseudo-random numbers work well for simple applications, but may be insufficient when
higher quality is needed as in the above example of cryptography. It is precisely for this
reason that there is great interest in finding alternative ways to generate numbers that are
truly random, unpredictable, and secure [8–10].

Quantum computing has emerged as a successful alternative for generating random
numbers. In theory of quantum physics, the outcome of most phenomena is not determin-
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istic. Only probabilities of the different possible results can be given. Quantum computing,
in its role of emulating quantum physics, brings with it this unpredictability [11]. Prop-
erties such as the superposition of quantum states, entanglement, the collapse of states
when measured, and the other counter-intuitive properties of quantum physics play a
fundamental role in the generation of random numbers using quantum computation [12].
There are a wide range of works in the literature that successfully use random numbers
generated by quantum computers [13–15].

Currently, quantum computers are in the so-called NISQ (Noisy Intermediate-Scale
Quantum) era. These computers are characterised by a limited amount of resources.
Moreover, they are extremely sensitive to noise [16]. There are several options for pro-
gramming a quantum computer, being the most widespread the use of reversible circuits.
Of course, any circuit design must face the aforementioned scarcity of resources. At the
same time, they must offer some kind of resistance to errors caused by noise. Therefore, it
is important to look for ingenious solutions to reduce the number of involved qubits and
quantum gates, but without neglecting the detection and correction of errors [17].

There are several current strategies to reduce the effects of noise [18]. One widespread
strategy is to build circuits using only quantum gates belonging to the so-called Clifford +
T group [19–22]. Circuits built only with this type of gates can benefit from the use of
proven error detection and correction codes. However, among the gates belonging to the
Clifford + T group, it is necessary to highlight one of them, the T gate. This gate has a cost
in the order of 100 times higher than the cost of the other gates [23]. Its cost is so high
that it makes the cost of the other gates almost irrelevant. So, in the literature the number
of T-gates is used to measure the resources of quantum circuits [24–26]. The so-called T-
count parameter precisely measures the number of T-gates in a circuit. A second metric,
the T-depth, indicates the number of T-gates a circuit has on its critical path, allowing
an estimation of the depth of the circuit. Keeping the T-count and T-depth values low, as
well as involving as few qubits as possible, are probably the most important priorities for
building a quantum circuit today [19].

This paper proposes a circuit to generate random numbers in quantum computers and
simulators of the NISQ era. The circuit is focused on generating numbers within an in-
terval of possible values to be defined by the user. The aim has been to design an easy
to use circuit that generates high-quality random numbers, without having to resort to
low-level solutions that may be too challenging or simply beyond the reach of the general
public [27–29]. It have also been sought to achieve a circuit with noise tolerance, as well
as optimising the number of involved qubits and T gates to allow its viability on NISQ
devices.

This paper is structured as follows. Section 2 introduces the formulation and ideas be-
hind the quantum random number generator, and also its limitations. Section 3 presents
the developed circuit, indicating how to reproduce it and showing the involved costs. Sec-
tion 4 discusses the results achieved by the generator. We conclude in Sect. 5.

2 Methods
There are many quantum random number generators in the literature. These generators
are of different natures: based on radioactive sources [30], electronic noise [31], atomic
systems [32], etc. The proposed circuit is based on the measurement of qubits in super-
position, which is the most easy and natural way of generating numbers in quantum com-
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puting. This kind of generator uses the collapse that occurs when measuring qubits to
obtain random numbers [12].

A random number generator circuit can be designed in a quantum computer using only
Hadamard gates. Starting with N qubits initialised in the state |0〉, it is enough to apply a
Hadamard gate on each qubit to put them in a superposition state and then to measure
all the qubits. This simple operation, requiring only N Hadamard gates, will produce a
random string of N binary values (interpreting the |0〉 state as 0 and the |1〉 state as 1).
If this string is numerically interpreted, the result is a number in binary notation whose
value will always be between 0 and 2N – 1. Increasing or decreasing the number of qubits
allows us to extend or decrement the upper bound of the interval.

As easy as it is to create a number generator in the interval [0, 2N – 1], it is not easy to
generate numbers in a customized interval. For instance, to generate numbers in the in-
terval [0, 5] to simulate the six possible outcomes of a die can be challenging. In order to
represent the largest number, 5, three digits are needed. Using three qubits and the above-
mentioned procedure, numbers in the interval [0, 7] can be generated. However, this in-
terval includes several values (6 and 7) outside the range of interest. This problem can
be solved by manipulating the obtained result using classical computation. For instance,
the value can be checked and, in case an invalid value is obtained, to re-run the circuit
until a value in the desired interval was achieved. However, this procedure requires to use
classical computation as an intermediary, and may not be a valid (or simply not optimal)
solution if we are interesting in using the generator as part of a larger quantum circuit that
it does not interfere with a classical computer at that point.

Continuing with the example of generating numbers in the interval [0, 5], another solu-
tion could be to add an ancilla qubit and perform some extra operations. Let A2, A1, A0

be the original three qubits, representing the digits of the generated number, and Q being
the auxiliary qubit. A2, A1, A0 are set in superposition and measured. Then, the operations
A2A1 ⊕ Q and Q ⊕ A2 are sequentially performed. Using this circuit, random numbers in
the desired interval are obtained. However, this solution also has drawbacks. First, it is
far from generating the numbers uniformly. Secondly, and more importantly, this circuit
only works for this specific interval. Customizing the circuit for larger interval will require
more ingenuity. Furthermore, for quite large intervals this solution will become unfeasible.

A suitable method for generating random numbers that lie in a subinterval within the
interval [0, 2N – 1] is to modify the probabilistic amplitudes of those states correspond-
ing to values within the subinterval. If the probabilistic amplitudes of the unwanted states
cancel out, and those of the wanted states remain uniform, a quality random number gen-
erator would be achieved. This manipulation of the amplitudes can be done with Grover’s
algorithm. Grover’s algorithm is shown schematically in Fig. 1. The algorithm (1) sets the

Figure 1 Implementation of Grover’s algorithm. Implementation of the Grover’s algorithm. It has three parts:
a) the initialization, which sets the input into superposition, b) the oracle, and c) the diffusion operator
(labelled as amplification). The oracle and the diffusion operator should be repeated a certain number of
times in order to increment the probability of the desired result
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N qubits in superposition, (2) recognises the solutions to the problem (the numbers of
the desired subinterval in this case) through an oracle, and (3) amplifies the amplitudes of
the solutions recognised by the oracle. Steps 1 and 2 are always the same and do not al-
low for customisation beyond how to implement the circuits that perform the operations.
However, the oracle is delivered as a black box that the researcher must customise to the
problem at hand. The oracle have to add a negative phase to any solution state. Therefore,
being w a valid solution and |x〉 any possible state, the oracle must perform:

Uw|x〉 =

⎧
⎨

⎩

|x〉 if x �= w,

–|x〉 if x = w.
(1)

Therefore, in order to apply Grover, a valid oracle must be specified that allows a value
to be selected within a given range.

2.1 The oracle
In order to amplify the amplitudes of the states corresponding to the numbers within the
desired interval [0, B], being B a natural number such that B > 0, we need to recognise
whether a state represents a number that is less than or equal to B, or not. Working with
natural numbers, there is no need to check the lower limit of the interval because a nega-
tive number cannot be obtained. Then, it is only necessary to make sure that the generated
number A is less than or equal to B. To do this, a half-comparator can be used. This type
of circuit compares two numbers A and B and returns 0 if A ≤ B and 1 otherwise. There
are a wide variety of half-comparators available in the literature [33–35]. However, in this
paper we offer a customised comparator that allows us to reduce costs in terms of T gates
and number of qubits.

Our comparator is based on the methodology of an adder proposed by Gidney in 2018
[36]. The idea is to use this adder to perform the operation A – B computing A + B. Once
the operation is carried out, the sign of the subtraction will contain the result of the com-
parison. Since we are only interested in the sign, several operations can be simplified or
even omitted as they are dedicated to performing the remaining operations of the sum.
Moreover, we will not introduce B through the qubits, but we will progressively introduce
it through quantum gates depending on whether its digits are 0 or 1. This technique of
encoding an integrated number in the circuit itself is not new, and has been used suc-
cessfully to simplify circuits and optimise resources [37]. The comparator has been built
avoiding the use of Toffoli gates when possible, given the high cost of T gates. Instead,
temporary logical-AND gates [36] have been used. The most efficient implementation of
the Toffoli gate contains 7 T gates, while the temporary logical-AND only involves 4 of
these gates. The construction of the proposed comparator and its metrics are detailed in
the next section.

2.2 Limitations of the proposed circuit
Theoretically, a quantum computer produces perfectly random numbers. However, it has
already been mentioned that current devices are exposed to internal and external noise.
The result of this exposure is that current quantum computers do not generate these ran-
dom numbers uniformly. There are several protocols in the literature, such as those pre-
sented by Combarro et al. [11], to improve the uniformity of random number generation



Orts et al. EPJ Quantum Technology           (2023) 10:17 Page 5 of 16

by quantum computing. We have left as future work to incorporate this kind of techniques
to our circuit to improve the quality of the obtained results.

On the other hand, each current quantum computer has its own internal architecture.
This architecture does not usually establish connectivity between all the physical qubits
of the machine; instead, each qubit is connected to some but not all of the others. When
implementing a circuit from a design, each qubit in the circuit must be mapped to a physi-
cal qubit in the machine. All involved qubits in the same operation (for instance, the three
qubits acting on a Toffoli gate) must be adjacent. If they are not, it is necessary to apply
SWAP gates to move the values to be in adjacent qubits (and reverse the movements once
the operation is performed). This causes an obvious increase in the number of quantum
gates. Finding the optimal way to minimize the number of SWAP gates, as well as finding
the most suitable initial mapping, are subjects of intense study by the research community
[38]. It is not the aim of this work to present a customized implementation for each exist-
ing quantum device, so neither the extra costs due to SWAP operations nor an estimation
of the best initial mapping have been included when analysing the proposed circuit.

3 Results
Since a comparator is required for the construction of the random number generator, the
details concerning the comparator will be explained first. Once the comparator has been
introduced, the implementation of the generator will be explained.

3.1 Proposed comparator
The circuit compares two N-digit natural binary numbers a = aN–1 . . . a0 and b =
bN–1 . . . b0, with the digits in position N – 1 being the most significant and the digits in
position 0 the least significant. It can be easily built for any digit size N > 2 following these
steps:

1 For i = 0 to i = N – 1, to apply a Pauli-X gate at every bit ai to perform a. These
operations can be computed in parallel.

2 b0 must be introduced in the first ancilla qubit using a Pauli-X gate or an identity
gate if b0 = 1 or b0 = 0, respectively.

3 To perform the operation a0b0 using a temporary logical-AND gate instead of a
Toffoli gate to save T-count and T-depth. Each temporary logical-AND will require
an extra qubit, which must be initialized to the state 1√

2 (|0〉 + e iπ
4 |1〉).

4 b0 is uncomputed applying (again, in the first ancilla qubit) a Pauli-X gate or an
identity gate if b0 = 1 or b0 = 0, respectively.

5 The next step introduces a loop that will repeat from i = 1 to i = N – 1. Prior to each
instruction in this loop, we must codify bi in a similar way to how b0 was codified.
That is, a Pauli-X gate will be applied to the first ancilla qubit if bi is 1, or an identity
gate will be applied otherwise. Likewise, this action must be repeated after each
instruction in the loop to uncompute the value bi and to prepare the qubit to codify
bi+1 in the next instruction.

6 For i = 1 to i = N – 1, apply two CNOT gates to compute (ai–1bi–1) ⊕ ai and
(ai–1bi–1) ⊕ bi. Then, to apply a temporary logical-AND to compute aibi. A CNOT
performing again (ai–1bi–1) ⊕ bi is applied to uncompute the previous CNOT.
Finally, to apply another CNOT gate to perform (ai–1bi–1) ⊕ (aibi). Each step of the
loop must be computed sequentially.
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7 The result is given by the last operation of the last iteration computed in the
previous step.

The obtained comparator is fully functional, and will return 0 if a < b, and 1 otherwise.
However, this circuit contains N – 1 garbage outputs, which correspond to the auxiliary
qubits used to implement the temporary logical-AND gates, except for the last one, which
contains the result of the comparison. To reverse the garbage outputs we resort to the Ben-
nett’s garbage removal scheme [39] in combination with the measure-and-fixup approach
used by the temporary logical-AND gate [36, 40]:

8 For i = N – 2 to i = 1, to apply a CNOT gate to perform (ai–1bi–1) ⊕ (aibi). A CNOT
performing (ai–1bi–1) ⊕ bi is applied. Then, to apply an uncomputation gate of the
temporary logical-AND to uncompute aibi. Finally, to apply two CNOT gates to
compute (ai–1bi–1) ⊕ bi and (ai–1bi–1) ⊕ ai. Again, each step of the loop must be
computed sequentially codifying and uncomputing bN–2, bN–1, . . . b1.

9 Uncompute the operation a0b0 using an uncomputation gate of the temporary
logical-AND gate. b0 must be codified at the beginning and uncomputed at the end.

10 Finally, for i = 0 to i = N – 1 apply a Pauli-X gate at every bit ai to uncompute them.
All the qubits except the one that contains the result have been uncomputed.

A complete example for the N = 4 case is shown in Fig. 2. In this example, the encoding
of b is shown schematically. Each box labelled with a natural number between 0 and N – 1
corresponds to a digit of b, so that the i-th box will be an Identity gate (it may be omitted)
if bi = 0, or will be a Pauli-X gate if bi = 1.

The logic on which the circuit is based is the one explained in the previous Section:
the sign of the operation a + b is obtained and returned as the result of the comparison
between a and b. Since the operation performed is a simplified addition, the circuit con-
struction is started from the least significant digits and moves towards the most significant
ones. The auxiliary qubits are used both to reduce the number of T gates and to store the
carry of the sum of the previous digits. For instance, the first qubit marked as A in Fig. 2
stores the carry generated from a0 and b0, and so on with the rest of the ancilla qubits
for the following pairs ai and bi. Only the information necessary to generate the carries is
stored, while the rest of the operations that in a normal adder would allow calculating the
rest of the result of the sum are discarded.

For the general case of N digits, N qubits are needed to encode a. N + 1 auxiliary qubits
are also used to perform auxiliary operations, making a total of 2N + 1 qubits. N Pauli-
X gates to invert ai values, and 2N to encode b (depending on the 1 number of the b

Figure 2 Proposed comparator. Scheme of the proposed comparator, for the N = 4 digit case. Two numbers
a and b are compared. ai represent the digits of a, whereas the digits of b are encoded in the circuit using
quantum gates. Boxes labelled with numbers 0 . . .N – 1 represent such digits, so that boxes marked as 0 will
be Pauli-I or Pauli-X gates depending on whether b0 is 0 or 1, respectively; boxes marked as 1 will be Pauli-I or
Pauli-X gates depending on whether b1 is 0 or 1, respectively, and so on for each digit of b. Qubits labelled

with an A are prepared in the 1√
2
(|0〉 + e

iπ
4 |1〉) state for be used with temporary logical-AND gates
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expression), add up to a maximum of 3N Pauli-X gates. 4(N – 1) CNOT gates, and N
temporary logical-AND gates are also involved in the whole process. On the other hand,
reversing the garbage outputs will require N Pauli-X gates for ai values and a maximum
of 2(N – 1) gates for b (making a maximum of 3N – 2 Pauli-X gates), 4N – 7 CNOT gates,
and N – 1 gates for uncompute the temporary logical-AND operations. The total numbers
of the circuit are:

• Number of qubits: 2N + 1
• Pauli-X gate: 6N – 2
• CNOT gate: 8N – 11
• Temporary logical-AND gate: N
• Uncomputation gate for the temporary logical-AND operation: N – 1
From the mentioned gates, only the temporary logical-AND gate involves T gates. Since

the circuit contains N temporary logical-AND gates, and that the T-count of each tem-
porary logical-AND gate is 4, it can be established that the T-count of the whole circuit
is 4N . Moreover, since the N temporary logical-AND gates are executed sequentially, and
since their T-depth is 2, it can be established that the T-depth of the comparator is 2N .

3.2 Quantum random number generator
The necessary steps to build the random number generator circuit for N-digit numbers in
the half-open interval [0, B), assuming that B can be represented by N digits, are as follows:

1 To design a comparator circuit using the methodology explained in the previous
subsection, coding a = 0 (i.e., keeping all inputs ai = 0) and b = B (using the
corresponding CNOT and Identity gates). It must only be designed until the result
is obtained, i.e., without applying the uncomputation part yet. This circuit will
henceforth be referred to as Comparator.

2 To obtain the inverse circuit of the previous one. In the previous subsection we
explained how to reverse the garbage outputs of the comparator, which is a different
process. The circuit that must be obtained now must also reverse the output of the
comparator itself. That is to say, it must be identical to Comparator, but in reverse.
We will call this second circuit Uncomputation of the comparator.

3 To prepare N qubits in the |0〉 state, and one qubit in the |1〉 state. We apply a
Hadamard gate to each of these qubits. At this point, we will have N qubits in the
|+〉 state, and one qubit in the |–〉 state.

4 The Oracle phase:
(a) To implement Comparator, so that the N qubits in the |+〉 state match the ai

inputs of Comparator.
(b) After Comparator, to apply a CNOT gate. The control qubit will be the qubit

resulting from Comparator, and the target qubit will be the qubit we initialise to
the |–〉 state.

(c) To apply Uncomputation of the comparator to reverse Comparator.
5 Amplification phase:

(a) To apply a Hadamard gate to each of the N qubits that were initially set to the
|+〉 state. After the Hadamard gates, to apply a Pauli-X to each of these qubits.

(b) Of the same N qubits above, to apply only to the most significant one a
Hadamard gate. With the remaining N – 1 qubits acting as control qubits, to
apply a controlled Toffoli gate, with the most significant qubit being the target
qubit.
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Figure 3 Proposed random number generator. Design of the proposed quantum random number generator,
for the N = 4 case. Only one more qubit is needed than in the comparator circuit. Three steps can be clearly
distinguished: (1) the formation of a uniform superposition of all possible states with 4 qubits using Hadamard
transform gates, (2) the oracle, consisting of applying the comparator circuit of Fig. 2, storing the result in the
new qubit, and decomputing the circuit, and (3) the application of an amplitude amplification function

(c) To apply a Pauli-X gate to each of the previous N qubits. After the Pauli-X gates,
to apply a Hadamard gate to each of these qubits.

6 To repeat steps 4 and 5 ‖π
4

√
2N

l ‖ times, being l the size of the interval [0, B).
7 To measure the N qubits that was initially set to |+〉. They will contain the random

number.
A scheme of the quantum random number generator circuit, for the case N = 4, is shown

in Fig. 3. The generator circuit can be easily adapted to generate random numbers in the
closed interval [0, B′] by simply setting B′ = B + 1. Likewise, a circuit that generates ran-
dom numbers in the closed interval [B, 2N – 1] can be obtained by inverting the output
of Comparator using a Pauli-X gate (this gate must also be taken into account when de-
signing Uncomputation of the comparator). To generate numbers in the half-open interval
(B′, 2N – 1], it is only necessary to set B′ = B + 1.

The circuit involves a total of 2N + 2 qubits. In terms of quantum gates, the first part
involves N + 1 Hadamard gates. The Oracle phase involves:

• Pauli-X gates: 6N .
• CNOT gates: 8N – 7.
• Temporary logical-AND gates: N .
• Uncomputation gates for the temporary logical-AND operation: N

Finally, the amplification phase involves:
• Hadamard gates: 2N + 3.
• Pauli-X gates: 2N .
• N-qubit Toffoli gates: 1.

Bearing in mind that the oracle and the amplification phases can be repeated I times, the
final numbers are:

• Number of qubits: 2N + 2
• Hadamad gates: (N + 1) + I × (2N + 3)
• Pauli-X gate: I × 8N
• CNOT gate: I × (8N – 7)
• Temporary logical-AND gate: I × N
• Uncomputation gate for the temporary logical-AND operation: I × (N – 1)
• N-qubit Toffoli gates: I .
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4 Discussion
The main contribution of this work is the random number generator circuit. However,
the comparator presented has been designed as part of this work. Therefore, not only the
results of the generator will be discussed, but also those obtained with the comparator
circuit.

4.1 Discussion on the comparator
The circuits included in the following comparison have been implemented using the Qiskit
Programming Language and run in the quantum simulator simulator_mps, available in the
IBM Quantum platform [41].

Table 1 shows a comparison between the comparator circuit proposed in this work and
the most important half-comparators available in the state-of-the-art. This comparison
has been carried out in terms of T-count, T-depth, and number of necessary qubits. In
view of the results, it can be seen that there is no other circuit that outperforms the pro-
posed comparator in any of the indicated metrics, except for the case of T-depth. In terms
of T-count, the proposed circuit has a value of 4N . This value is matched by the circuit of
Orts et al. [35] (labelled as Orts et al.[a] in Table 1). The rest of the circuits have values of
more than double the results obtained by these two comparators.

Regarding of the T-depth, the best circuit is a logarithmic depth version of the Orts et
al. comparator (presented in the same paper as the previous one, and labelled as Orts et al.
[b] in Table 1). However, this second comparator achieves this depth reduction at the cost
of an increase in the T-count and, above all, in the number of needed qubits, being in these
terms the worst circuit of the whole comparison. This circuit needs 4N –2W (N)–2log(N)
ancilla qubits (being W (N) the number of ones in the binary expansion of N ) to perform
the comparison between numbers of N qubits (plus 2N qubits to encode the numbers).
This number is too high for current quantum computers and simulators. For feasibility
purposes, it can be stated that the following two circuits with the best T-depth (Orts et al.
[a], and the proposed circuit, with a T-depth of 2N , almost three times less than the rest
of the circuits) are the most suitable options.

Finally, in terms of the number of qubits, the best circuits are the proposed circuit and
the circuit of Li et al [33], with a value of 2N + 1. However, the circuit of Li et al. has almost
three times the T-count and T-depth of the proposed circuit. The rest of the circuits,
except for those presented in Orts et al., involve a single qubit increment but with very
high T-count and T-depth values. Furthermore, the Orts et al. circuits, despite reducing
these two metrics, require a higher number of qubits.

Previously, the most suitable choice was either the circuit of Li et al. when the number
of qubits was to be optimised, or the circuit of Orts et al.[a] when a reduced number of

Table 1 Evaluation of the best comparator circuits in terms of T-count, T-depth and number of
qubits as functions of N.W(N) is the number of ones in the binary expansion of N

Circuit Comparator T-count T-depth Number of qubits

Xia et al. (2018) [42] 14N 6N 2N + 2
Xia et al. (2019) [43] 14N – 7 6N – 3 2N + 2
Li et al. (2020) [33] 14N – 7 6N – 3 2N + 1
Xia et al. (2020) [34] 14N 6N 2N + 2
Orts et al. [a] (2021) [35] 4N 2N 3N
Orts et al. [b] (2021) [35] 12N – 8W(N) – 4Log(N) Log(N) 6N – 2W(N) – 2log(N)
Proposed comparator 4N 2N 2N + 1
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T-gates was required. The circuit proposed in this work maintains the same number of
qubits than the Li et al. circuit, but keeping the optimal levels of T gates presented by the
Orts et al. circuit. It is, therefore, the most optimised comparator in such metrics currently
available to the authors’ knowledge.

4.2 Discussion on the random number generator circuit
The generator circuit has been implemented using the Qiskit Programming Language and
run in the quantum noisy modeling simulator ibmq_qasm_simulator, available in the IBM
Quantum platform [41], according to what is specified below in this subsection.

The utility of the circuit has been measured in a context where it is useful, as explained
below. Given N qubits, the numbers in the interval [0, 2N – 1] can be represented. Random
numbers can be produced in this complete interval using the generator circuit, but this is
pointless as it can be done simply by applying N Hadamard gates to N qubits initialised
to |0〉, and then simply measuring them. Likewise, the cases in which there is only one
possible value to be produced can also be discarded since such an operation is meaning-
less. We can also discard the cases where there are only two possible values in the interval
(intervals [0, 1] or [2N – 2, 2N – 1]) as in such cases the least significant qubits could be set
to 0 or 1 and randomly decide only the last qubit. The latter could also be set for intervals
whose size coincides with a power of 2, but for simplicity such cases are included.

On the other hand, tests have been done for circuits generating numbers between 3 and
8 digits. The largest current quantum computers whose access is not exclusively restricted
to the manufacturer have a capacity of around 20 qubits (e.g. IBM Q 20 Tokyo or IBM Q 20
Austin computers). The random number generator requires 2N + 2 qubits. Considering a
20 qubit computer, the maximum number of digits that can be worked with is N = 8. This
circuit is focused on current NISQ-era computers and simulators, so larger sizes have not
been tested.

Figures 4 and 5 show the number of required circuit iterations (oracle and amplification
phases) for each value of N as a function of the size of the solution interval l. Figure 4
displays the number of iterations for the 3, 4, and 5 digit cases (in blue, orange, and green,
respectively). In the Figure, the Y-axis represents the number of iterations needed, while

Figure 4 Number of iterations required for small sizes. Number of iterations needed to generate 3, 4, and
5-digit random numbers depending on the possible number of solutions (interval size)
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Figure 5 Number of iterations required for big sizes. Number of iterations needed to generate 6, 7, and
8-digit random numbers depending on the possible number of solutions (interval size)

Table 2 Count of N-digit possible numbers and minimum interval width (value and percentage) to
compute the circuit using only one iteration. For any value (percentage) higher than indicated here,
only a single iteration is required

Number of digits Distinct N-digit Minimum interval Minimum interval
(N) numbers (2N) width (lmin) width (lmin/2N × 100)

3 8 > 0 –
4 16 > 0 –
5 32 > 4 15.625
6 64 > 9 15.625
7 128 > 19 15.625
8 256 > 39 15.625

the X-axis indicates the size of the interval. For instance, the value [7 – 14] on the X-axis
indicates that this includes intervals with between 7 and 14 numbers (both cases included).
The minimum number of solutions (the minimal width of the interval, l) addressed is 3
in all cases, as justified above. The maximum number of possible random values in the
interval is 6, 14, and 30 for 3 digits, 4 digits, and 5 digits, respectively. For the cases of 3
and 4 digit numbers, only one Grover’s iteration is needed in all cases. For the N = 5 case,
a single iteration is required for 5 or more solutions. 2 iterations are required when there
are 3 or 4 possible solutions.

Figure 5 shows the same information as Fig. 4, but for sizes N = 6, 7, and 8 (in blue, or-
ange, and green, respectively). The minimum number of solutions is still 3. The maximum
number of solutions is 62, 127, and 254, respectively. Each size reaches the optimal num-
ber of iterations (i.e., a single iteration) from 10, 20, and 40 iterations, respectively. It takes
2 iterations starting at 5, 9, and 18 solutions, respectively. If these values are reduced, the
number of iterations quickly starts to become unfeasible, as shown in Fig. 5.

Table 2 summarises the minimum interval sizes to run the circuit with a single itera-
tion. It also shows this value as a percentage of the number of distinct values that can be
obtained using N digits. In the best cases, all possible values results in a resource-optimal
circuit. On the other hand, for larger sizes it is necessary to include at least about a 15.625%
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Figure 6 Probabilities of success. Probabilities of success for every interval size (number of solutions l) using
the different number of qubits

of the possible values if the most efficient circuit possible is required. For these single it-
eration cases, the metrics are:

• Number of qubits: 2N + 2
• Hadamad gates: 3N + 4
• Pauli-X gate: 8N
• CNOT gate: 8N – 7
• Temporary logical-AND gate: N
• Uncomputation gate for the temporary logical-AND operation: N – 1
• N-qubit Toffoli gates: 1.
For each case, 10 tests (of 1024 runs each) were carried out in order to measure the ef-

fectiveness of the circuit. Figure 6 shows the average probabilities of successfully obtaining
a value for the number of digits and optimal interval configurations (the cases where the
circuit needs only one iteration) listed in Table 2. The shape of the plots shown in Fig. 6
conforms to what is expected by Grover’s algorithm [44]. The algorithm ensures proba-
bilities of success above 50%. The probabilities increase until they reach a maximum, at
which point they start to decrease. This pattern will continue to repeat if the number of
iterations is increased, but each time with a longer repetition period. Values around 50%

may be adequate in certain domains, but are insufficient for the problem at hand. How-
ever, in Fig. 6 it can be seen that random numbers with a probability always higher than
80% can be obtained for any interval if the right number of qubits is used. For instance, to
generate a number in the interval [0, 76] (i.e. l = 77) using 8 qubits, will have a probability
of success of only 70% according to Fig. 6. However, the probability of success becomes
almost 100% if 7 qubits are used instead. We can then define a number of qubits for each
interval so that we can ensure that the probabilities never go below 80%, as shown in Fig. 7.
We can even define certain interval sizes where the probability is always greater than 90%

or even 95%, as shown in Table 3. Moreover, all possible intervals can be covered using a
single Grover iteration.
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Table 3 Average probability of success of obtaining a number in the desired interval for the different
numbers of digits. To calculate the average value, only those intervals of each size for which a single
iteration of the circuit is needed have been included. The efficient and optimal intervals columns
indicates (for each size) the intervals in which the probability of success is greater than 90% and 95%.
For instance, for the case N = 3, the efficient interval column indicates that the intervals [0, 4], [0, 5],
and [0, 6] produce random numbers in those intervals with a probability of success greater than 90%

Number of digits Quality Efficient intervals Optimal intervals
(N) (average) (probability > 90%) (probability > 95%)

3 0.895 [0, 4 – 6] [0, 5]
4 0.827 [0, 8 – 12] [0, 9 – 10]
5 0.825 [0, 15 – 24] [0, 18 – 21]
6 0.824 [0, 32 – 48] [0, 35 – 42]
7 0.823 [0, 64 – 95] [0, 71 – 86]
8 0.822 [0, 128 – 194] [0, 142 – 173]

Figure 7 Number of qubits for each interval size. Number of recommended qubits for each possible interval
size. Using these number of qubits for the indicated interval, the probabilities of success are maximized

Finally, the uniformity of the numbers has been measured using the TestU01 software
[45]. Only the values generated within the interval have been included in the measure-
ment, thus discarding the erroneous values. Table 4 shows the percentage of uniformity
achieved for each number of digits as described in Table 3. The quality of the numbers
has been tested both without noise and with noise. In the latter case, the configuration
described by Combarro et al. [11] was used in order to have some reference value against
which to compare the results. In the work of Combarro et al., the Monobit test is used
to measure the quality, obtaining a value of 0.9899 in the ideal case without noise, and
0.3962 in the case with noise. The values achieved by our generator are similar to those
measured by Combarro et al. The slight improvement of our values can be attributed to
the fact that we are discarding in advance the values that fall outside the intervals. Our
results confirms what Combarro et al. have already indicated: the numbers generated in
the presence of noise using this methodology are not uniform. In case such uniformity is
needed, the application of techniques and protocols that improve the quality of the num-
bers generated must be used. We leave the application of such protocols for future work,
as mentioned in previous sections.
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Table 4 Measure of uniformity (mean) of numbers generated using N qubits without noise and with
noise. The TestU01 software has been used for uniformity measurement

Number of digits Uniformity Uniformity
(N) (no noise) (with noise)

3 0.9902 0.5843
4 0.9887 0.5837
5 0.9886 0.5823
6 0.9871 0.5812
7 0.9869 0.5778
8 0.9866 0.5745

5 Conclusions
In this work, a functional circuit has been proposed to generate random numbers in quan-
tum devices. The circuit is fault-tolerant, and it is optimized in terms of number of qubits,
T-count, and T-depth. Its design is customisable for a user-specified interval. Detailed
steps are given to reproduce the circuit for any digit size and interval configuration. For
each of these cases, the required resources are indicated. The effectiveness of the circuit
has been also tested. It has been indicated in which cases it is feasible with respect to the
number of resources, and its probability of success has been measured. Complementary,
we have indicated those cases in which the circuit works exceptionally well, with a prob-
ability of success of over 90% or even 95%.

Another important contribution of this work is that a reversible comparator has been
presented. This circuit is used as a sub-circuit of the random number generator, but is valid
for use in other quantum circuits and algorithms. We have shown that this comparator is
the best currently available in the literature in terms of number of qubits, T-count, and
T-depth.
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