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Abstract

Metric learning plays an essential role in image analysis and classi“cation, and it has
attracted more and more attention. In this paper, we propose a quantum adversarial
metric learning (QAML) model based on the triplet loss function, where samples are
embedded into the high-dimensional Hilbert space and the optimal metric is
obtained by minimizing the triplet loss function. The QAML model employs
entanglement and interference to build superposition states for triplet samples so
that only one parameterized quantum circuit is needed to calculate sample distances,
which reduces the demand for quantum resources. Considering the QAML model is
fragile to adversarial attacks, an adversarial sample generation strategy is designed
based on the quantum gradient ascent method, e�ectively improving the robustness
against the functional adversarial attack. Simulation results show that the QAML
model can e�ectively distinguish samples of MNIST and Iris datasets and has higher
� -robustness accuracy over the general quantum metric learning. The QAML model is
a fundamental research problem of machine learning. As a subroutine of classi“cation
and clustering tasks, the QAML model opens an avenue for exploring quantum
advantages in machine learning.

Keywords: Metric learning; Hybrid quantum-classical algorithm; Quantum machine
learning

1 Introduction
Machine learning has developed rapidly in recent years and is widely used in arti“cial

intelligence and big data “elds. Quantum computing can e�ciently process data in ex-

ponentially sizeable Hilbert space and is expected to achieve dramatic speedups in solv-

ing some classical computational problems. Quantum machine learning, as the interplay

between machine learning and quantum physics, brings unprecedented promise to both

disciplines. On the one hand, machine learning methods have been extended to quantum

world and applied to the data analysis in quantum physics [1]. On the other hand, quantum

machine learning exploits quantum properties, such as entanglement and superposition,

to revolutionize classical machine learning algorithms and achieves computational advan-

tages over classical algorithms [2]. Metric Learning is the core problem of some machine

learning tasks [3], such ask-nearest neighbor, support vector machines, radial basis func-

tion networks, andk-means clustering. Its core work is to construct an appropriate dis-
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tance metric that maximizes the similarities of samples of the same class and minimizes

the similarities of samples from di�erent classes. Linear and nonlinear methods can be

used to implement metric learning. In general, linear models have a limited number of pa-

rameters and are unsuitable for characterizing high-order features of samples. Recently,

neural networks have been adopted to establish nonlinear metric learning models, and

promising results have been achieved in face recognition and feature matching.

Classical metric learning models usually extract low-dimensional representations of

samples, which will lose some details of samples. Quantum states are in high-dimensional

Hilbert spaces, and their dimensions grow exponentially with the number of qubits. This

quantum enables quantum models to learn high-dimensional representations of samples

without explicitly invoking a kernel function. A parameterized quantum circuit is used to

map samples in high-dimensional Hilbert space. The optimal metric model is obtained

by optimizing the loss function based on Hilbert…Schmidt distances. With the increase of

the dimension, this speed-up advantage will become more and more pronounced, and it is

expected to achieve exponential growth in computing speeds. In recent years, researchers

began to study how to adopt quantum methods to implement metric learning. Lloyd [4]

“rstly proposed a quantum metric learning model based on hybrid quantum-classical al-

gorithms. A parameterized quantum circuit is used to map samples in high-dimensional

Hilbert space. The optimal metric model is obtained by optimizing the loss function based

on Hilbert…Schmidt distances. This model achieves better e�ects in classi“cation tasks.

Nhat [5] introduced quantum explicit and implicit metric learning approaches from the

perspective of whether the target space is known or not. The research establishes the rela-

tionship between quantum metric learning and other quantum supervised learning mod-

els. The above two algorithms mainly focus on classi“cation tasks. Metric learning is a

fundamental problem in machine learning, which can be applied not only to classi“cation

but also to clustering, face recognition, and other issues. In our research, we are devoted

to constructing a quantum metric learning model that can serve various machine learning

tasks.

Angular distance is a vital metric that quanti“es the included angle between normalized

samples [6]. Angular distance focuses on the di�erence in the direction of samples and is

more robust to the variation of local feature [7]. Considering the similarities between an-

gular distances of classical data and inner products of quantum states, we design a quan-

tum adversarial metric learning (QAML) model based on inner product distances, which

is more suitable for image-related tasks. Unlike other quantum metric learning models, the

QAML model maps samples from di�erent classes into quantum superposition states and

utilizes simple interface circuits to compute metric distances for multiple sample pairs in

parallel. Furthermore, quantum systems in high-dimensional Hilbert space have counter-

intuitive geometrical properties [8]. The QAML model using only natural samples is vul-

nerable to adversarial attacks, under which some samples are closer to the false class, so the

model is easy to make wrong judgements [9]. To solve this issue, we construct adversarial

samples based on natural samples. The model•s robustness is improved by the alterna-

tive train of natural and adversarial samples. Our work has two main contributions:(i) We

explore a quantum method to compute the triplet loss function, which utilizes quantum

superposition states to calculate sample distances in parallel and reduce the demand for

quantum resources. (ii) We design an adversarial samples generation strategy based on

the quantum gradient ascent, and the robustness of the QAML model is signi“cantly im-
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Figure 1 Sample space change in metric learning process. Before metric learning, the distances between
negative sample pairs are smaller, and samples from di�erent classes are di�cult to separate by linear
functions. After metric learning, the distances between negative sample pairs become larger, and a large
margin separates samples from di�erent classes. Linear functions can easily separate positive and negative
samples

proved by alternatively training generated adversarial samples and natural samples. Sim-
ulation results show that the QAML model separates samples by a larger margin and has
better robustness for functional adversarial attacks than general quantum metric learning
models.

The paper is organized as follows. Section2gives the basic method of the QAML model.
Section3 veri“es the performances of the QAML model. Finally, we get a conclusion and
discuss the future research directions.

2 Quantum adversarial metric learning
2.1 Preliminary theory
Triplet loss function is a widely used strategy for metric learning [10], commonly used
in image retrieval and face recognition. A triplet set (xa

i ,xp
i ,xn

i ) consists of three samples
from two classes, where anchor samplexa

i and positive samplexp
i belong to the same class,

and negative samplexn
i comes from another class. The goal of metric learning based on

triplet loss function is to “nd the optimal embedded representation space, in which posi-
tive sample pairs (xa

i ,xp
i ) are pulled together and negative sample pairs (xa

i ,xn
i ) are pushed

away. Figure1 shows sample space change in the metric learning process. As we can see,
samples from di�erent classes become linearly separable through metric learning. Figure2
shows the schematic of the metric learning model based on triplet loss function. Firstly,
the model prepares multiple triplet sets, and one triplet set (xa

i ,xp
i ,xn

i ) is sent to convolu-
tional neural networks (CNN), where threeCNN with the same structure and parameters
are needed. Each CNN acts on one sample of the triplet set to extract its features. The
triplet loss function is obtained by computing metric distances for multiple sample pairs
of triplet sets. In the learning process, the optimal parameters of CNN are obtained by
minimizing the triplet loss function.

Let one batch samples includeN1 triplet sets. The triplet loss function is

L =
1

N1

N1∑

i=1

[
D

(
g
(
xa

i

)
,g

(
xp

i

))
…D

(
g
(
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i

)
,g

(
xn

i

))
+ µ

]
+, (1)

whereg(·) represents the function mapping input samples to the embedded representation
space,D(·, ·) denotes the distance between a sample pair in the embedded representation



Hou et al.EPJ Quantum Technology          (2023) 10:24 Page 4 of 16

Figure 2 The schematic of the metric learning model based on triplet loss function. A triplet set includes an
anchor sample, a positive sample, and a negative sample. The input consists of a batch of triplet sets, and only
one triplet set serves as input in each iteration. Three CNN with the same structure and parameters are used
to map the triplet set into the embedded representation space. CNN, consisting of multiple convolutions,
pooling, and fully connected layers, is responsible for extracting the features of samples. The triplet loss
function is further constructed based on the extracted features

space, and [·, ·]+ = max(0,·) represents the hinge loss function. The goal of metric learning

is to learn a metric that makes the distances between negative sample pairs greater than

the distance between the corresponding positive sample pairs and satis“es the speci“ed

margin µ ∈ R
+. In the triplet loss function, D(g(xa

i ),g(xp
i )) penalizes the positive sample

pair (xa
i ,xp

i ) that is too far apart, andD(g(xa
i ),g(xn

i )) penalizes the negative sample pair

(xa
i ,xp

i ) whose distance is less than the marginµ .

Metric learning can adopt various distance metric methods. Angular distance metric

is robust to image illumination and contrast variation [11], which is an e�cient way for

metric learning tasks. In this method, samples need to be normalized to unit vectors in

advance. The distance between a positive sample pair is

D
(
g
(
xa

i

)
,g

(
xp

i

))
= 1 …

|g(xa
i ) · g(xp

i )|
‖g(xa

i )‖2‖g(xp
i )‖2

, (2)

where| · | and‖ · ‖2 representl1-norm and l2-norm, respectively, and· denotes the inner

product operation for two vectors. The distance between negative sample pairs can be

calculated in the same way.

2.2 Framework of quantum metric learning model
For most machine learning tasks, it is often challenging to adopt simple linear functions to

distinguish samples of di�erent classes. According to kernel theory [12], samples in high-

dimensional feature space have better distinguishability. Classical machine learning algo-

rithms usually adopt kernel methods to map samples to high-dimensional feature space,
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where the mapped samples can be separated by simple linear functions. Quantum states

with n-qubits are in 2n-dimensional Hilbert space, where quantum systems characterize

the nonlinear features of data and e�ciently process data through a series of linear unitary

operations.

In the QAML model, samples should be “rstly mapped into quantum systems by qubit

encoding. The Hilbert space after encoding usually does not correspond to the optimal

space for separating samples of di�erent classes. To search for the optimal Hilbert space,

the QAML model performs parameterized quantum circuitsW(� ) on the encoded states

[13]. As di�erent variable parameters� correspond to di�erent mapping spaces, we can

search the optimal space by modifying parameters� = (� 1
1 , . . . ,� j

i ). As long asW(� ) has

strong expressivity, we can “nd the optimal Hilbert space by optimizing the loss function

of metric learning [14, 15]. W(� ) with di�erent structures and layers have di�erent ex-

pressivity. The more layersW(� ) has, the stronger the expressivity, and the easier it is to

“nd the optimal metric space.

The classical metric learning model based on triplet loss function requires three iden-

tical CNN to map triplet sets (xa
i ,xp

i ,xn
i ) into the novel Hilbert space. To reduce the de-

mand for quantum resources, we construct a quantum superposition state to represent

one triplet set so that a triplet set only needs oneW(� ) to transform it into Hilbert space.

The core work of the building loss function is to compute inner products between sam-

ple pairs, butW(� ) and subsequent conjugate operationW †(� ) counteract each other•s

e�ects. To solve this issue, we add a repeated encoding operation afterW(� ). It is worth

mentioning that the repeated encoding operation is also conducive to the construction of

high-dimensional features of samples.

The QAML model is mathematically represented as the minimization of the loss func-

tion with respect to the parameters� . The triplet loss function consists of metric dis-

tances for positive and negative sample pairs, so the kernel work of the QAML model is

constructing the metric distances for sample pairs in the transformed Hilbert space. The

mapping samplesh(xa
i )/‖h(xa

i )‖2 andh(xp
i )/‖h(xp

i )‖2 of Eq. (2) are replaced by the quantum

states ofxa
i and xp

i , then the second term of Eq. (2) is converted to the inner product be-

tween quantum states of the positive sample pair (xa
i ,xp

i ), which can be got by the method

of the Hadamard classi“er [12]. The triplet loss function can be viewed as the weighted

sum of the inner product of sample pairs (xa
i ,xp

i ) and the inner product of sample pairs

(xa
i ,xn

i ). With the help of ancilla registers, the triplet set can be prepared in superposition

states form. According to the entanglement property of superposition states, the triplet

loss function can be implemented with one parameterized quantum circuit. Then, the

triplet loss function value is transmitted to a classical optimizer, and parameters are op-

timized until the optimal metric is obtained. The QAML model constructs adversarial

samples according to the gradient of natural samples and trains alternatively natural and

adversarial samples to improve the model•s robustness against adversarial attacks. The

schematic of the QAML model is shown in Fig.3.

2.3 Quantum embedding
In the QAML model, classical samples are “rstly mapped into quantum states by qubit en-

coding, where each element is encoded as a Pauli rotation angle of one qubit. The number

of qubits required by qubit encoding is equivalent to the dimension of the input sample.

Still, the dimension of one quantum state grows exponentially with the input dimension,
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Figure 3 Overview of quantum adversarial metric learning (QAML) model. Panel (a) shows the framework of
quantum adversarial metric learning.Reg.s is the sample register that stores triplet sets, andReg.1 andReg.2
are ancilla registers used distinguishing di�erent samples. The model “rstly adopts principal component
analysis (PCA) to reduce the input dimension. Subsequently, anchor, negative and positive samples are
encoded into a quantum superposition state by controlled qubit encoding. The transformation of Hilbert
space is implemented by parameterized quantum circuitW(� ) and the subsequent qubit encodingU1(xi).
Finally, Hadamard and measurement operations act on ancilla registers to simultaneously compute the inner
products for the positive and negative sample pairs, and the triplet loss function is further obtained. In each
iteration, the parameters� are updated by optimizing the triplet loss function with a classical optimizer. Panel
(b) shows the quantum dimension reduction circuit to reduce the number of output qubits. In each module,
only one qubit is measured, and the controlled unitary based on its measurement result acts on another
qubit. Panel (c) shows another case of the QAML model, where adversarial samples are built and added to the
training process.V ′(� ∇a

i ) is the unitary operation based on the gradient of anchor samplexai and acts on the
encoded quantum states to produce its adversarial sample. In the QAML model training process, natural and
adversarial samples alternatively serve as input

and N-dimensional samples will be mapped to 2N -dimensional Hilbert space. The qubit

encoding method cannot use logarithm qubits of the input sample dimension to repre-

sent classical samples. However, easy state preparation and low circuit depth make qubit

encoding more suitable for implementation on near-term quantum devices.

Samples in practical applications are usually in real space. ApplyingRX andRZ rotations

on quantum states would introduce imaginary terms, so the QAML model adoptsRY ro-

tation to prepare the initial mapped states, where classical samples determine the rotation

angles of qubits. Letxj
i denote thejth element of the samplexi scaling to the range […1,1],

and its corresponding qubit encoding is

∣∣�
(
xj

i

)〉
= cos

(
�
2

xj
i

)
|0〉 + sin

(
�
2

xj
i

)
|1〉. (3)
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Then, the qubit encoding ofxi corresponds to the tensor product state

|� i〉 =
∣∣�

(
x1

i

)〉 ⊗ ∣∣�
(
x2

i

)〉 ⊗ · · · ⊗ ∣∣�
(
xN

i

)〉
. (4)

In the QAML model, the parameterized quantum circuit is responsible for transforming

the Hilbert space of samples. The variable parameters are continuously optimized in itera-

tions to obtain the optimal Hilbert space for separating samples of di�erent classes. Param-

eterized quantum circuit, also called ansatz, generally adopts a multi-layer circuit struc-

ture, where each layer contains a series of unitary operations depending on variable pa-

rameters. Ansatz can embed samples into the Hilbert space that classical metric learning

methods cannot represent. Hardware-e�cient ansatz, one of the common ansatzes, has

strong expressivity with fewer layers [16], and it is widely applied in Noisy Intermediate-

Scale Quantum (NISQ) devices. Hardware-e�cient ansatz adopts a layered circuit layout

[17], where each layer consists of interleaved 2-qubits unitary modules. LetW k
ij (� ) denote

the unitary module acting on the neighboring qubit pair (i, j) in the kth layer. The unitary

operation in thekth layer can be written as

W k(� ) =
∏

i∈N1

W k
i,(i+1)(� )

∏

j∈N2

W k
j,(j+1)(� ), (5)

whereN1 and N2 represent the odd and even subsets of [0,N … 1]. Forl1-layer structure,

the ansatz can be written asW(� ) =
∏l1

k=1 W k(� ).

The dimension of the mapping quantum state is exponential in the input dimension. As

the input dimension increases, the dimension of the mapping quantum states will be much

larger than the input dimension. In some machine learning tasks, the QAML model may

be expected to have a smaller output dimension to facilitate subsequent subroutine execu-

tion, the QAML model needs to add some unitary models to adjust the output dimension.

A primary strategy is to add dimension reduction operation following the repeated encod-

ing layerU1(xi ) to reduce the output dimension [18]. The dimension reduction operation

is shown in Fig.3(b). Firstly, alternating 2-qubit unitary modules act on two neighboring

qubits to entangle the mapping features. Then, one qubit of each module is measured, and

the measurement result is used to control the unitary operation acting on another qubit.

Let Qk
ij = tri (Pk

ij ) denote the operation acting on the (i, j) qubit pair in the kth layer, wheretri

represents the partial operation on theith qubit. Pk
ij = |0〉〈0| ⊗ P0

ij + |1〉〈1| ⊗ P1
ij is the con-

trolled unitary, which represents to perform single-qubit unitaryP0
ij or P1

ij on the second

register according to the measurement result of the “rst qubit, thenQk =
∏

i,j Q
k
ij repre-

sent the dimension reduction operation of thekth layer. Assume the dimension reduction

operation includesl2 layers, and the output state can be reduced to 2N/(2l2)-dimensional

Hilbert space.

Classical metric learning based on triplet loss function needs three identical CNN to

extract the features of the triplet set (xa
i ,xp

i ,xn
i ). To reduce the requirement of parameter-

ized quantum circuits, the QAML model encodes the triplet set on two-qubit basis, then

interferes with positive and negative sample pairs by a Hadamard gate. The inner products

for the positive and negative sample pair are got in parallel by measuring the expectation

of � z observables with respect to 2 qubits of basis state. Let|� a
i 〉, |� p

i 〉, and|� n
i 〉 represent

the states of anchor samplexa
i , positive samplexp

i , and negative samplexn
i , respectively.
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Firstly, the QAML model prepares a superposition state

|� i〉 =
1
2

∣∣� a
i

〉
s|0〉1|0〉2 +

1
2

∣∣� a
i

〉
s|1〉1|0〉2 +

1
2

∣∣� n
i

〉
s|0〉1|1〉2 +

1
2

∣∣� p
i

〉
s|1〉1|1〉2 (6)

for the triplet set (xa
i ,xp

i ,xn
i ), wheresis sample register, and 1 and 2 denote ancilla registers

for basis states. Metric learning based on triplet loss function requires a speci“c margin
between the samples of di�erent classes. To construct the margin, we replace|� n

i 〉s|0〉1|1〉2

with

∣∣� n
i

〉
s|0〉1

(
�√

� 2 + 1
|0〉2 +

1√
� 2 + 1

|1〉2

)
(7)

and |� p
i 〉s|1〉1|1〉2 with

∣∣� p
i

〉
s|1〉1

(
…

�√
� 2 + 1

|0〉2 +
1√

� 2 + 1
|1〉2

)
, (8)

where� is the parameter determining the margin.|� a
i 〉, |� p

i 〉, and |� n
i 〉 may not be in the

optimal Hilbert space for separating samples of di�erent classes. Then, the parameterized
quantum circuit W(� )s⊗ I1 ⊗ I2 acts on|� i〉, whereI1 andI2 denote the identity operations
acting on ancilla registers 1 and 2, andW(� )s represents the ansatz acting on the sample
registers. The system gets the state

∣∣� ′
i

〉
=

√
2� 2 + 1

2
√

� 2 + 1

∣∣� 00
i

〉
s|0〉1|0〉2 +

√
2� 2 + 1

2
√

� 2 + 1

∣∣� 10
i

〉
s|1〉1|0〉2

+
1

2
√

� 2 + 1

∣∣� 01
i

〉
s|0〉1|1〉2 +

1

2
√

� 2 + 1

∣∣� 11
i

〉
s|1〉1|1〉2,

(9)

where|� 00
i 〉s = W(� )s(

√
� 2+1√
2� 2+1

|� a
i 〉s+ �√

2� 2+1
|� n

i 〉s), |� 10
i 〉s = W(� )s(

√
� 2+1√
2� 2+1

|� a
i 〉s… �√

2� 2+1
|� p

i 〉s),
|� 01

i 〉s = W(� )s|� n
i 〉s, |� 11

i 〉s = W(� )s|� p
i 〉s.

As W(� )sW †(� )s = I , the inner product acting on the state pairs|� 00
i 〉 and |� 01

i 〉 or |� 10
i 〉

and |� 11
i 〉 will counteract the e�ect of W(� ) andW †(� ). An e�ective strategy is to perform

the repeated encoding operationU1(xi ) on |� ′
i 〉, which not only solves the problem of the

unitary operation and its conjugate operation counteracting each other� e�ects in the in-
ner product calculation process but also extends the addressable Hilbert space. After the
repeated encoding operationU1(xi ), the system gets the state

∣∣� ′
i

〉
=

√
2� 2 + 1

2
√

� 2 + 1

∣∣� 00′
i

〉
s|0〉1|0〉2 +

√
2� 2 + 1

2
√

� 2 + 1

∣∣� 10′
i

〉
s|1〉1|0〉2

+
1

2
√

� 2 + 1

∣∣� 01′
i

〉
s|0〉1|1〉2 +

1

2
√

� 2 + 1

∣∣� 11′
i

〉
s|1〉1|1〉2,

(10)

where |� 00′
i 〉s = U1(xi )|� 00

i 〉s, |� 10′
i 〉s = U1(xi )|� 10

i 〉s, |� 01′
i 〉s = U1(xi )|� 01

i 〉s and |� 11′
i 〉s =

U1(xi )|� 11
i 〉s.

2.4 Triplet loss function
A simple method of computing inner products between sample pairs is the Hadamard
classi“er method [12]. In this method, two samples are “rstly projected into orthogonal
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subspaces, spanned by standard basis states of one ancilla register. Then, a Hadamard gate

acts on the standard basis states to interfere with two samples in the 2-dimensional sub-

spaces. Finally, the inner product between two samples is got by measuring the expectation

value of� z for the ancilla register. The triplet loss function, consisting of inner products for

positive and negative sample pairs, needs to compute the weighted sum of inner products

for sample pairs, where the weight of positive sample pairs is +1, and the weight of negative

sample pairs is …1. The states of the triplet sets have been prepared on the two-qubit stan-

dard basis, shown in Eq. (10). The QAML model consists of two ancilla registers, Ancilla

register 2 is used to build the inner products of sample pairs. The QAML model adopts

one Hadamard gate acting on ancilla register 2 to interfere with sample pairs. If only the

expectation of the observable� z for the ancilla register 2 is measured, the QAML model

will get the sum of the inner products for positive and negative sample pairs. The QAML

model adds another register (Ancilla register 1) to distinguish between di�erent sample

pairs, and measuring the expectation with respect to the� z operator can get the weights

of sample pairs. So the QAML model not only measures the expectation of the observable

� z with respect to ancilla registers 1 but also the expectation for ancilla registers 2. The

expectation on two ancilla registers is

〈
� 1

z , � 2
z

〉
=

√
2� 2 + 1

4
√

� 2 + 1

〈
� 00′

i |� 01′
i

〉
…

√
2� 2 + 1

4
√

� 2 + 1

〈
� 10′

i |� 11′
i

〉

=
1

4
√

� 2 + 1

(〈
� n

i

∣∣W †(� )U†
1

(
xn

i

)
U1

(
xa

i

)
W(� )

∣∣� a
i

〉

…
〈
� p

i

∣∣W †(� )U†
1

(
xp

i

)
U1

(
xa

i

)
W(� )

∣∣� a
i

〉
…

�√
� 2 + 1

)
,

(11)

where �√
� 2+1

represents the margin for separating positive and negative samples. With the

help of classical computation, one gets the triplet loss function

Ll
(
� ,

∣∣� a
i

〉
,
∣∣� p

i

〉
,
∣∣� n

i

〉)
=

[
0,4

√
� 2 + 1

〈
� 1

z , � 2
z

〉]
+. (12)

In practical applications, one batch of samples may contain multiple triplet sets, so the

QAML model needs to add a index register to distinguish di�erent triplet sets. Let one

batch of samples includem triple sets. |� a
i 〉s, |� p

i 〉s and |� n
i 〉s of Eq. (6) are replaced by

the superposition states|�̃ a
i 〉s,d = 1√

m	 (i+1)m…1
j=im |� a

j 〉s|j〉d, |�̃ p′
i 〉s,d = 1√

m	 (i+1)m…1
j=im |� p

j 〉s|j〉d, and

|�̃ n′
i 〉s,d = 1√

m	 (i+1)m…1
j=im |� n

j 〉s|j〉d to construct the loss function for this batch, where the sub-

script d denotes the index register. The QAML model performs Eq. (10)…(12) and yields

the expectation value of the observable� z with respect to ancilla register 1 and 2 as

〈
� 1

z , � 2
z

〉
= …

1

4m(
√

� 2 + 1)

m∑

i=1

(〈
� n′

i

∣∣W †(� )U†
1

(
xn

i

)
U1

(
xa

i

)
W(� )

∣∣� a′
i

〉

…
〈
� p′

i

∣∣W †(� )U†
1

(
xp

i

)
U1

(
xa

i

)
W(� )

∣∣� a′
i

〉
…

�√
� 2 + 1

)
,

(13)

which corresponds to the weighted sum of the inner products for one batch samples.
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2.5 Adversarial samples generation
Metric learning is vulnerable to adversarial attacks. Attackers usually adopt adding small

and imperceptible perturbations on natural samples to generate adversarial samples for

deceiving metric learning models. Adversarial attacks make metric learning models un-

able to accurately distinguish positive and negative samples and give rise to misclassi“ca-

tion. Miyato [19] proposed an adversarial training method, where ambiguous but critical

adversarial samples are generated based on the gradients of natural samples and added to

the training set [8]. This method e�ectively “ghts against white-box attacks and improves

the robustness of the model. Inspired by this method, we developed a quantum adversar-

ial samples generation method. Considering the e�ciency of the triplet loss function, we

do not create adversarial samples corresponding to all natural samples. Anchor samples

in the triplet loss function are used twice to compute the inner products of positive and

negative sample pairs. The adversarial samples corresponding to anchor samples can pro-

vide more valuable information for adversarial training, so the QAML model only build

adversarial samples corresponding to anchor samples.

Let |� ∗
a〉 denote the adversarial sample corresponding to the anchor sample|� a〉. Ac-

cording to the characteristics of adversarial attacks,|� ∗
a〉 is far from the positive sample

|� p〉 but close to the negative sample|� ∗
n〉, and this characteristic makes the QAML model

hard to build accurate metric distances. According to Ref [20], adversarial attacks gen-

erated along the direction of gradient ascent will produce the strongest disturbance to

metric learning, so we develop a quantum gradient ascent method to generate adver-

sarial samples. Let�a
i = ((�a

i )1, (�a
i )2, . . . , (�a

i )N ) denote the gradient vector of the loss

function Ll (� , |� a
i 〉, |� p

i 〉, |� n
i 〉) with respect to the anchor sample|� a

i 〉, where the element

(�a
i )j = 
 (Ll (� , |� a

i 〉, |� p
i 〉, |� n

i 〉))/
 (|� a
i 〉j ) is the partial derivation of the loss function with

respect to thejth element of|� a
i 〉.

The QAML model may encounter many attacks. One of the common attacks is the

white-box attack, under which the attackers have complete information about the QAML

model, including the loss function implemented by parameterized quantum circuit, so that

they can compute the gradients of the loss function with respect to gate parameters. Let

the QAML model su�er from the functional adversarial attack [21] (one kind of white-box

attacks), under which each element of quantum states is in”uenced by the attack indepen-

dently. According to the idea of gradient ascent, the adversarial anchor sample|� i∗
a 〉 can

be written as

∣∣� a∗
i

〉
=

1√
1 + � 2‖ �a

i ‖2
2

(∣∣� a
i

〉
+ � �a

i

∣∣� a
i

〉)
, (14)

where � = (� 1, � 2, . . . ,� N ) is a constant vector used to control the disturbance within a

speci“ed bound. Usually,� is determined by the problem to be solved and its upper bound

is ‖� ‖p ≤ � , where‖ · ‖p denoteslp-norm.

Let V(� ∇a
i ) = v(� 1(∇a

i )1) ⊗ · · · ⊗ v(� N (∇a
i )N ) denote the unitary acting on the anchor

sample|� a
i 〉 to generate the adversarial sample|� a∗

i 〉, wherev(� j(∇a
i )j) represents the uni-

tary operation acting on thejth element of |� a
i 〉. It is expected thatv(� j(∇a

i )j) has small

impact on the state|� a
i 〉, soV(� ∇a

i ) is close to the identity operatorI . v(� j(∇a
i )j) can be
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implemented by the rotation operation

Ry(2� ) =

[
cos(� ), …sin(� )

sin(� ), cos(� )

]
, (15)

where� = arccos(1+� j(∇a
i )j). As the QAML model only adopts anchor samples to generate

adversarial samples, we de“ne the unitary operation to generate adversarial sample as

V ′(� ∇a
i

)
= V

(
� ∇a

i

)
s ⊗ I1 ⊗

0∏

2

+Is ⊗ I1 ⊗
1∏

2

, (16)

whereV(� ∇a
i ) acts on the sample registersonly when the ancilla register 2 is|0〉, andIs and

I1 mean the identity unitaryI acting on registerss and 1, respectively. Figure3(c) shows

the schematic of generating adversarial samples, whereU ′
1(xa

i ) = V ′(� ∇a
i )U1(xa

i ) replaces

U1(xa
i ) to generate the adversarial sample|� a∗

i 〉. In the QAML training process, the param-

eters� are optimized by alternatively minimizing the loss functionLl (� , |xa
i 〉, |xp

i 〉, |xn
i 〉) and

Ll (� , |xa∗
i 〉, |xp

i 〉, |xn
i 〉), where natural and adversarial samples are respectively served as in-

put.

The core work of generating adversarial samples is to compute the partial deviation

(∇a
i )j . Many methods can be adopted to calculate (∇a

i )j , such as the “nite di�erence scheme

and parameter shift rule [22…24]. The parameter shift rule has faster convergence in the

training process, making it more suitable for NISQ devices. (∇a
i )j is evaluated using the

parameter shift rule


 (Ll
(
� ,

∣∣xa
i

〉
,
∣∣xp

i

〉
,
∣∣xn

i

〉)
/ 


((
xa

i

)j)

=
1
2

(
Ll

(
� ,

∣∣xa+
i,j

〉
,
∣∣xp

i

〉
,
∣∣xn

i

〉)
…Ll

(
� ,

∣∣xa…
i,j

〉
,
∣∣xp

i

〉
,
∣∣xn

i

〉))
,

(17)

wherexa±
i,j = xa

i ± �
2 ej , andej is the unit vector with only the jth qubit being 1. According

to Eq. (17), one partial derivative can be got by evaluating the loss function twice.

3 Numerical simulations and discussions
In this section, we adopt the PennyLane software framework [25] to demonstrate the per-

formances of the QAML model. The QAML model is implemented by a hybrid quantum-

classical algorithm, where the quantum device and classical optimizer cooperate to im-

plement parameter optimization. RMSProp [26] optimizer serves as a classical optimizer

with a learning rate of 0.01. Our “rst work is to demonstrate the performance of the QAML

model on the MNIST dataset, consisting of 28×28-dimensional grayscale images of hand-

written digits 0 ∼ 9. The QAML model focuses on binary classi“cation tasks, so only two

categories of handwritten digits, •0• and •1•, are chosen to form data sets. As NISQ de-

vices have limited circuit depth and qubits, the QAML model “rst reduces samples into

2-dimensional vectors using the principal component analysis (PCA) method. The train-

ing and test sets contain 100 samples, respectively, where 50 samples are from class •0• and

50 samples come from class •1•.

Figure4 shows the distributions of test samples in the Hilbert space. Simulation results

show that samples from di�erent classes are pushed apart with a larger margin and become
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Figure 4 The distributions of samples in the Hilbert space. •star• denotes samples from class •0•, and •circle•
represent samples from class •1•. Panel (a) shows the distribution of samples before performing the QAML
model. Panel (b) shows the distribution of samples after completing the QAML model

Figure 5 The inner products between test sample pairs of MNIST. The horizontal and vertical axes represent
the indexes of samples. Indexes 0-49 denote the samples from class •0•, and indexes 50-99 represent the
samples from class •1•. Panel (a) shows the inner products between all sample pairs before performing the
QML model, also corresponding to the inner products before performing the QAML model. Panel (b) shows
the inner products of test sample pairs, where the QML model is trained through 1000 training epochs but
adversarial samples are not added to the training set. Panel (c) shows the inner products of test sample pairs
after 1000 training epochs, where adversarial samples are added to the training set

linearly separable after performing the QAML model. Figure5 (colorbar “gure) shows

the inner products between test sample pairs (the larger the inner product, the smaller

the distance). The QAML model without adding adversarial samples can be viewed as

the general quantum metric learning model, named as the QML model. Panel (a) shows

the inner products of sample pairs before performing the QML or QAML models. Panel

(b) shows the inner products of sample pairs after performing the QML model, where

the training set only includes natural samples. Panel (c) denotes the inner products of

sample pairs after completing the QAML model, where the training set consists of natural

and adversarial samples. Before training, the inner products for sample pairs of the same

and di�erent classes have little di�erence. This phenomenon means that samples from

di�erent categories are close to each other and are di�cult to separate. After performing

the QML model, the inner products for negative sample pairs become smaller (close to 0),

indicating that the distances between samples from di�erent categories begin to get larger.

After performing the QAML model, the inner products for negative sample pairs are going

to …1, smaller than the values obtained through the QML model. This result indicates that

the distance between samples of di�erent categories after executing the QAML model

is greater than that after executing the QML model. Letdi represent the average inner

product of all sample pairs from the same class, shown in Table1. do denotes the average

inner product of all sample pairs from di�erent classes, o�ered in Table2. The result shows

that the average inner productdo in the case of adding adversarial samples is smaller than
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Table 1 The average inner productsdi of sample pairs from the same class (MNIST dataset). The “rst
row describes the average inner products for sample pairs before training, and the second row
depicts the inner products for sample pairs after training. The “rst two columns represent the
average inner products for training and test sample pairs, respectively, where adversarial samples are
not added to the training set. The last column represent the average inner products for training and
test sample pairs, respectively, where adversarial samples are added to the training set

Samples Training Test Training+adv Test+adv

Before 0.8280 0.8168 0.8280 0.8168
After 0.8348 0.8021 0.8537 0.8249

Table 2 The average inner productsdo of sample pairs from di�erent classes (MNIST dataset). The
description of rows and columns is the same as Table1

Samples Training Test Training+adv Test+adv

Before 0.3040 0.4787 0.3040 0.4787
After …0.7971 …0.6968 …0.8326 …0.7696

that without adversarial samples, regardless of training or test sets. This result also means

that the QAML model can obtain a larger separation margin than the QML model. We

also can “nd that the average inner productdo for test and training samples have little

di�erences, indicating that the QAML model has a good generalization for the unseen

test data.

To further verify the separation e�ects for other data sets, we simulate the performances

of the QML and QAML models on Iris dataset. Iris dataset contains 150 samples with 4-

dimensional features, where samples 0∼ 49 belong to class 1, samples 50∼ 99 belong

to class 2, and samples 100∼ 149 belong to class 3. Samples from classes 2 and 3 are

di�cult to separate by simple linear functions, so we select them to build a binary data set,

where 30 samples of each category are used to construct the training set, and the other

20 samples are served as the test set. Figure6 shows the average inner products of test

sample pairs for Iris dataset. Panels (a), (b), and (c) show the inner products for test sample

pairs before performing the QML or QAML model, after performing the QML model,

and after performing the QAML model, respectively. Simulation results show that the

QAML model also has good separation e�ects on Iris dataset, superior to the QML model.

Tables3 and 4 show the average inner productsdi and do for Iris dataset, respectively.

Simulation results show that alldi have similar values, indicating that the sample from

the same class has relatively stable distances regardless of whether performing the QAML

model. Before performing the QML or QAML model,do has a larger value, which means

that samples from di�erent classes are close to each other and are di�cult to separate.

After performing the QML and QAML models, the average inner productsdo get smaller

values, wheredo of the QAML model has smaller values than that of the QML model. We

can “nd that the QAML model yields a better separation e�ect than the QML model, and

the conclusion is consistent with that got based on MNIST dataset.

Furthermore, we prove the robustness of the QAML model based on the� -robust accu-

racy proposed in Ref. [27]. Given a test sample setS and a smaller threshold� . Let 
 ∈ S
represent the quantum state of a test sample ofS . If 
 and another state� belong to dif-

ferent classes and the inner product between them is larger than the threshold� , then �

is viewed as the adversarial sample of
 . If 
 has no adversarial samples within� , 
 is � -

robust state. Letµ � denote the� -robust accuracy ofS , which is equal to the proportion
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Figure 6 The inner products for sample pairs of Iris dataset. Indexes 0-19 denote test samples from class 2,
and indexes 20-39 represent test samples from class 3. Panel (a) shows the inner products of test sample pairs
before performing the QML (QAML) model. Panel (b) shows the inner product of test sample pairs after
performing the QML model. Panel (c) shows the inner products of test sample pairs after performing the
QAML model

Table 3 The average inner productsdi of samples from the same class (Iris dataset). The description
of rows and columns is the same as Table1

Samples Training Test Training+adv Test+adv

Before 0.5065 0.5909 0.5065 0.5909
After 0.5473 0.6109 0.5549 0.6544

Table 4 The average inner productsdo of samples from di�erent classes (Iris dataset). The
description of rows and columns is the same as Table1

Samples Training Test Training+adv Test+adv

Before 0.3377 0.4787 0.3377 0.4787
After …0.6314 …0.3424 …0.6752 …0.4653

of � -robust states of the sample setS . Let the threshold be� = 0.05. The� -robust accu-

racies of the QML and QAML models in MNIST dataset are 97% and 99%, respectively.

The � -robust accuracies of the QML and QAML models on Iris dataset are 95% and 98%,

respectively. Compared with the QML model, the QAML model improves the robustness

by adding the adversarial samples to the training set.

4 Conclusions and future work
Metric learning is a fundamental research problem in machine learning. Inspired by the

work in Ref [4], we design a quantum adversarial metric learning (QAML) model based

on inner products between mapped sample pairs. This model is not designed for speci“c

machine learning tasks, but mainly focuses on the core work of metric learning, that is,

separating samples from di�erent classes with a large margin. Therefore, the QAML model

is suitable for multiple machine learning tasks. We explore a quantum triplet loss function

that utilizes quantum superposition advantage to compute the distances between multiple

sample pairs in parallel to reduce the requirement for quantum resources. Unlike the gen-

eral quantum metric learning model, the QAML model prepare adversarial samples based

on the quantum gradient ascent method and add them to the training process. Simulation

on MNIST and Iris datasets shows that the QAML model has a better separation e�ect in

MNIST and Iris datasets, and the robustness to adversarial attacks increases signi“cantly.

However, dimension reduction causes the QAML model loses some detailed features of

samples and prevents the improvement of the separation e�ect for some complicated data

sets. In subsequent research, we should work to retain more sample features and improve
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the separation e�ect for complex data sets. Research on quantum adversarial metric learn-

ing has just begun. Our attention mainly focuses on functional attacks. In further work,

we can study more strategies against other attack scenarios. The QAML model, an essen-

tial subroutine of quantum machine learning algorithms, will have broader applications

in high-energy physics, quantum chemistry, and medical diagnosis.
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