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Abstract
Quantum state tomography (QST) represents an essential tool for the
characterization, verification, and validation (QCVV) of quantum processors. Only for a
few idealized scenarios, there are analytic results for the optimal measurement set for
QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of
measurement operators for QST has eigenbases which are mutually unbiased.
However, in other set-ups, dependent on the rank of the projection operators and the
size of the quantum system, the optimal choice of measurements for efficient QST
needs to be numerically approximated. We have generalized this problem by
introducing the framework of customized efficient QST. Here we extend customized
QST and look for the optimal measurement set for QST in the case where some of the
quantum gates applied in the measurement process are noisy. To achieve this, we use
two distinct noise models: first, the depolarizing channel, and second, over- and
under-rotation in single-qubit and to two-qubit gates (for further information, please
see Methods). We demonstrate the benefit of using entangling gates for the efficient
QST measurement schemes for two qubits at realistic noise levels, by comparing the
fidelity of reconstruction of our optimized QST measurement set to the
state-of-the-art scheme using only product bases.

Keywords: Quantum tomography; High-dimensional optimization problem;
Quantum gates; Noise; Quantum computing

1 Introduction
1.1 Background
In the past decades, the mounting evidence that quantum algorithms can solve specific
tasks with efficiency beyond the capability of a state-of-the-art classical computer has led
to considerable interest in the field of quantum computing. A major turning point was
Shor’s algorithm for prime factorization [1]. In addition, hard optimization problems are
expected to be efficiently solved on a quantum device with potentially enormous conse-
quences for multiple fields. Feynman’s proposal to use quantum computers for the efficient
simulation of quantum systems for which classical simulation is hard [2] represents an-
other high-impact application. Various physical hardware platforms are being developed
for quantum computation [3–8].
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The increasing size and complexity of quantum devices call for more sophisticated tech-
niques for calibration, certification, and evaluation of their performance. The field of quan-
tum characterization, verification, and validation (QCVV) offers various state-of-the-art
protocols and techniques to evaluate the performance of a quantum system. Quantum
state tomography (QST) [9], a prominent QCVV technique, allows for the reconstruc-
tion of a given quantum state from measurement data. Others include quantum process
tomography, randomized benchmarking (RB) [10, 11], and gate set tomography [11–14].

While QST is known as the “gold standard” for the verification of a quantum device
[15], as it provides comprehensive information for a given quantum state, its computa-
tional costs make it infeasible for a system larger than few qubits. Moreover, full QST can
be time-consuming even if performed on small systems, say building blocks of a quan-
tum computer of only one or two qubits. Therefore, the search for efficient measurement
schemes for QST is of high practical importance.

Optimal QST measurement schemes are known for specific ideal and noise-free scenar-
ios. For a d-dimensional Hilbert space, the ideal choice is a set of d +1 measurement opera-
tors whose eigenbases are mutually unbiased bases (MUBs) [16]. For generalized measure-
ments, using ancillary systems, symmetric, informationally complete positive operator-
valued measures (SIC-POVMs) are optimal [17, 18]. For a situation where one out of N
qubits is measured, an optimal quorum [19] consists of projectors on so-called mutually
unbiased subspaces. Numerically optimized QST measurement sets consisting of inde-
pendent rank-1 projection operators [20] and projectors on half-dimensional subspaces
in dimension six [21] have been obtained. In the first case, the numerical solution out-
performs a set that constitutes projectors from a set of MUBs and in the latter case, the
solution approximates mutually unbiased subspaces.

When implementing QST on real systems, one is inevitably confronted with the pres-
ence of noise and decoherence during every quantum operation. Despite the importance
of QST as an established tool for determining the state of a quantum system, rigorous
and systematic research on optimizing QST with noisy gates is lacking. Limited research
into optimal measurement schemes for QST in the presence of noise for single- and two-
qubit systems exist [22–24], however, in these works fine-tuning of noisy entangling gates
are not considered. In [24], the measurement set of a photonic 2-qubit quantum system
is optimized to be maximally robust to a general measurement error. In [23], the general
question of QST under measurement constraints is investigated, with an implementation
on a single (photonic) qubit. In [22] a QST on a single qubit is performed with a set of
generalized (possibly overcomplete) measurements.

1.2 A framework for optimal quantum state tomography in noisy systems
Here, we extend the framework by looking for optimal QST schemes in noisy systems, and
modify the QST quality measure defined by Wootters and Fields [16], see Sect. 2.1. They
expressed the information about a quantum state obtained by performing measurements
on this state as

I = – ln
V
V0

– const., (1)

where V0 is the volume of all possible quantum states. The confidence volume V is defined
as the volume of the rectangular parallelepiped which includes the part of the distribution,
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assumed to be Gaussian, with probability density larger than 1/e times its maximum. For
dimension d, V can be expressed as

V =
V1 · · ·Vd+1

Q . (2)

Here, Vj is the confidence volume of the (d–1)-dimensional subspace spanned by the
projectors Pjk on eigenstates k = 1, . . . , d of the measurement j and Q is the geomet-
ric quality measure given by the volume of the rectangular parallelepiped spanned by
{Pjk|j=1, . . . , d+1; k=1, . . . , d–1}. The number of repetitions Nj and the probabilities of the
measurement outcomes, pjk = Tr(Pjkρ) are related to Vj by

Vj ∼ 1
N (d–1)/2

j

√pj1 · · ·pjd. (3)

The averaged information gain reads 〈I〉 =
∫

dμd(ρ)I(ρ), where μd(ρ) is the Haar measure
of the density matrices for a d-dimensional Hilbert space. Importantly, 〈I〉 depends on the
choice of the QST measurement set only via Q because 〈ln(Tr[Pρ])〉 is the same constant
for any projector P of the same rank. Thus Q can be used as a quality measure for a QST
measurement set.

We consider measurements that are realized by first applying a sequence of quantum
gates followed by a measurement in a standard basis, see Fig. 1(a). The quality of the se-
lected QST measurement scheme then depends on the choice of gates and how much the

Figure 1 (a): Noisy measurement M̃ realized by a noisy unitary operation Ũ followed by a noiseless
measurement in the standard basis. (b), (c): Noise models illustrated here for a single qubit on the Bloch
sphere. (b) The depolarizing channel shrinks the Bloch vector. (c) Over- and under-rotation describes errors
during a quantum gate where the rotation angle fluctuates according to a Gaussian distribution. The example
shows an intended π /2-rotation about an axis in the xy-plane
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chosen gates are affected by noise. There are multiple noise models for quantum gates,
and, for simplicity, we focus on two of those models. Note, however, that our approach
is not limited to any noise model. First, we consider a Hamiltonian of the form H = λPλ

where we – for now – consider Pλ = |λ〉〈λ| to be projector of rank 1. Switching this Hamil-
tonian on for a time t yields the unitary

U(φ) = 1 – Pλ + eiφPλ,

where we have defined φ := λt. To model noisy gate operations, we assume that φ cannot
be controlled precisely by the applied pulses but instead follows a Gaussian distribution
pN (φ) with 〈φ〉 = φ0 and a standard deviation of σ =

√〈(φ – φ0)2〉, see Fig. 1(c). We assume
that variance scales linearly with φ0, σ 2 = 2rφ0. Representing a density matrix ρ in the
eigenbasis of U(φ) and averaging over the Gaussian, reveals that the off-diagonal elements
of

∫
dφpN (φ)U†ρU which involve |λ〉 or 〈λ| are modified by e–rφ0 e–iφ0 , i.e. additionally to

the desired phase factor, they decay exponentially. Although we consider this model for
two-qubit gates, later on, we use the term over- and under-rotation [25, 26] for it. Second,
we consider the depolarizing channel [27], see Fig. 1(b). If noise affects any quantum state
in the same way, based on the waiting time, independent of whether a quantum gate is
applied during this time or not, all the projectors which describe one measurement are
modified in the same way. However, the waiting time depends on the overall time of the
quantum gate sequence needed for the measurement.

The structure and contents of this article are as follows. We consider a single-qubit sys-
tem, see Sect. 2.2, assuming that measurements along the z axis of the Bloch sphere and
rotations around the z axis are error-free while rotations around an axis in the xy plane
are noisy. As in [28], the above two noise models coincide for the single qubit. Then, we
turn to a two-qubit system, see Sect. 2.3, with error-free single-qubit gates and entangling
two-qubit gates affected by noise. While in general, any non-trivial interaction can lead to
an entangling gate, we explicitly consider the Heisenberg interaction, see Sect. 2.3.2, and
the Ising interaction, see Sect. 2.3.3. These interactions or interactions which yield equiva-
lent gates are relevant for certain quantum computing platforms, namely, the Heisenberg
interaction is present for spin qubits in semiconductor quantum dots [6] and an Ising-
equivalent interaction for resonant gates [29, 30]. Our methods for solving the resulting
numerical optimization problem are explained in Sect. 4.2 and our results are presented
in Sects. 2.4 and 2.5. There, we investigate the change in the quality of the optimal mea-
surement schemes for different noise levels as well as the corresponding normalized times
for the entangling gates. We perform numerical simulations to demonstrate the benefit of
using entangling gates for efficient QST by comparing the fidelity of reconstruction ob-
tained by our measurement schemes to the fidelity of reconstruction using nine product
bases and show superiority of using entangling gates for noise level corresponding to av-
erage gate fidelities between values around 0.8 and 0.9 depending on the noise model,
see Sect. 2.6. At the same time, we quantify the advantage of using a QST measurement
set optimized for the specific noise level over the use of the QST scheme optimal for the
noiseless case. Importantly, to overcome the limitations imposed by the considered noise
models, we validate the advantages of using entangling gates for QST on a real quantum
device, running QST on both, an actual quantum device and a simulator emulating it. The
results of the experiments on the device confirm that in certain scenarios, a better fidelity
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of the QST procedure is obtained using entangling gates in comparison to the state-of-
the-art product bases. We conclude in Sect. 3.

1.3 Summary of contributions
Here, we summarize the significant contributions and assumptions of our paper. Most im-
portantly, we introduce a formal evaluation scheme for the efficiency of QST quorums in
noisy settings. Note that a such tool has not been available before, although any experi-
mentally implemented QST deals with noise.

Secondly, we apply our scheme to multiple relevant scenarios, including a single-qubit
and a two-qubit system with noisy entangling gates, where two important noise models
(depolarizing channel and over- and under-rotation) were implemented. We consider two-
qubit gates based on Heisenberg and Ising interaction. To make our investigations relevant
for practitioners, we identify realistic noise levels by comparison to recent literature.

Furthermore, we formulate the goal of finding the optimal QST quorum under noise
as an optimization problem and derive a mathematically meaningful quality measure for
each respective interaction and noise model and perform an extensive exploratory analysis
using global optimization approaches for exploration combined with local approaches for
exploitation. Based on this analysis, it was that the best solutions have the specific struc-
ture of three measurement bases of product states and two bases with highly entangled
gates related to the standard set of MUBs (where the entangled states are maximally entan-
gled); we derive an analytical expression for the optimized solutions for the depolarizing
channel.

Moreover, using simulations, we compare the fidelity of reconstruction for QST with
MUBs and our numerically optimized QST to QST with nine separable bases which rep-
resents the current state-of-the-art approach for QST under noise. As an important result,
we find a significant advantage in using entangling gates compared to the nine separable
bases for noise levels already achieved in experiments. Finally, for validation, we compare
the performance of QST under noise using entangling gates and product bases on a real
quantum computer. The results confirm that for certain realistic scenarios it is more ad-
vantageous to use entangling gates for QST. Additionally, we find a crossover behavior
where QST using nine product bases as measurement bases becomes the more advanta-
geous approach with an increasing number of experimental runs of each measurement.

2 Results
2.1 Quantum state tomography with noise
We now investigate the performance of quantum state tomography quorums under the
influence of noise. Noise which is independent of the choice of the measurement will only
lead to a constant change in 〈I〉. This can be compensated by an increased number of
experimental runs, but the optimal QST measurement set remains the same. We consider
the more interesting situation where the noise depends on the choice of measurements.
We will analyze how the noise affects the averaged information gain 〈I〉 and incorporate
this dependence by modifying the quality measure QN .

We consider the case where the measurement j is described by a POVM, {Fjk} with
∑

k Fjk = 1. In the noise-free case, Fjk = Pjk where Pjk are projection operators of rank ljk
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with PjkPji = δikPjk and
∑

k ljk = d. We look at operators being affected by noise such that

Fjk = qj

(

Pjk –
ljk1

d

)

+
ljk1

d
. (4)

Here, the traceless part of the operator is rescaled with a factor of qj ≤ 1. Then the out-
comes of the noise-affected measurement j follow a multinomial distribution with prob-
abilities p′

jk = Tr(Fjkρ) = qjpjk + ljk(1 – qj)/d. From p′
jk we can calculate the probabilities in

the noiseless case

pjk =
p′

jk

qj
–

ljk(1 – qj)
qjd

. (5)

As in [16], we assume that the multinomial distribution is well approximated by a Gaus-
sian. We then use (3) with rescaled probabilities p′

jk/qj and the relation (4) to calculate the
confidence intervals as

Vj ∼
√

Nj
∏

k

1
√

Nj

√

pjk +
ljk(1 – qj)

qjd
. (6)

Rescaling is necessary as the noise-affected measurement outcome is related to the out-
come of a corresponding noise-free measurement not only by a shift in probability but also
by a factor of qj In order to include the effect of the noise, described here by the value of
qj, we need to compute 〈ln(pjk + ljk(1 – qj)/(qjd))〉 using the Haar measure μd(ρ). We will
calculate this expression for the cases d = 2 and d = 4, as they are investigated in detail in
this paper. For d = 2, we can calculate this expression analytically by integrating over the
Bloch sphere in cylindrical coordinates for P = |0〉〈0|,

〈
ln(pjk+c)

〉
= –

5
6

+ 2c(1+c) + c2(3+2c) ln(c) – (1+c)2(2c–1) ln(1+c), (7)

which we can expand for c ∝ 1 – qj 	 1 up to linear order in (1 – qj) yielding

〈

ln

(

pjk +
1 – qj

2qj

)〉

≈ –
5
6

+
3
2

(1 – qj), (8)

where ljk = 1 for d = 2. For d = 4, we compute the average numerically. We obtain random
density matrices using the representation ρ = UDU†, see [31], where D is a diagonal matrix
with the eigenvalues of ρ on the diagonal obtained as the differences between the elements
of {0, r1, r2, r3, 1} where {r1, r2, r3} is an ordered set of three values taken from a uniform
distribution over the interval [0, 1]. We generate random unitary matrices U using the
approach described in [32]. We use linear regression to fit the data to get an estimate of
the coefficient. We use 107 matrices, projectors on the four basis vectors, and 40 data
points on the interval qj ∈ [0.9, 1]. We obtain for ljk = 1,

〈

ln

(

pjk +
1 – qj

4qj

)〉

≈ const. + 1.195(1 – qj). (9)
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We disregard terms of higher than linear order in 1 – qj and set Nj = N , then we obtain

〈I〉 = lnQ +
d2 – 1

2
ln N – s

∑

j

(1 – qj) + const., (10)

where s depends on the rank of the projectors involved in the measurements, for d = 2, we
have s = 3/2, for non-degenerate measurements in 4D, we have s = 2.39. The qj-dependent
part of the averaged information gain 〈I〉 will now be included in a modified quality
measure QN , QN = Q

∏
j[exp(qj–1)]s. The average information gain depends on QN by

〈I〉 = lnQN + d2–1
2 ln N + const. In linear order in 1–qj, QN simplifies to

QN = Q
∏

j

(qj)s. (11)

We will use QN in order to find optimal QST measurement set under noisy conditions.

2.2 Single qubit
We consider a qubit and assume that while the standard measurement in the z basis is
free of errors, rotations about any axis in the xy plane are error-prone. We assume that the
angle of such rotations follows the Gaussian distribution described above, p(θ ) ∼ exp((θ –
θ0)2/(2

√
2rθ0)). So, if we want to project onto the state cos(θ0/2)|0〉 + sin(θ0/2)eiφ |1〉, we

actually project onto the mixed state

ρ =
1
2

(
1 0
0 1

)

+
e–rθ0

2

(
cos θ0 e–iφ sin θ0

eiφ sin θ0 – cos θ0

)

.

We see that the traceless part of the density matrix decays exponentially with increasing
0 < θ0 < π , i.e. the imperfection of the quantum gate yields a depolarization channel for
the qubit. The traceless parts of the density matrix can be written as a three-component
real vector, the Bloch vector n, such that ρ = 1/2 + n · σ /2 where σ is a vector of Pauli
matrices. In the specific situation considered here the length of n depends on the angle θ ,

n = e–r|θ |

⎛

⎜
⎝

sin(θ ) cos(φ)
sin(θ ) sin(φ)

cos(θ )

⎞

⎟
⎠ .

In other words, the value of qj defined above is given by exp(–rθj) as it is for the depolar-
izing channel. Numerically one finds that the maximal QN is three Bloch vectors all with
the same θ and the phases can be chosen to be φ1 = 0, φ2 = 2π/3, and φ3 = 4π/3. Then, the
quality measure with the exponent s = 3/2, see Sect. 2.1, reads

QN =
3
√

3
2

e–9r|θ |/2 cos(θ ) sin2(θ ),

and the optimal angle is θ = arctan(
√

81r2/16 + 2 – 9r/4).
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2.3 Two qubits with noisy entangling gates
We formalize the question “When does it make sense to include entangling gates in a QST
measurement scheme?” for non-degenerate measurements.

Each of the measurements included in a QST quorum is assumed to be carried out by
first applying a unitary operation Uj where j = 1, . . . , 5 for non-degenerate measurements
to the unknown quantum state and then performing a measurement in the standard basis
{|00〉, |01〉, |10〉, |11〉}. The task is now to find U1, . . . , U5 which yield the highest QN .

2.3.1 Universal quantum gates with noisy entangler
General unitary operators acting on two qubits can be represented by

Uj = Uq1(�(1)
j,1

)
Uq2(�(2)

j,1
)
Utq(β j)Uq1(�(1)

j,2
)
Uq2(�(2)

j,2
)
, (12)

where Uqk(�(k)
jm ) (k, m = 1, 2; j = 1, . . . , 5) is a local one-qubit gate applied to qubit k defined

by the three real parameters � = (φ,ψ ,χ ),

Uqk(�) =

(
cos(φ)eiψ sin(φ)eiχ

– sin(φ)e–iχ cos(φ)e–iψ

)

. (13)

The gate Utq(β j) is a universal two-qubit gate, i.e., together with the local gates any desired
Uj ∈ SU(4) can be realized. As a parametrization of Utq(β j), the Hamiltonian

Hp(β j) =
∑

α=x,y,z
βjασ (1)

α ⊗ σ (2)
α , (14)

where σ (k)
α are the Pauli matrices for the qubit k, can be used [33–35],

Utq(β j) = exp
(
–iHp(β j)

)
. (15)

The operators Hp and Utq are diagonal in the Bell basis {|+〉, |�+〉, |–〉, |�–〉}, where
|±〉 = (|00〉±|11〉)/√2, |�±〉 = (|01〉±|10〉)/√2 with the corresponding eigenvalues η

j
00 =

βjx – βjy + βjz , ηj
01 = βjx + βjy – βjz , ηj

10 = –βjx + βjy + βjz , ηj
11 = –βjx – βjy – βjz for Hp and e–iηj

ik

for Utq. While, any interaction which yields a universal two-qubit gate can be applied to
reproduce a desired Utq, the representation in Eq. (15) provides a very convenient way to
do this for any Hamiltonian which is of the form Hp with any fixed values of β j including
the Heisenberg (βjx = βjy = βjz) and the Ising interactions (βjx = βjy = 0), Any Utq can be
generated by applying any of these gates three times with appropriate single-qubit gates in
between.

2.3.2 Heisenberg interaction
Now, we demonstrate how to compose the universal two-qubit gate for the situation where
the entangling gate originates from the Heisenberg exchange interaction (βjx = βjy = βjz),

Hex = λH |�–〉〈�–|, (16)

where λH is the interaction strength. This situation can be realized by spin qubits in semi-
conductor quantum dots [6]. Following the work by Fan et al. [36], Utq is then defined by
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three parameters αj = (αj,1,αj,2,αj,3), which are directly related to the amount of time the
Heisenberg interaction is switched on,

αjk =
(tend

jk – tstart
jk )λH

π
,

yielding SWAPαjk gates. We assume that the interaction is switched on and off instan-
taneously. Thus the αjk can be considered as normalized entangling times with the unit
π/λH , |αj|1 =

∑
k αjk is then the normalized entangling time for the measurement j and ad-

ditionally, we define α :=
∑

j |αj|1 as the normalized overall entangling time applied within
the gate sequences for a QST measurement set. The gate Utq is composed as [36]

Utq(αj) = σ (1)
z σ (2)

x SWAPαj,1σ (1)
z SWAPαj,2σ (2)

x SWAPαj,3 . (17)

In the – now unconventionally sorted – Bell basis {|�+〉, |+〉, |–〉, |�–〉}, Utq is given by

Utq(αj) = diag
(
1, eiαj,1π , eiαj,2π , eiαj,3π

)
. (18)

Switching on the Heisenberg interaction creates an entangling gate. In our model, the
normalized time of the Heisenberg interaction between two spin qubits determines how
much the noise affects the quantum system. Since, aside from the QST optimal measure-
ment scheme, we are interested in the role the entangling gate plays in the optimal solution,
we evaluate the normalized times αjk during which the Heisenberg interaction is switched
on.

2.3.3 Ising interaction
We construct the universal two-qubit gate using the Ising interaction

HIsing = λIσ
(1)
z ⊗ σ (2)

z . (19)

We note that we can reproduce the representation in Eq. (15) by the sequence

Utq(β j) =
∏

k=x,y,z

(
U (1)

k
)†(U (2)

k
)†e–iβjkσ

(1)
z ⊗σ

(2)
z U (2)

k U (1)
k (20)

with the single-qubit operations U (m)
x = exp(–iπσ

(m)
y /4), U (m)

y = exp(iπσ
(m)
x /4), U (m)

z = 1

(m = 1, 2). As for the Heisenberg interaction, we define normalized entangling times for
each switching on of the interaction

τ I
jk =

(tend
jk – tstart

jk )λI

π
,

for the gate sequence used for realizing measurement number j, τ I
j =

∑
k τ I

jk , and for all
sequences within one QST measurement set, τ I =

∑
j τ

I
j . The unit of these times is again

π/λI , i.e., π divided by interaction strength. Note that, also interactions of the form H ∼
(axσ

(1)
x + ayσ

(1)
y ) ⊗ σ

(2)
z yield a gate locally equivalent to the gate provided by the Ising

interactions. Those interactions are effectively present when resonant gates are applied
[29].
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Figure 2 The quality and entanglement time of selected solutions (sets of quorums) discovered by using
Powell’s method with 500 random diverse starting points, for the Heisenberg (a), (b) and the Ising interaction
(c), (d) with noise described by the depolarizing channel (a), (c) or over- and under-rotation (b), (d). Only the
10 best solutions are visualized for each noise level. The points with the red circles represent the optimized
quorums resulting from using Powell’s method with standard MUBs as starting points being as good as or
better than the best results from the exploratory analysis. Here r and ζ are the noise parameters for the
over-and-under rotation noise model and for the depolarizing channel, respectively

2.4 Results from the exploratory analysis: geometric measure and normalized
entangling time

2.4.1 Optimization via multiple runs of local search
One approach to look for an optimal solution is to use parallel searches with many well
chosen starting points in order to explore well the space of potential optimal solutions.
This approach has been used successfully for similar problems in [20, 21]. We use Powell’s
method as a local search with a set of 500 diverse starting points, each at least 0.01 distance
from each other using a Jaccard-based distance measure. For more details, see Sect. 4.2.
In Fig. 2 we present the quality of a selection of the quorums discovered by the above
approach.

2.4.2 Global optimization via simulated annealing
In Fig. 3, results of the global optimization via Simulated Annealing are presented. Ten
runs are performed for each noise level. The resulting solutions are contrasted to the op-
timized solution discovered by Powell’s method using the set of MUBs, see Sect. 4.2.5, as
starting points for the local search. In principle, there are infinitely many possible sets of
MUBs that can be used. For our comparison, we use a set of MUBs that is known to have
shorter entangling times τ I = 1/2 and α = 2 than other known choices. In the following,
we refer to this set as the standard set of MUBs. The results of the exploratory analysis
demonstrate that high-quality solutions are discovered with entanglement close to or be-
low that of the standard set of MUBs. Here ζ is the noise parameter for the depolarizing
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Figure 3 Selected high-performing quorums of projection operators, discovered by optimizing via simulated
annealing for exploration and Powell’s local search method for exploitation for the Heisenberg (a), (b) and the
Ising interaction (c), (d) with noise described by the depolarizing channel (a), (c) or over- and under-rotation
(b), (d). The solutions are colored differently, based on the noise level used for each noise model and
interaction, where ζ and r are the noise parameters for the depolarizing channel and over-and-underrotation
respectively. The points with the red circles represent the results from using Powell’s method with the
standard set of as a starting points being as good as or better than the best results from the exploratory
analysis. Their colors also represent the noise level of the corresponding noise parameter

channel with Ising and Heisenberg interactions and r is the noise parameter for the over-
and-underrotation channel with the two types of interactions (see Method section for the
precise definition). For higher levels of noise, e.g. ζ and r take values around 3%, the solu-
tions discovered by the global optimization approach are close to the ones found by using
a local search with the standard MUBs as starting points of the search. This, as well as
the consideration that the a full set of MUBs represents an ideal quorum of projectors in
the absence of noise, motivated us to use the aforementioned set of MUBs as a starting
point of a local search for lower levels of noise and compare the results to the results from
the global optimization. The relation that entangling time corresponds to a higher quality
measure for optimized quorums does not hold for over- and under-rotation with Ising
interaction due to special invariants, discussed below.

2.4.3 Invariance of the QN for specific applications of the Ising interaction with over- and
under-rotation

The results of the exploratory analysis for the Ising interaction with over- and under-
rotation errors reveal that there are quorums with the same QN but different τ I , see
Fig. 3(d). This is a consequence of the Ising interaction leaving specific product bases
unchanged. For example, the standard basis {|00〉, |01〉, |10〉, |11〉} is not affected by the
Ising-based two-qubit operator in Eq. (20) for βjx = βjy = 0 and arbitrary βjz .
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Figure 4 Results for both noise channels, the over- and under-rotation (a)-(d) and the depolarizing channel
(e)-(h) and for both interactions, the Heisenberg interaction (blue, red) and the Ising interaction (green,
orange): We present the quality measureQMUB for the quorum formed by a complete set of MUBs with
lowest possible entangling time (a), (e); the ratio of the quality measures for the numerically optimized
quorum,Qopt andQMUB (b), (f ); as well as the normalized entangling times α (for Heisenberg interaction) (c),
(d) and τ I for the Ising interaction (g), (h). All these quantities are given as a function of the noise parameters r
(a)-(d) and ζ (e)-(h). Note that the solid and dashed lines connecting the data points are guidance for the eyes
while the dashed lines in (c), (d), (g), (h) represent the (smallest possible) normalized entangling time for the
MUBs. The increase in τ I from r = 0.28 to r = 0.3 might be due to the fact thatQN can be invariant under
switching on the Ising-interaction for certain states, see main text

2.5 Results from using the standard set of MUBs as a starting point of a local
search

In Fig. 4, we present QN for the MUB quorums in dependence of the noise parameters r
and ζ , the improvement by the numerical optimization, and the changes in the normal-
ized overall times the entangling gates are switched on during the QST procedure, α and
τ I . We use here MUB quorums with the presumably minimal amount of time the entan-
gling gates are switched on, see Sects. 2.7 and 2.8 for details. As expected, the values of
QN monotonously decrease with increasing r and ζ . The improvement by the numerical
optimization compared to the MUBs increases with an increasing noise level which is due
to the fact that the MUBs are ideal at zero noise. In parallel, the normalized entangling
times of the numerically optimized quorums decrease.

2.6 Fidelity of reconstruction
We simulate QST by randomly generating density matrices (in the same way as described
in Sect. 2.1) and “measurement outcomes” for a number Nrep = 5×9×512 of runs of mea-
surements. We use the maximum-likelihood method for reconstruction for 105 random
density matrices and present the averaged results in Fig. 5. The noise levels considered are
up to ζ = 0.25 and r = 0.25. While improvement by the optimization procedure compared
to the MUBs increases with increasing ζ and r, the optimization might become imprecise
for larger values of ζ and r as the linearization in Eqs. (9) are no longer a good approxima-
tion at those values. However, we are mainly interested in systems with high-purity gates,
and, therefore, do not consider higher-order quality measures.

We find that for the depolarizing channel, with Heisenberg interaction up to ζ = 0.08,
there is a benefit of using entangled-state bases compared to product-state bases. While
for the Ising interaction values of ζ where QST with nine separable bases performs better
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Figure 5 Infidelity of reconstruction in dependence of the noise parameters ζ and r for the Heisenberg
interaction (a), (b) and the Ising interaction (c), (d) under depolarizing noise (a), (c) and over- and
under-rotation (b), (d). The QST measurement sets were 9 separable bases (red) which don’t depend on the
noise as only entngling gates are effected, MUBs (blue), and numerically optimized quorums (green). The
error bars indicate the standard deviation of the mean after averaging over 105 random density matrices. The
total number of measurements runs is Ntot = 5× 9× 512

than QST with MUBs or numerically optimized quorums, have not been considered, we
predict the limiting value to be four times as high as for the Heisenberg interaction, be-
cause the results for Ising and Heisenberg interaction coincide if ζ for the Ising interaction
is four times as high as for the Heisenberg interaction.

For the over- and under-rotation noise model, the fidelity of reconstruction using entan-
gling gates is better than using nine product-state bases for a level of noise around r = 0.2
for both, Ising and Heisenberg interactions. In order to evaluate the benefits of using the
entangling gates for performing efficient QST, we need to evaluate how the noise levels in
the two models compare to the noise in real state-of-the-art devices and whether for these
real-life noise values using entangling gates leads to better performance in comparison to
using nine product-state bases. Therefore, we calculate the relationship between average
gate fidelity and the noise parameters of the two models. Using the relationship described
in Sect. 4.1, the average gate fidelity of the CNOT gate which corresponds to the thresholds
for the depolarized channel is 0.83. For CNOT gates with this fidelity or higher, we find
that the use of entangling gates for measurement is beneficial. The gate fidelity which cor-
responds to the threshold r = 0.2 for the over- and under-rotation channel is 0.85 or 0.89
for the Heisenberg and for the Ising interaction, respectively. For experimentally achiev-
able noise levels [30], there is therefore already a benefit of using entangling gates when
determining optimal QST measurement schemes.
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2.7 Analytical expression for Heisenberg interaction, depolarizing channel
A set of MUBs is obtained by using the unitaries

U1 = 1,

U2 = Uq1(π/4, 0, 0)Uq2(π/4, 0, 0),

U3 = Uq1(π/4, 0,π/2)Uq2(π/4, 0,π/2),

U4 = Uq1
(

0,
π

4
, 0

)

Uq2
(

–π

2
, 0,

π

4

)

Utq
(

1
2

, 0,
1
2

)

× Uq2
(

π

4
,π , –π

)

,

U5 = Uq1
(

π

4
,
π

4
,
π

4

)

Uq2
(

0,
π

4
, 0

)

Utq
(

1
2

, 0,
1
2

)

.

(21)

Entangling gates are used only for U4 and U5 with the parameters α41 = α43 = α51 = α53 =
1/2 and α42 = α52 = 0. From our numerical results, we observe that for the optimized quo-
rum only the values of α41, α43, α51, and α53 change in dependence of ζ . Therefore, we try
to reproduce the numerical result analytically by fixing all the parameters of the single-
qubit gates included in a quorum according to Eq. (21) and α42 = α52 = 0 but treat α41, α43,
α51, and α53 as independent parameters. Then the quality measure reads

QN =
sin(α41π ) sin(α43π )

32
cos4

(
(α51–α53)π

2

)

sin2
(

(α51+α53)π
2

)

× exp
[
–ζ s(α41 + α43 + α51 + α53)

]
.

(22)

Although the expression is not symmetric under the exchange of the values of α4k and α5k

(k = 1, 3), the maximum is reached at a point where all parameters coincide,

αmax
41 = αmax

43 = αmax
51 = αmax

53 =
1
π

arctan

(
1
ζ s

)

. (23)

With this expression, we reproduce the numerical results.

2.8 Analytical expression for Ising interaction, depolarizing channel
The same set of MUBs obtained above for the Heisenberg interaction can be realized using
the Ising interaction, by representing the two-qubit gates within the sequence for U4 and
U5 in Eq. (21) with the parameters β4y = β5y = π/4 and β4x = β4z = β5x = β5z = 0. Again, we
observe within the numerics that with increasing values of ζ all parameters but β4y and
β5y remain the same. Thus, we consider the quorum as described above treating β4y and
β5y as free parameters. We obtain for the quality measure

QN =
sin2(2β4y) sin2(2β5y)

32
e–ζ s(β4y+β5y) (24)

and find the maximum at

βmax
4y = βmax

5y =
1
2

arctan

(
4
ζ s

)

(25)

which indeed yields the same QN as the numerically optimized solution for each ζ .
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2.9 Performance of QST with noisy gates on real quantum device
Given that the noise models considered above require stringent limiting assumptions on
the behavior of the noise rather than using noise characteristics derived from a real quan-
tum computer, we decided to examine our approach using an actual noisy quantum device.
However, running our optimized measurement bases on the publicly available quantum
devices is challenging, due to the fact that a SWAPα gate with α being a parameter is
not available as a native gate, CNOT beign the only native two-qubit gate. Reproducing
SWAPα would require a gate sequence with a fixed number of CNOTs, i.e., α would not
determine the time of the two-qubit interaction being switched on. Therefore, for the two-
qubit noisy system, which was the focus of investigation in this paper, we ran comparative
QST using – as measurement bases – only a full set of MUBs and Pauli product bases.
Using Pauli bases is currently the state of the art. In order to evaluate how the two ap-
proaches using different measurement bases are affected specifically by the noisy gates,
we corrected the readout error in both cases before the QST was performed. We ran QST
using both measurement bases on a classical simulation of the IBM Manila device, as well
as on the actual IBM Manila quantum device. It is important to note that the simulation,
which uses averaged data, may be more representative than the results run on the actual
device, which may differ from calibration to calibration.

We ran both QST approaches for different total numbers of allowed repetitions, Ntot,
i.e. the total number of shots using the qiskit terminology, and evaluated the results. The
results, averaged over 660 randomly selected pure initial states, are shown in Fig. 6(a) for
the simulated Manila quantum device, and in Fig. 6(b) for the actual quantum device.
For the simulated data, for a fidelity of reconstruction of 97%, the MUBs outperform Pauli
bases as measurement bases and require a lower number of repetitions Ntot. The crossover
happens at a total number of shots of around Ntot = 2 × 103. It is important to note that
for further increasing Ntot the fidelity saturates and the gain from performing extra shots
is very small, even if the Pauli bases are more advantageous. In the case of the quantum
processor, the MUBs outperform Pauli bases up to a fidelity of reconstruction close to 92%,

Figure 6 Averaged infidelity of reconstruction for 660 pure initial states for QST with nine Pauli product bases
(blue) and five MUBs (green) for the IBM Manila simulator (a) and the IBM Manila quantum processor (b). We
observe that the MUBs outperform the Pauli bases for a low number of shots, while the Pauli bases perform
better for a higher number of shots possibly due to not including any two-qubit gate within the
measurement scheme. Insets: Log-log plots of the same averaged infidelities
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achieved for around Ntot = 500; for larger Ntot the Pauli bases are the more advantageous
approach to use. Note that the averaged infidelity of reconstruction saturates for large
numbers of measurement repetitions due to systematic errors. Systematic errors in the
CNOT gates are most likely to yield the QST with MUBs having a higher saturation value
for the infidelity. This explains the crossover behavior: for lower values of Ntot where the
infidelity is not dominated by systematic errors, our analysis that MUBs outperform QST
with Pauli bases is confirmed; when the systematic errors dominates, Pauli bases are better
as they do not suffer from imperfect CNOT gates included in measurement scheme. It
should be mentioned that these are results achieved using one calibration of the quantum
device, and not an averaged performance over several calibrations, and thus we consider
the results of the simulator as more representative.

Clearly, for scenarios where the total number of shots is limited, such as when one needs
to test initialization of a quantum device and thus a large number of random initial density
matrices, the QST with MUBs is the more beneficial approach. An additional advantage
of the QST with MUBs as measurement bases comes from the fact that fewer different
circuits are involved, and currently the loading of new circuits is one of the main bottle-
necks of using the IBM quantum devices. The advantage of having a smaller number of
different measurements (different circuits) is increasing for increasing number of qubits,
scaling as a ratio of (2/3)n where n is the number of qubits. Therefore, there is an expo-
nential advantage of MUBs over Pauli product bases regarding the number of different
measurements.

2.10 Discussion of results
We performed an extensive analysis of the search space of quorums for QST, using global
and local parallel explorations. However, the best solutions we were able to discover are
the ones that are obtained by a local search method using a full set of MUBs as a starting
point. Additionally, these optimized solutions differ from the standard set of MUBs only
by different entangling times. Using the derived quality measures, for realistic noise levels,
we find that the optimized solutions are better than the MUBs. For realistic depolarizing
and over- and under-rotation noise models using the Heisenberg interaction, there is a
small improvement in the fidelity of the reconstruction results for the optimized quorum
compared to the standard set of MUBs. For the Ising interaction (depolarized and over-
and under-rotation), there is no improvement over using the MUBs.

The state-of-the-art approach for efficient QST under noise is to use nine separable
bases. Our results demonstrate that this is unnecessary. Namely, the standard set of MUBs
performs significantly better in state-of-the-art existing systems.

3 Conclusions and overview
To summarize, we investigated the optimal QST measurement schemes under the influ-
ence of noise. We extended Wootters and Fields’ [16] quality measure for a QST measure-
ment quorum to the case of noise-affected measurements and optimized QST measure-
ment sets for a single- and two-qubit system under noise. For a single qubit, we considered
noise which increases with the polar angle of the Bloch sphere and perfect azimuthal ro-
tations. For two qubits, we limited the discussion to perfect single-qubit gates and noisy
two-qubit gates, generated either by Heisenberg interaction or by Ising interaction. We
solved the problem of finding an optimal quorum for quantum state tomography under
these noise models by using an extensive number of well-suited numerical techniques.
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For two qubits, the results depend on the interaction and on the noise model. For prac-
tically relevant noise levels, a minor improvement over using MUBs is present for the
Heisenberg over- and under-rotation and depolarized noise models. Apart from this, the
set of MUBs performs sufficiently well as an quorum for QST for realistic noise levels.

In some cases, we extracted analytical expressions for the optimized quorum from the
numerical results, namely for the single-qubit case and for two qubits with a depolarizing
channel. In the two-qubit case, only the entangling gate times change as the noise level is
varied.

Importantly, for simulated QST based on the noise models described above we find an
improvement of QST with MUBs and numerically optimized QST measurement sets com-
pared to QST with separable bases. While we did not include state preparation and mea-
surement (SPAM) errors, their influence can be mitigated [37].

To confirm our findings and alleviate potential limitations of our noise models, we com-
pared the performance of QST using entangling gates with QST using nine separable bases
on a real quantum device. We investigated for which scenarios the use of entangled gates
is advantageous in comparison with the use of the nine product bases as measurement
bases.

Naturally, future research would consider models with noisy two-qubit and single-qubit
gates, using system-specific parameters.

4 Methods
4.1 Parametrization of non-degenerate measurements
A quantum gate according to Eq. (12) is given by 15 real parameters. For a QST measure-
ment set we need five different quantum gates. Therefore, we have overall 75 parameters.
We consider noise caused by the entangling gates while we assume that the single-qubit
gates are error-free and that they can be performed instantly.

4.1.1 QST for two qubits with noisy entangling gates, over- and under-rotation
For the noise of the entangling gate, we include over- and under-rotation where the param-
eters αj,m follow a Gaussian distribution while the entangling gate is switched on, focusing
for now on the Heisenberg interaction. The noise-affected operation can be denoted as
the desired unitary operation followed by the linear positive map in the eigenbasis of Utq

ρ →

⎛

⎜
⎜
⎜
⎝

ρ00 γ1ρ01 γ2ρ02 γ3ρ03

γ1ρ10 ρ11 γ1γ2ρ12 γ1γ3ρ13

γ2ρ20 γ1γ2ρ21 ρ22 γ2γ3ρ23

γ3ρ30 γ1γ3ρ31 γ2γ3ρ32 ρ33

⎞

⎟
⎟
⎟
⎠

(26)

with γj = e–rαjπ . We can express this map by eight Kraus operators

Mmkl =

√
(1 + (–1)mγ1)(1 + (–1)kγ2)(1 + (–1)lγ3)

8

× diag
(
1, (–1)m, (–1)k , (–1)l)

(27)
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for m, k, l ∈ {0, 1}. From the Kraus operators, the average gate fidelity can be directly com-
puted [38]

FHeisenberg
ou =

4 + γ1 + γ2 + γ3 + γ1γ2 + γ1γ3 + γ2γ3

10
. (28)

For a CNOT gate realized by α1 = α3 = 1/2 and α2 = 0, we obtain

FHeisenberg
ou (CNOT) =

1
2

+
2
5

e–rπ/2 +
1

10
e–rπ . (29)

This allows us to compare the noise parameter r from our model to average gate fidelities
of existing implementations of qubit systems.

For the Ising interaction, we obtain, in the Bell basis, a modified map for the effect of
the noise

ρ →

⎛

⎜
⎜
⎜
⎝

ρ00 ρ01γyγz ρ02γxγy ρ03γxγz

ρ10γyγz ρ11 ρ12γxγz ρ13γxγy

ρ20γxγy ρ21γxγz ρ22 ρ23γyγz

ρ30γxγz ρ31γxγy ρ32γyγz ρ33

⎞

⎟
⎟
⎟
⎠

(30)

with γj = e–2r|βj|. This map is represented by the four Kraus operators

Mkl =

√
1+(–1)kγyγz+(–1)lγxγy + (–1)k+lγxγz

4

× diag
(
1, (–1)k , (–1)l, (–1)k+l),

(31)

for k, l ∈ {0, 1}. The averaged gate fidelity is given by

F Ising
ou =

2 + γxγy + γyγz + γxγz

5
. (32)

For the CNOT gate where βz = π/4, we obtain

F Ising
ou (CNOT) =

3
5

+
2
5

e–rπ/2. (33)

Note that the noise does not affect all states of a measurement basis in the same way
as the gate does not entangle each product input state. This means our considerations
from Sect. 2.1 need to be adjusted. While a measurement j in the presence of noise is still
described by a POVM, {Fj1, Fj2, Fj3, Fj4}, Eq. (4) does not hold anymore. However, we can
find projectors P′

jk with k = 1, 2, 3, 4 such that Fjk = qjk(P′
jk – ljk1/d) + ljk1/d, where qjk now

explicitly depends on k, and can be extracted from the Fjk by

qjk =

√
4
3

Tr

[(

Fjk –
1
4

)2]

. (34)

Note that the rank-1 projectors P′
jk do not necessarily form an orthogonal basis. However,

when we select three from each of the five measurements, the volume Q spanned by those
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15 projectors does not depend on the selection of the three out of four basis states. The
noise-affected quality measure is then given by

QN = Q
5∏

j=1

4∏

k=1

q1.195/2
jk , (35)

obtaining the exponent from Eq. (9).

4.1.2 QST for two qubits with noisy entangling gates - depolarizing channel
Depolarization leads to the exponential decay of all of the components of the resulting
density matrices which are not proportional to the identity matrix,

ρ → qjρ + (1 – qj)1/4. (36)

This map is expressed by the Kraus operators

Mkl =
√

1 – qj

4
σk ⊗ σl (37)

for k, l ∈ {0, x, y, z} but (k, l) �= (0, 0) and

M00 =
√

15qj + 1
4

1. (38)

Using again the formalism from [38] this yields an average gate fidelity of

Fd =
1 + 3qj

4
. (39)

The probability to leave the state unchanged by the depolarization is given by

qj = exp

(

–ζπ

3∑

k=1

αjk

)

= c exp

(

–ζ
∑

k=x,y,z

βjk

)

(40)

for the Heisenberg and the Ising interaction respectively, ζ is a measure for how strongly
the noise affects the quantum system. For the CNOT gate we then obtain the average gate
fidelities

FHeisenberg
d (CNOT) =

1
4

+
3
4

e–ζπ (41)

and

F Ising
d (CNOT) =

1
4

+
3
4

e–ζπ/4. (42)

In order to obtain a rough idea of what range the noise level might be in a realistic sce-
nario, we make the strong assumption that the depolarizing channel would describe the
noise in a system correctly. Then, we could extract ζ from experimental estimations of the
average gate fidelity, e.g. the value of FHuang = 0.98 as found for a CNOT-equivalent gate in
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[30], ζHuang = 0.034. Note that the over-and-under-rotation picture as we consider it here
for the Ising interaction cannot directly be related to the results in [30] as the two-qubit
interaction there comes along with a single-qubit rotations.

The considerations from Sect. 2.1 can be applied in a straightforward manner for the
depolarizing channel.

4.1.3 Comparison to entanglement-free QST
We compare a QST quorum including entangling gates to QST without entanglement.
However, there is no informationally complete set of five measurement operators whose
eigenbases include only product states. A standard procedure with separable basis states
only is a set of nine measurements given by all combinations of measuring in the Pauli
x, y, and z bases for the first and the second qubit [39–41]. We simulate quantum mea-
surements and compute the fidelity of reconstruction for the nine measurements without
entanglement and the entanglement-including quorums.

4.2 Numerics: methods
4.2.1 Exploratory analysis
The problem of finding the optimal quorum of projection operators under noise is a non-
convex continuous optimization problem with the derivatives of the function not easily
obtained, and with multiple local maxima. From our previous work [20, 21], we know that
using a local optimizer (Powell’s method) with well-chosen starting points performs very
well. Here, we use the Powell’s derivative free method started in parallel with multiple suf-
ficiently diverse starting points in order to improve the exploration of the search space. In
addition, we used a global optimization approach. Based on the results of the exploratory
analysis and the theoretical considerations in 4.2.5, to discover the optimized quorums for
each noise level, we used a local search approach, with starting point the standard set of
MUBs.

4.2.2 Local search: Powell’s method
Initially, Powell’s method for local search with 500 well chosen starting points was used.
The points were chosen at random, but with the requirement to meet a diversity thresh-
old, where the diversity was evaluated using the angles formed by the traceless parts of the
projection operators. For detail see below. The diversity measure was based on the Jaccard
distance. The distance between two quorums was considered to be the normalized min-
imal Jaccard distance that each projector from a quorum Q1 forms with the projectors
from the quorum Q2 based on the angles formed by the traceless parts of the projection
operators. The chosen diversity measure threshold used for each of the noise models and
interactions is different, based on the distribution of distances between two randomly cho-
sen quorums (the threshold was chosen to be the mean – one standard deviation).

4.2.3 Diversity measure for the local search
In the absence of noise, the quality of a quorum is uniquely determined by the pairwise dot
products of the traceless part Qjk = Pjk – 1/4 of the projection operator Pjk projecting on
the eigenstate k of the measurement operator j, treating the Qjk as vectors in a vector space
with the dot product Tr(QjkQj′k′ ). Thus, a diversity measure based on these dot products
of two quorums is meaningful. Here, we are interested in small levels of noise of up to
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ζ = 0.03 and r = 0.03, for which we know that the effect of the noise levels on the quality
measure QN is small, and distance measure based only on dot products of the Qjk is still
valid.

Then, each quorum is a set of sets, which are the dot products that each Qjk forms with
the other Qj′k′ in the quorum. As a distance measure between two quorums we use the
Jaccard distance [42].

4.2.4 Global optimization: simulated annealing
As a part of the exploratory analysis, we performed global optimization using Simulated
Annealing with appropriately selected parameters, in combination with a local search ap-
proach (Powell’s method). This combination is commonly used with success when solving
an optimization problem with a complicated landscape: the global optimizer is used for
exploration of the search space and locating promising areas, while the local optimizer is
then used for exploitation, i.e. refinement and reaching the closest locally optimal point.

4.2.5 Using the standard set of MUBs as a starting point of the local search
For zero noise, MUBs are known to be the ideal choice for an QST quorum and the noise
penalizes switching on entangling gates. Thus one can expect for small noise the optimal
solutions to be close to the set of MUBs with minimal entangling times. Indeed, many
of the best solutions obtained during the exploratory analysis have entanglement, which
corresponds to two bases with entangled states. There is a known set of MUBs constructed
via the approach presented in [43], known as the standard set of MUBs, where two bases
are with maximally entangled states. Its parametrization using the Heisenberg interactions
is given in Eqs. (21).

Considering the above, we use the standard set of MUBs as starting points for Powell’s
method to find the best optimized solutions for low noise level.

4.3 Running QST on IBM Manila
We used the interface provided by qiskit to execute QST on the IBM Manila quantum
processor as well as the corresponding simulator. Using Pauli bases is the default and read-
ily implemented for the state tomography function in qiskit. We extended the libraries of
qiskit to also perform QST based on MUBs in order to compare the two approaches. Using
the class “CompleteMeasFitter” [44], we corrected the readout error in both cases prior to
reconstruction of the QST being performed. 660 initial states were randomly selected as
pure two-qubit states by first normalizing random Gaussian states in R

4 and then adding
three relative phases randomly chosen from a uniform distribution on the interval [0, 2π ).
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