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Abstract
A scheme for measuring microwave (MW) electric (E) fields is proposed based on
bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A
bichromatic control field drives the excited state transition, whose absorption shows
three EIT windows. When a MW field drives the Rydberg transition, the EIT windows
split and six transmission peaks appear. It is interesting to find that the peak-to-peak
distance of transmission spectrum is sensitive to the MW field strength, which can be
used to measure MW E-field. Simulation results show that the spectral resolution
could be increased by about 4 times, and the minimum detectable strength of the
MW E-field may be improved by about 3 times compared with the common EIT
scheme. After the Doppler averaging, the minimum detectable MW E-field strength is
about 5 times larger than that without Doppler effect. Also, we investigate other
effects on the sensitivity of the system.
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1 Introduction
Microwave (MW) electric (E) field measurement has great technological importance in
electronic information systems, which have been widely used in radar [1, 2], communi-
cations [3–5], navigation [6, 7], remote sensing [8], etc. Traditional MW measurement
is based on dipole antennas, which is limited to receiving sensitivity, self-calibration, an-
tenna size and so on [9]. Rydberg atoms have large electric dipole moments, which are
extremely sensitive to external electric field [10]. Rydberg atom-based MW metrology has
been explored with quantum technology [11–13], e.g., electromagnetically induced trans-
parency (EIT) [14–17], Autler-Townes (AT) splitting [18, 19], electromagnetically induced
absorption (EIA) [20, 21], and active Raman gain (ARG) [22, 23]. At present, many promis-
ing schemes have been proposed for measuring MW fields, using frequency detuning [24],
homodyne detection [25], intracavity atomic systems [26], double dark states [27, 28], dis-
persion [29], nonlinear effects [30] and deep learning [31], etc.
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Bichromatic EIT can improve the fluorescence, absorption and transmission spectra of
atoms [32–34]. Wang et al. first experimentally demonstrated bichromatic EIT in cold
atoms and observed multiple absorption peaks [35]. Later, Yan et al. experimentally ob-
served double symmetrical EIT windows instead of multiple absorption peaks in hot
atomic vapors [36]. In recent years, four-wave mixing (FWM) signals in such systems has
attracted great interest [37–39]. For example, multi-channel FWM process [40], phase
compensation induced by anomalous dispersion [41], and high-efficiency reflection [42].
Also, bichromatic field has other important applications, such as optical nonreciprocity
[43], optical bistability [44], optomechanical bichromatic wavelength switching [45], mul-
timode circuit electromechanical systems [46], cross-phase modulation [47], and attosec-
ond polarization [48]. While, few research involves the application of bichromatic EIT in
MW E-field measurement.

Here, we present a scheme for MW E-field measurement by using bichromatic EIT in
Rydberg atoms. First, a Doppler-free configuration is considered, where the probe field
counter-propagates with the bichromatic control field. When the bichromatic control field
drives the excited state transition, the EIT spectrum shows three transmission peaks. With
coupling of a MW field, the transmission peaks split into six. The frequency splitting of
the transmission peaks is linearly related to the MW field strength. This can be used to
measure MW E-field. The numerical results show that the linewidth of the central trans-
mission peaks may be narrowed to 1/4 of the common EIT scheme, and the minimum de-
tectable strength of the MW E-field could be improved by about 3 times. Fortunately, if the
probe and bichromatic control fields co-propagate through the atomic vapor, the Doppler
effect greatly narrows the central transmission peaks, and the minimum detectable MW
E-field strength is about 5 times larger than that without Doppler effect. The scheme may
be useful for designing novel MW sensing devices.

2 Model and basic equations
The four-level Rydberg atomic system we considered is shown in Fig. 1(a). A bichromatic
control field Ec(t) = (Ec1e–iωc1t + Ec2e–iωc2t)/2 + c.c. drives the transition |2〉 → |3〉 with fre-
quency difference ωc2 – ωc1 = δ. A weak probe field Ep(t) = Epe–iωpt/2 + c.c. drives the tran-
sition |1〉 → |2〉, and a MW field Em(t) = Eme–iωmt/2 + c.c. drives the Rydberg transition
|3〉 → |4〉. The relevant quantum states |1〉, |2〉, |3〉 and |4〉 correspond to the rubidium-87
atomic levels 5S1/2(F = 2), 5P3/2(F = 3), 53D5/2, and 54P5/2, respectively. Figure 1(c) shows
the schematic configuration of the coupling fields and the atomic vapor cell. The probe and
bichromatic control fields counter-propagate through the atomic vapour, which belongs
to a Doppler-free scheme.

After the electric dipole approximation, the Hamiltonian of the system in the interaction
picture is given by [49]

H = �ω1|1〉〈1| + �ω2|2
〉〈

2| + �ω3|3
〉〈

3| + �ω4|4
〉〈

4|
– �

[
�pe–iωpt|2〉〈

1| +
(
�c1e–iωc1t + �c2e–iωc2t)|3〉〈

2|
+ �me–iωmt∣∣4

〉〈3∣∣ + H .C.
]
, (1)

where the Rabi frequencies of the probe, control, and MW fields are, respectively, denoted
as �p = Epμ12/�, �c1(c2) = Ec1(c2)μ23/� and �m = Emμ34/�. μij and ωij are the relevant dipole
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Figure 1 (a) Four-level Rydberg atomic model, (b) the corresponding dressed picture and (c) schematic
diagram of the experiment

moment and transition frequency from |i〉 to |j〉 (i, j ∈ {1, 2, 3, 4}). Ep, Ec1(c2), and Em are
the respective amplitudes of the laser fields. The dynamic evolution of the system can be
described by solving the master equation [50]

∂ρ

∂t
= –

i
�

[H ,ρ] + L(ρ), (2)

where ρ is the density operator and L(ρ) denotes the decoherence processes. And then we
obtain the time evolution of density matrix elements as follows:

ρ̇21 = –γ21ρ21 – i
[
ω21ρ21 – �pe–iωpt(ρ22 – ρ11) +

(
–�c1e–iωc1t – �c2e–iωc2t)ρ31

]
,

ρ̇31 = –γ31ρ31 – i
[
(ω21 + ω32)ρ31 + �me–iωmtρ41 + �pe–iωptρ32

+
(
–�c1e–iωc1t – �c2e–iωc2t)ρ21

]
,

ρ̇41 = –γ41ρ41 – i
[
(ω21 + ω32 – ω43)ρ41 + �me–iωmtρ31 + �pe–iωptρ42

]
,

(3)

with the closure relationship ρ11 + ρ22 + ρ33 + ρ44 = 1. γjk = (�j + �k)/2, �j =
∑

k �jk

(j, k = 1, 2, 3, 4), where �jk is the spontaneous decay rate from state |j〉 to state |k〉. We per-
form a rotating-frame transformation using ρ21 = ρ̃21e–iωpt , ρ31 = ρ̃31e–i(ωp+ωc1)t and ρ41 =
ρ̃41e–i(ωp+ωc1–ωm)t . The density-matrix element ρ̃ij can be expanded in terms of Fourier
components as

ρ̃ij =
∑

ρ̃
(n)
ij e–inδt (

i, j ∈ {1, 2, 3, 4}, n = 0,±1, . . .
)
. (4)
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We keep the first order of the probe and all orders of the control and MW fields, and get

ρ̃
(n)
21 =

i(ρ̃(n)
31 �c1 + ρ̃

(n–1)
31 �c2 + �p)

γ21 + i	p – inδ
,

ρ̃
(n)
31 =

–iρ̃(n)
21 �c1 – iρ̃(n+1)

21 �c2

–γ31 + inδ – i(	p + 	c1) – i�2
m

iγ41+nδ+	m–	p–	c1

,

ρ̃
(n)
41 =

ρ̃
(n)
31 �m

iγ41 + nδ + 	m – 	p – 	c1
,

(5)

where 	p = ωp – ω21, 	c1 = ωc1 – ω32 and 	m = ωm – ω43 are the detunings of the probe,
control and MW fields, respectively. The solution of ρ̃

(n)
21 is obtained from the recursion

relation as

ρ̃
(n)
21 = D–1

n

[
–i�p +

ρ̃
(n–1)
21 �∗

c1�c2

Xn–1
+

ρ̃
(n+1)
21 �c1�

∗
c2

Xn

]
, (6)

where Xn = –γ31 + inδ – i(	p + 	c1) + i�2
m/(iγ41 + nδ + 	m – 	p – 	c1) and Dn = –γ21 –

i(	p – nδ) – �2
c1/Xn – �2

c2/Xn–1. We can obtain the coherent term ρ̃
(0)
21 with a continued

fraction method [42]

ρ̃
(0)
21 =

–i�p

D0 – �c1�∗
c2W1

–γ31–i(	p+	c1)– i�2m
iγ41+	m–	p–	c1

– �∗
c1�c2V1

–γ31–i(	p+	c2)– i�2m
iγ41+	m–	p–	c2

, (7)

where 	c2 = 	c1 – δ, W1 = ρ̃
(1)
21 /ρ̃(0)

21 and V1 = ρ̃
(1)
21 /ρ̃(2)

21 . The susceptibility χ is found to be
χ = Nμ2

21ρ̃
(0)
21 /�ε0�p, where ε0 is the permittivity of vacuum, N is the atomic density, and

� is the reduced Planck’s constant. The transmission spectrum can be described as [51]

T = exp
(
–2π Im[χ ]/λp

)
, (8)

where  is the medium length and λp is the center wavelength of probe field.

3 Results and discussion
We consider the 87Rb atoms within a vapor cell of length 5.0 cm. The probe field, ∼780
nm, is tuned to the |1〉 → |2〉 transition. The control field, ∼480 nm, drives |2〉 → |3〉
transition. The Rydberg transition |3〉 → |4〉 is driven by the MW field. In the following
discussion, the parameters are scaled by � = 2π ×6 MHz for simplicity. First, let us briefly
discuss the absorption spectra of common EIT scheme. If the MW field �m = 0, there
is an EIT window (see red dotted line in Fig. 2(a)). With coupling of the MW field, an
absorption peak appears in the EIT window, i.e., bright resonance [11] (see red dotted line
in Fig. 2(b)). Here, we are interested in the absorptive features of bichromatic EIT spectra,
as shown by the solid blue line in Fig. 2. Without coupling of the MW field, there are four
absorption peaks in EIT spectrum (see Fig. 2(a)). When the MW field drives the Rydberg
transition, the two side absorption peaks and the central EIT window split, resulting in
seven absorption peaks (see Fig. 2(b)).
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Figure 2 Comparison of absorption spectra driven by bichromatic control field (blue) and single control field
(red). (a) �m = 0 and (b) �m = 0.5� . Other parameters are �c1 =�c2 = 1� , 	c1 =	m = 0, δ = 6� ,
γ21 =� = 2π × 6 MHz, γ31 = 2π × 1 kHz and γ41 = 2π × 0.5 kHz

Figure 3 (a) Transmission spectra with �m = 0 and (b) is the same as (a) except for �m = 0.5� ; (c)
bichromatic control field-driven transmission spectra with different MW fields; (d) peak-to-peak distance 	f
versus MW field strength �m , and other parameters are the same as in Fig. 2

The results can be interpreted in the dressed-state picture, as shown in Fig. 1(b). It is
known that the central EIT window originates from inter-path interference of the tran-
sitions |1〉 → | ± 1〉. The dressed-states created by the bichromatic control field consist
of infinite ladders with an equal separation δ [52]. In particular, when �c1, �c2 < δ, the
transition amplitude will be dominant only for a few dressed-states around |m = 0〉 [35].
The probe transitions from |1〉 to the dressed-states |m = ±1,±2〉 lead to four absorp-
tion peaks. When the Rydberg transition |3〉 → |4〉 is driven by the MW field �m, five
new eigenstates appear, i.e., |0〉, | ± a〉 and | ± b〉. So, there are seven transition channels
with the coupling of the probe field, |1〉 → |m = 0,±1,±a,±b〉, which contribute to seven
absorption peaks.

Next, we focus on the bichromatic EIT transmission with the MW fields. If �m = 0, there
are three transmission peaks around 	p = 0, ±6� (see blue solid line in Fig. 3(a)). It is con-
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sistent with the result of Ref. [35] under the given conditions, e.g., �c1 = �c2 = 0.5� and
	c1 = 	c2 = δ/2 = �. When the MW field is applied, e.g., �m = 0.5�, the three transmis-
sion peaks split into six via the EIT-AT effect (see blue solid line in Fig. 3(b)). Figure 3(c)
depicts the bichromatic EIT transmission spectra with a varying MW field strength �m.
The frequency splitting of transmission peaks becomes larger with the increase of �m. It
is interesting to find that the peak-to-peak distance 	f is proportional to the MW field
strength, as shown in Fig. 3(d). Their linear relationship can be written as 	f = 2�m, and
the magnitude of the applied MW E-field can be estimated by

|Em| =
��m

μ34
=
�	f
2μ34

. (9)

It is worth mentioning that the frequency splitting of the side peaks also has the good lin-
ear relationship with the MW E-field strength. Of course, the linear relationship between
	f and |Em| will fail and become nonlinear when �m < 0.0025�.

Moreover, the linewidth of the central transmission peak is much narrower than that
of the common EIT transmission peak (see Fig. 3(b)). The linewidth narrowing can be
understood from the high dispersion produced by the bichromatic EIT. Figure 4 shows
the real (Re[χ ]) and imaginary (Im[χ ]) parts of the atomic susceptibility. The bichromatic
EIT dispersion ∂ Re[χ ]/∂ωp is larger than that of the common EIT scheme in Fig. 4(a). The
larger dispersion, the larger frequency pulling effect, and then the resonance frequency is
strongly pulled to its bichromatic EIT frequency. As a result, the two EIT windows are
narrowed, resulting in two narrow peaks in the bichromatic EIT transmission (see red
dashed line in Fig. 4).

The linewidth can be described as [14]

	width =
�2

c1 + �2
p√

�21γ21

1√
σN

(σN 	 1), (10)

where σ = 3λ2
p/2π is the absorption cross section, N is the atomic denstiy, and  is the

medium length. The numerical results show that the full width at half maximum (FWHM)
of the bichromatic EIT central transmission peaks is about 0.24�. While, the FWHM of
the common EIT transmission peaks is about 0.9�. The linewidth is narrowed to about
1/4 of the common EIT scheme. The spectral resolution is intimately related to the EIT
linewidth [21, 53]. This indicates that the spectral resolution could be increased by about

Figure 4 Susceptibility as a function of probe field detuning 	p . Re[χ ] (blue solid line) and Im[χ ] (red dash
line) for (a) single and (b) bichromatic control fields. Other parameters are the same as in Fig. 2



Han et al. EPJ Quantum Technology           (2023) 10:28 Page 7 of 11

4 times under the given conditions. Moreover, the application of narrow EIT spectrum
would compress the nonlinear zoom of frequency splitting and decrease the uncertainty
of the MW E-field measurements [54]. So the inter-path interference leads to the narrow
EIT spectrum, contributing to the sensitive measurement of MW E-fields.

The minimum detectable strength is important for the weak MW E-field measurement,
which depends on the minimum detectable splitting of the transmission peak. In a weak
MW field regime, the frequency splitting strongly depends on the EIT linewidth that is re-
lated to the Rabi frequency of control (probe) field (see equation (10)) [54]. The frequency
splitting 	f decreases as �c1(p) decreases. The minimum detectable strength of the MW
E-field is given by [55]

|Emin| =
�	width

2μ34
, (11)

where 	width < 	f . The linear relationship between 	f and |Em| from equation (9) is valid
and can be used to determine the E-field strength when the EIT linewidth is small com-
pared to the frequency splitting [15]. This means that the narrow EIT linewidth would
enable the frequency splitting to be observed at a weak MW field [21, 26].

According to the Rayleigh criterion [56], the minimum detectable splitting means that
the splitting of two peaks is about half maximum of its peak value. For the common EIT
scheme, when �m = 0.007�, the transmission peaks overlap partly and are just discernible,
as shown in Fig. 5(a). While, the bichromatic EIT transmission peaks are clearly sepa-
rated from each other (see Fig. 5(b)). Under the given condition, the minimum detectable
strength of the MW field is about �m = 0.0025� from the simulation. It is about 1/3 of
the common EIT scheme, ∼0.007�. This indicates that the minimum detectable MW E-
field strength could be enhanced about 3 times. In other words, the inter-path interference
much narrow the EIT linewidth and improve the sensitivity of minimum MW E-field.

In addition, we consider the longitudinal motion of atoms at randomly distributed
velocity v. It is instructive to examine the MW E-field measurement with Doppler ef-
fect, i.e., the probe and control fields �c1 (or �c1 and �c2) co-propagating through the
atomic cell. Here, the susceptibility with atomic motion should be expressed as χ (v) =
Nμ2

21
∫

ρ̃
(0)
21 (v) ∗ D(v)/�ε0�p dv, where 	p, 	c1 and 	c2 are replaced with 	p + kpv, 	c1 +

kc1v and 	c2 ± kc2v respectively (+ for the x-axis), D(v) = exp(–v2/v2
p)/π1/2vp, represents

the Maxwell–Boltzmann distribution of atoms, and vp is the most probable velocity. For
simplicity, we assume that the wavevector |kp| ≈ |kc1| ≈ |kc2| ≈ |k|.

Figure 5 (a) Single control field-driven and (b) bichromatic control field-driven transmission spectra (inset is
zoomed views of central peaks), and other parameters are the same as in Fig. 2
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Figure 6 Transmission of the bichromatic control field with Doppler effect for the counter-propagation (a)
and co-propagation (b) cases; (c) is the same as (a) except for �m = 0.00125� and (d) is the same as (b)
except for �m = 0.00045� (inset is zoomed views of central peaks). Other parameters are the same as in Fig. 2

Figure 6 shows the Doppler-averaged transmission spectrum. When the control fields
�c1 and �c2 counter-propagate through the atomic vapor, the central transmission peaks
are much narrowed and the side peaks decrease sharply (see Fig. 6(a)). It is consistent with
the result of Ref. [36] under the given conditions, e.g., �c1 = �c2 = � and 	c1 = 	c2 = δ/2 =
0.05�. This result originates from the shift of the dressed levels and the modification to
the transition probability between dressed states when the Doppler effect is considered
[57]. The sum of all contributions by atoms with different velocities results in the nar-
rowed transmission spectrum. In this case, the minimum detectable MW field strength
is about �m = 0.00125�, as illustrated in Fig. 6(c). Figure 6(b) depicts the transmission of
the control field �c1 and �c2 co-propagating with the probe field. The central transmission
peaks are further narrowed under the same conditions. The minimum detectable strength
of the MW field is about �m = 0.00045� from the simulation (see Fig. 6(d)). It is about 1/5
of that without Doppler averaging, ∼0.0025�. This indicates that the minimal detectable
MW E-field strength could be improved by more than 5 times after Doppler averaging.

At last, the effect of frequency detuning on the transmission of the probe field is inves-
tigated. Take control fields �c1 and �c2 counter-propagation for example, Fig. 7(a) shows
the transmission peaks with a varying MW field detuning 	m. The peak-to-peak distance
�f is enlarged with an increase in 	m, which can be expressed as �f = (	2

m + (2�m)2)1/2.
This result is consistent with Ref. [24], and indicates that frequency detuning could im-
prove the sensitivity of MW E-field measurements. In Fig. 7(b), the central transmission
peaks shift with the bichromatic control field detuning (	 = 	c1 = 	c2), while both the
linewidth and the peak-to-peak distance basically remain unchanged. The bichromatic
EIT scheme shows some tunability and may allow the MW E-field measurement in a broad
frequency range.
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Figure 7 Transmission spectra of the probe field at different MW field detuning (a) and bichromatic control
field detuning (b). Other parameters are the same as in Fig. 2

4 Conclusions
In summary, we propose a scheme for MW E-field measurement based on the bichro-
matic EIT in Rydberg atoms. Due to the inter-channel EIT interference, the EIT spectrum
exhibits multiple narrow transmission peaks. It is interesting to find that the frequency
splitting of transmission peaks shows a linear relationship with the MW field strength,
which can be used to measure the MW E-field. The numerical results show that the spec-
tral resolution may be enhanced by about 4 times, and the minimum detectable strength
of the MW E-field is about 3 times larger than that of the common EIT scheme. If the
Doppler scheme is adopted, the minimum detectable MW E-field strength could be fur-
ther increased by about 5 times after Doppler averaging. The bichromatic EIT scheme
exhibits high sensitivity, high resolution, and a broad detection range, which may help to
design novel MW-sensing devices.
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