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Abstract
We explore the ground state cooling and quantum synchronization of the
mechanical and low-frequency inductor-capacitor (LC) resonators in a hybrid
three-mode optoelectromechanical system, in which the mechanical resonator is
optically and capacitively coupled to the optical cavity and the LC circuit, respectively.
We find that when the bias voltage modulation switch is incorporated into the direct
current (DC) bias voltage, ground state cooling and quantum synchronization can be
simultaneously achieved regardless of whether the mechanical resonator and the
low-frequency LC resonator have the identical frequency. Furthermore, we elucidate
the relationship between quantum synchronization and ground state cooling of the
two resonators, that is, the simultaneous ground state cooling of the resonators must
be accompanied by quantum synchronization. Our work may open up an alternative
approach to the simultaneous ground state cooling and quantum synchronization of
multiple resonators, which has fewer parametric limitations.
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1 Introduction
Over the past decades, benefiting from advancements in micro-nano manufacturing tech-
nology, a new experimental achievement has been made: the realization of macroscopic
quantum states [1]. The macroscopic mechanical resonator has become an excellent tool
for advancing our understanding of the quantum world. Most research on mechani-
cal quantum states focuses on optomechanics, electromechanics, and magnomechanics
[2–6], such as quantum mechanical squeezing [7–9], quantum entanglement [10–12], su-
perposition states [13], radiation pressure interaction [14], and so on. Meanwhile, these
studies are indispensable to the advancement of quantum information processing, with
applications in precise measurement [15–17], quantum communication [18, 19], quan-
tum teleportation [20, 21], nonreciprocal transmission [22–24], and quantum transduc-
ers [25, 26]. However, the observation of these phenomena in mechanical systems is not
effortless due to the inevitable thermal fluctuations that disrupt a series of above quan-
tum effects. Therefore, to observe the signature of the aforementioned quantum effects,
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the primary prerequisite is to cool the mechanical resonators to their ground states effec-
tively suppressing adverse effects of mechanical noise. For this purpose, several alternative
cooling schemes have been proposed, such as backaction cooling [27, 28], laser cooling
[29, 30], dissipative cooling [31], and sideband cooling [32–34].

With further research on mechanical systems and the rapid development of semicon-
ductor technology, a number of theoretical and experimental investigations have concen-
trated on optomechanical and electromechanical systems, involving two or even multiple
mechanical modes. Recently, the radiation pressure interaction between the cavity field
and mechanical resonator has expanded beyond the conventional optical frequency do-
main. Studies have also been conducted on the interaction between microwave and me-
chanical resonators by employing LC circuits, which has gained popularity in transducing
radio-frequency and microwave signals to the optical spectrum [2, 35–51]. In the stan-
dard optomechanical and electromechanical systems, observing the quantum properties
requires cooling mechanical mode to its quantum ground state [52–54]. Nevertheless, to
successfully establish the phonon-phonon cooling channel, a strict parametric constraint
in previous studies is that the frequencies of the coupled mechanical resonators should
be degenerate or nearly degenerate. Therefore, one may inquire whether an effective ap-
proach exists to simultaneously cool two non-degenerate resonators.

Huygens first observed that the oscillations of the two pendulum clocks tend to synchro-
nize [55]. Since then, the complex and fascinating phenomenon of synchronization has at-
tracted widespread attention, and the classical concept of synchronization was extended
to continuous variable subsystems [56, 57]. In the past decades, the concept of synchro-
nization has been proposed theoretically and realized experimentally [58–60]. Classical
synchronization theory is a dynamic theory based on classical Newtonian mechanics or
analytical mechanics. Quantum synchronization is a synchronization phenomenon in the
field of quantum mechanics, and quantum synchronization theory is regarded as a correc-
tion of the influence of quantum fluctuations on the basis of classical synchronization the-
ory. Unlike classical synchronization, quantum synchronization focuses on the behavior
of quantum systems rather than considering classical systems. With the development of
quantum mechanics, synchronization is gradually extended to the micro- and nano-scale,
and quantum effects may cause some differences between classical and quantum synchro-
nization. Due to the unique properties of quantum mechanics, such as entanglement and
superposition, which do not exist in classical systems. Surprisingly, the fluctuation in the
two subsystems in quantum synchronization must strictly adhere to the Heisenberg un-
certainty principle [61], and extending from classical to quantum synchronization is not
straightforward. In 2011, Mari et al. introduced the concepts of quantum synchronization
and quantum phase synchronization, and proposed two different quantum synchroniza-
tion measures [62]. The study of the synchronization behavior among substances in multi-
body physical systems has been extended from the classical to the quantum fields [63, 64].
Especially, Yang et al. have observed the synchronization and cooling behavior [65]. Re-
markably, the simultaneous cooling of two mechanical resonators with large frequency
difference and their quantum synchronization have not received considerable attention.

Sympathetic cooling of a radio-frequency LC circuit to its ground state has been first
proposed in Ref. [53]. It is worth noting that what we study in this paper is only slightly
similar in the model but somewhat different in the content of the study. The previous study
primarily focusing on the cooling effect of the mechanical and radio-frequency resonators
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at the identical frequency. Our work investigate the simultaneous ground state cooling of
the mechanical and radio-frequency resonators with identical or different frequencies by
injecting voltage modulation switch. Furthermore, we investigate the relationship between
quantum synchronization and ground state cooling, providing a comprehensive and de-
tailed explanation. Our work may relax experimental restrictions in practical implemen-
tations.

In this paper, we investigate ground state cooling and synchronization of the mechan-
ical and low-frequency LC resonators in a optoelectromechanical system. We introduce
a bias voltage modulation switch into LC circuit to achieve the simultaneous cooling of
the non-degenerate mechanical and radio-frequency (rf ) resonators. This modulation re-
structures a beam splitter-type interaction between the mechanical and rf resonators, im-
proving the cooling efficiency and quantum synchronization of the two resonators. We
also demonstrate the relationship between quantum synchronization and simultaneous
ground state cooling, that is, cooling is a sufficient condition for synchronization. As our
analysis exhibits, quantum synchronization primarily depends on the ground state cool-
ing of the mechanical and rf resonators rather than their frequency difference. Therefore,
simultaneous ground state cooling of the two resonators is a prerequisite for quantum
synchronization, irrespective of the present degree of frequency difference.

2 System and Hamiltonian
We consider a hybrid optoelectromechanical system in Fig. 1, where the mechanical res-
onator is a silicon nitride film capable of free vibration, which has been implemented in
experiments [38]. In addition, the vibration of the film modifies the resonant frequency of
the optical cavity and adjusts the capacitance of the LC circuit, leading to the frequency
change of the rf resonator. On the one hand, the mechanical resonator with the frequency
ω0 is capacitively coupled to a low-frequency LC circuit with the frequency ωlc, which has
been proposed and characterized in previous experiments [39, 66]. On the other hand,
the mechanical resonator is coupled to a cavity field with the frequency ωa via the radia-

Figure 1 Schematic diagram of the system. The mechanical resonator is capacitively coupled to the LC circuit
and dispersively coupled to the optical cavity via the radiation pressure. The circuit consists of a capacitor C
and an inductor L. The cavity field is driven by the pump laser with the amplitude E and the LC circuit is driven
by a DC bias voltage V . We introduce a voltage modulation switch η = 0, 1 in the circuit and V = VDC cos(ηωt),
where ω = |ω0 –ωlc| is modulation frequency
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tion pressure. It is worth noting that only mechanical and rf resonators with comparable
frequencies are considered in the scheme. Therefore, in a rotating frame at the input laser
frequency ωl , the transformed Hamiltonian of the whole system is given by

H0 = �a†a +
ω0

2
(
p2

1 + q2
1
)

+
ωlc

2
(
p2

2 + q2
2
)

+ g1a†aq1 + g2q1q2
2

+ E
(
a + a†

)
+ q2V (t), (1)

where � = ωa – ωl is cavity-driven laser detuning. a (a†) represents the annihilation (cre-
ation) operator of the optical mode, q1 and p1 (q2 and p2) denote the dimensionless posi-
tion and momentum operators of mechanical (rf ) resonator, respectively. g1 (g2) represents
the coupling strength between the mechanical resonator and cavity field (rf resonator).
E =

√
2κP/�ωl is the driving strength with ωl being the driving frequency, P the power, and

κ the cavity mode decay rate. We introduce the external bias voltage V (t) = V ′(t) + δV (t),
where V ′(t) = VDC cos(ηωt) represents the modulated DC bias voltage. The voltage mod-
ulation switch η = 0, 1 controls the DC bias voltage amplitude of the LC circuit, which
manipulates the effective coupling between the two resonators. The input noise δV rep-
resents Johnson-Nyquist voltage noise operator [67, 68], which satisfies the correlation
function: 〈δV (t)δV (t′)〉 = γlc(2nlc + 1)δ(t – t′). Here nlc = 1/[e(�ωlc/kBT) – 1] is the mean
thermal occupation number of the rf resonator, kB is the Boltzmann constant, and T is
the ambient temperature.

Quantum systems are inevitably coupled to their bath, so the motion of the system can
be effectively described by the quantum Langevin equation

ȧ =
(

–i� –
κ

2

)
a – ig1aq1 – E +

√
κain,

ṗ1 = –ω0q1 – g1a†a – g2q2
2 – γmp1 + ξ ,

q̇1 = ω0p1,

ṗ2 = –ωlcq2 – 2g2q1q2 – γlcp2 – V (t),

q̇2 = ωlcp2, (2)

where the mechanical and rf resonators damping rates are represented by γm and γlc,
respectively. The operators ain and ξ represent vacuum input and Brownian motion
noise operators, respectively, and in the Markovian approximation, satisfy the correla-
tion functions 〈ain(t)a†

in(t′)〉 = δ(t – t′) and 〈ξ (t)ξ (t′)〉 = γm(2nth + 1)δ(t – t′). Here, nth =
1/[e(�ω0/kBT) – 1] represents the equilibrium mean thermal phonon number.

Once the covariance matrix is obtained, we can study the cooling dynamics of the me-
chanical and rf resonators as well as the quantum synchronization (see Appendix A). The
final mean phonon numbers of the mechanical and rf resonators can be expressed in terms
of the matrix elements of the covariance matrix as follows

n1
f =

1
2

(M33 + M44 – 1),

n2
f =

1
2

(M55 + M66 – 1). (3)
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Then the effective temperature of the mechanical and rf resonators can be obtained

Ti
eff =

�ω0(lc)

kB ln(1 + 1
ni

f
)

(i = 1, 2). (4)

On the other hand, the synchronization measure is a valuable tool for quantifying quan-
tum synchronization [62], which can be defined as

Sc(t) =
〈
q–(t)2 + p–(t)2〉–1, (5)

where q– (p–) denotes the relative coordinates (momentum) fluctuation operator, that is
q–(t) = [q1(t) – q2(t)]/

√
2, p–(t) = [p1(t) – p2(t)]/

√
2. In the subsequent discussion, Eq. (5)

can be used to perform numerical analysis on the cooling dynamics of two resonators and
investigate quantum synchronization.

3 Numerical results
3.1 The synchronization and simultaneous ground state cooling without voltage

modulation (η = 0)
To ensure the rationality of the linearization process, the stability of the system should
be taken into account. The system dynamics are stable when all the eigenvalues of the
matrix A have negative real parts. We plot the real part of the maximum eigenvalue of
the matrix A in the P – κ plane without the voltage modulation as shown in Figs. 2(a)
and 2(c). Clearly, the white dashed curve divides the system into two regions of stability
and instability. As expected, the system with lower driving power P and cavity dissipation

Figure 2 Phase diagram of the system stability in the P-κ plane in (a) and (c), and of the LC frequency shift
ω′

lc/ωlc in (b) and (d) without voltage modulation (η = 0). Here we have set ω0 = 2π × 106 Hz, � =ω0,
g1/ω0 = 3× 10–4, g2/ω0 = 5× 10–4, VDC/ωlc = 15, γm/ω0 = γlc/ω0 = 10–6, T = 100 mK, and driving field
wavelength λ = 1550 nm. ωlc =ω0 in (a) and (b), ωlc/ω0 = 10 in (c) and (d)
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κ is always in the stable region, no matter whether the mechanical and rf resonators have
identical frequency. In the stable region, the lower driving power P can tolerate the higher
dissipation κ . Moreover, in Figs. 2(b) and 2(d), we plot the effective LC frequency contain-
ing frequency shift induced by nonlinearity between the mechanical and rf resonators in
the P – κ plane. It can be observed that the LC frequency shift is derived from the non-
linear interaction between the mechanical and rf resonators, but it is almost negligible in
the stability region. This means that such a frequency shift does not significantly affect
the cooling dynamics of the rf resonator. Therefore, we consider ω′

lc ≈ ωlc throughout the
paper. In the following discussion, the selected parameters are in a stable region to ensure
the system can evolve safely to a steady state.

In classical phase synchronization theory, classical synchronization is achieved when
the phase difference φ–(t) = φ1(t) – φ2(t) asymptotically converges to a constant phase
[62], where φj(t) = arctan[pj(t)/qj(t)] is jointly determined by the dimensionless position
qj(t) and the momentum pj(t). In Fig. 3, we plot the time evolution of the coordinates qj(t)
and the phase difference φ–(t). Obviously, the phase difference φ–(t) tends to be zero with
the time evolution. After a long period of evolution, the coordinates qj(t) approach the
identical value, indicating that classical synchronization is achieved.

To quantify the cooling performance and quantum synchronization of the mechanical
and rf resonators, we plot the time evolution of the cooling dynamics and quantum syn-
chronization for different rf resonator frequencies ωlc for the case without the modulation
(η = 0) in Fig. 4. Note that both mechanical and rf resonators can be cooled to quantum

Figure 3 The time evolution of the (a) coordinates qj and (b) phase difference φ– between the mechanical
and rf resonators. Here we set ωlc =ω0, κ/ω0 = 0.1, and P = 0.04 μW. The other parameters are the same as in
Fig. 2

Figure 4 The time evolution of final mean phonon number nif (i = 1, 2) and quantum synchronization Sc
without the voltage modulation (η = 0). The pink shaded region signifies the ground state cooling for N < 1.
Here we set ωlc =ω0 in (a), and ωlc/ω0 = 10 in (b). The other parameters are the same as in Fig. 3
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Figure 5 The effective temperature Teff (K) and quantum synchronization Sc of mechanical and rf resonators
as a function of the decay rate of cavity mode κ without the voltage modulation (η = 0). Here we set ωlc =ω0

in (a), and ωlc/ω0 = 10 in (b). The other parameters are the same as in Fig. 3

ground states in the steady state when two resonators possess identical eigenfrequencies
(ω0 = ωlc) as shown in Fig. 4(a). However, when ωlc/ω0 = 10, as shown in Fig. 4(b), the
steady-state mean phonon number n2

f is always maintained at its initial thermal occu-
pancy. Physically, the cooling process of the mechanical resonator is the generation of
anti-Stokes photons by removing a phonon from the mechanical resonator [54]. In our
scheme, the mechanical resonator coupled to the cavity field is directly cooled by employ-
ing optical cold damping. On the other hand, the coupling between the mechanical and
rf resonators provides an indirect channel for cooling the rf resonator due to capacitance
changes, which is closely related to the effective coupling strength g . When the mechanical
frequency ω0 and the rf frequency ωlc are different, especially when the frequency differ-
ence is large (i.e., |ωlc – ω0|/G � 1), the effective interaction between the mechanical and
rf resonators disappears, causing the failure of ground state cooling for the rf resonator.
The detailed discussions and calculations can be found in Appendix B. Moreover, it can be
found that quantum synchronization is closely related to the cooling of the two resonators.
A lower phonon number ni

f corresponds to a better quantum synchronization.
In most cases, the ground state cooling and quantum synchronization are sensitive to

the cavity dissipation, which determines the restrained ability of the cavity field to pho-
tons. In Fig. 5, we plot the effective temperature Teff and quantum synchronization Sc of
mechanical and rf resonators in the steady state as a function of κ/ω0 without the voltage
modulation for different rf resonator frequencies ωlc. For Fig. 5(a), the effective tempera-
tures of the mechanical resonator are 1 × 10–5, 3 × 10–5, and 6 × 10–5 K, the final mean
phonon number of mechanical resonator are 0.07, 0.26 and 0.62 at κ/ω0 = 0.1, 0.5, and 1,
respectively. However, Fig. 5(b) shows a completely different result, where the rf resonator
remains constant even when the dissipation κ is small and ωlc/ω0 = 10. The correspond-
ing mean phonon number of the rf resonator is about 207, indicating that the rf resonator
cannot be cooled at all. Furthermore, the mechanical resonator is essentially unaffected by
the change in the frequency of the rf resonator. Due to the significant frequency difference
between the mechanical and rf resonators, the rf resonator is almost completely decou-
pled from the system. The cooling result of the rf resonator is only related to its bath and
independent of the cavity dissipation κ . On the other hand, quantum synchronization is
also sensitive to the cavity dissipation, which affects the cooling performance of both the
resonators when they have identical frequencies.

In addition, the mechanical (rf ) damping that indicates the coupling capability of
the resonator to its bath also significantly affects the effective temperature Teff . In
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Figure 6 The effective temperature Teff (K) and quantum synchronization Sc of mechanical and rf resonators
versus γm and γlc without the voltage modulation (η = 0). ω0 =ωlc in (a)-(c), and ωlc/ω0 = 10 in (d)-(f ). The
other parameters are the same as in Fig. 3

Figs. 6(a), 6(b), 6(d), and 6(e), we plot Teff as a function of γm and γlc for different rf res-
onator frequencies ωlc without voltage modulation (η = 0). In Figs. 6(a) and 6(b), we can
observe that when the damping rates of the mechanical resonator and the rf resonator are
small, the effective temperature is lower. In Figs. 6(d) and 6(e), ωlc/ω0 = 10, we can observe
that changing the rf resonator frequency has little effect on the effective temperature of the
mechanical resonator. However, the corresponding mean phonon number n2

f is about 200
at γlc/ω0 = γm/ω0 = 106, indicating the rf resonator cannot be cooled to quantum ground
state. The physical reason for this phenomenon is consistent with the above analysis, that
is, the rf resonator is decoupled from the system (please see the Appendix B for details).
Furthermore, quantum synchronization is closely related to the cooling results of the two
resonators, as shown in Figs. 6(c) and 6(f ).

In Fig. 7, we plot the final mean phonon number ni
f and quantum synchronization Sc as

a function of the photon optomechanical coupling strength g1 and the electro-mechanical
coupling rate g2 in the steady state for different frequencies ωlc. In Figs. 7(a) and 7(d),
regardless of whether the two resonators have identical frequencies, the mechanical res-
onator can be cooled to the quantum ground state when single-photon optomechanical
coupling strength g1 and the electro-mechanical coupling rate g2 are strong enough. In
particular, compared to the two resonators with identical frequencies, the cooling effect
of the mechanical resonator is even better when ωlc/ω0 = 10. This is because the rf res-
onator is completely decoupled from the dynamics, so that the mechanical resonator will
no longer extract the thermal excitation in the rf resonator, leading to the improvement of
the net cooling efficiency. In addition, due to the dynamic decoupling of the rf resonator,
the electro-mechanical coupling rate g2 cannot affect the cooling result of the mechanical
resonator, as shown in Fig. 7(d). As shown in Figs. 7(b) and 7(e), the cooling effect of the
rf resonator is closely related to its frequency, which depends on its indirect interaction
with the optical cold damping. At the same time, in Figs. 7(c) and 7(f ), quantum synchro-
nization also shows a trend closely related to the simultaneous ground state cooling of
mechanical and rf resonators, that is, lower mean phonon numbers correspond to better
quantum synchronization.



Wang et al. EPJ Quantum Technology           (2023) 10:34 Page 9 of 20

Figure 7 The final mean phonon number nif and quantum synchronization Sc versus g1 and g2 without the
voltage modulation (η = 0). ω0 =ωlc in (a)-(c), and ωlc/ω0 = 10 in (d)-(f ). The other parameters are the same
as in Fig. 3

Figure 8 The time evolution of mean phonon number nif and quantum synchronization Sc with the voltage
modulation (η = 1). The pink shaded region signifies the ground state cooling for N < 1. Here we set ωlc =ω0

in (a), and ωlc/ω0 = 10 in (b). The other parameters are the same as in Fig. 3

3.2 The synchronization and simultaneous ground state cooling with voltage
modulation (η = 1)

In the above subsection, we discussed the cooling performance and quantum synchroniza-
tion of the two resonators without the voltage modulation. Especially, when the frequen-
cies of the mechanical and rf resonators are different, the rf resonator fails to be cooled. In
order to restore the cooling performance of the rf resonator in the case of large frequency
difference, it is necessary to reconstruct the electro-mechanical coupling rate, which can
be achieved by voltage modulation.

We plot the time evolution of cooling dynamics and quantum synchronization with the
voltage modulation (η = 1) in Fig. 8. The cooling of the mechanical resonator is hardly af-
fected compared to the case in Fig. 4(a), while the rf resonator can be successfully cooled to
the quantum ground state even if the frequency difference between the two resonators is
large. The reason is that the voltage modulation switch applied to the system, although the
frequency of the rf resonator is much larger than the mechanical resonator (ωlc/ω0 = 10),
the effective beam-splitter interaction between the mechanical and rf resonators remains,
leading to an indirect coupling between the rf resonator and the optical cold damping (The
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Figure 9 The effective temperature Teff (K) and quantum synchronization Sc of mechanical and rf resonators
as a function of the decay rate of cavity κ with the voltage modulation (η = 1). Here we set ωlc =ω0 in (a),
and ωlc/ω0 = 10 in (b). The other parameters are the same as in Fig. 3

detailed discussions in the Appendix B). In addition, comparing Fig. 8(a) with Fig. 8(b),
we discover that the cooling performance of the rf resonator is superior when the voltage
modulation is applied to the system. The reason is that as the frequency of the rf res-
onator changes, its initial thermal equilibrium phonon number decreases, which allows
it to eventually be cooled to a quantum state with a lower phonon number. As expected,
significant quantum synchronization is also observed when the modulation is applied to
the system even when ωlc/ω0 = 10.

In Fig. 9, we plot the effective temperature and quantum synchronization of the me-
chanical and rf resonators as a function of cavity decay rate κ with the voltage modu-
lation (η = 1). For the effective temperatures of the rf resonator are 1 × 10–5, 2 × 10–5,
and 6 × 10–5 K, the final mean phonon number of rf resonator are 0.05, 0.15 and 0.37
at κ/ω0 = 0.1, 0.5, and 1, respectively. The significant difference between Fig. 9 and Fig. 5
is that, regardless of whether the frequencies of the two resonators are identical, the rf
resonator can reach quantum ground state by turning on the voltage modulation switch.
It is worth noting that, the cooling properties of the cavity field are largely unaffected
by the voltage modulation. The competition between the optically cold damping and the
sideband conditions is still maintained, ensuring that voltage modulation can be safely
applied to our scheme. In addition, even when the voltage modulation is applied to the
system, quantum synchronization is still closely related to the simultaneous cooling of the
two resonators.

For a complete comparison with the absence of the voltage modulation, we plot the effec-
tive temperature Teff and quantum synchronization Sc of the two resonators as a function
of γlc and γm with the voltage modulation (η = 1) in Fig. 10. It is obvious that the effective
temperature is lower when both γlc and γm are small. When γlc/ω0 = γm/ω0 = 106, the fi-
nal mean phonon number of rf resonator is about 0.1. Comparing Fig. 6 with Fig. 10, in
the presence of voltage modulation η = 1, and γlc/ω0 = γm/ω0 = 106, the cooling of the rf
resonator can be enhanced by a factor of about 2000 compared to that without the volt-
age modulation. On the other hand, this also shows that although the voltage modulation
reorganizes the electro-mechanical coupling, it does not change the properties of the two
resonators. In addition, we plot the final mean phonon number ni

f as a function of g1 and
g2 for Fig. 11. For a specific electro-mechanical coupling rate g2, the degree of cooling im-
provement induced by the voltage modulation increases with the increase of the single-
photon optomechanical coupling g1, as shown in Fig. 11(e). This also confirms that the
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Figure 10 The effective temperature Teff (K) and quantum synchronization Sc of mechanical and rf
resonators versus γm and γlc with the voltage modulation (η = 1). ω0 =ωlc in (a)-(c), and ωlc/ω0 = 10 in
(d)-(f ). The other parameters are the same as in Fig. 3

Figure 11 The final mean phonon number nif and quantum synchronization Sc versus g1 and g2 with the
voltage modulation (η = 1). ω0 =ωlc in (a)-(c), and ωlc/ω0 = 10 in (d)-(f ). The other parameters are the same
as in Fig. 3

voltage modulation effectively improves the indirect interaction between the optical cold
damping and the rf resonator.

In the previous discussion, we investigated the voltage modulation as a means of improv-
ing the temperature control of each resonator. We demonstrate that the voltage modula-
tion can play a key role, especially when the frequencies of the resonators are mismatched.
To more intuitively observe the important role of voltage modulation in the cooling dy-
namics of the system, we plot the final mean phonon number and quantum synchroniza-
tion of the two resonators as a function of ωlc without (with) the modulation η = 0 (η = 1).
As shown by the ginger curves in Fig. 12(a), there is only one dip located at ω0 ≈ ωlc when
the voltage modulation was not applied. This indicates that without voltage modulation,
both ground state cooling and quantum synchronization simultaneously can be achieved
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Figure 12 The final mean phonon number nif and quantum synchronization Sc as a function of the
frequency of the rf resonator ωlc (a) without the voltage modulation (η = 0) and (b) with the voltage
modulation (η = 1). The pink shaded region signifies the ground state cooling for N < 1. The other parameters
are the same as in Fig. 3

only when the frequencies of the two resonators are resonance or near resonance. The re-
sult is consistent with the results of sideband cooling in the typical optoelectromechanical
system [53]. However, as shown in Fig. 12(b), when we injected the voltage modulation,
we noticed the steady-state mean phonon number n2

f is much lower than the case of with-
out the modulation. This indicates that the ground state cooling dynamics is significantly
improved. At the same time, the voltage modulation also restores the quantum synchro-
nization, confirming that the quantum synchronization is closely related to the simultane-
ous ground state cooling. Comparing Figs. 12(a) and 12(b), we can find that introducing
voltage modulation switch is an effective method to achieve simultaneous ground state
cooling and quantum synchronization of two resonators, regardless of whether the fre-
quencies between the mechanical and rf resonators are identical.

4 Discussions
In this section, we discuss the experimental feasibility of our scheme. We consider a hy-
brid optoelectromechanical system consisting of an optical cavity, a mechanical resonator,
and an rf resonator. Similar system models have been implemented experimentally [35].
Based on the hybrid optoelectromechanical system without voltage modulation, many
fascinating physical phenomena have been investigated in previous studies, such as cool-
ing [53] and entanglement [69]. The application of hybrid quantum systems has received
widespread attention, for example, in the conversion of radio frequency signals to optical
frequencies [35, 39]. The ground state cooling of rf circuits can be achieved by studying the
interactions in hybrid optoelectromechanical systems, usually with macro-sized circuit el-
ements. Different types of systems and structures have been proposed and experimentally
characterized [35, 38, 39, 45, 66]. In our scheme, the electromechanical coupling rate can
be significantly improved by DC driving the voltage in the LC circuit. The time-dependent
bias voltage modulation for mechanical resonator has been realized experimentally [70].
Since we have demonstrated, when the mechanical and rf resonator have different fre-
quencies, both the ground state cooling and quantum synchronization can be achieved by
voltage modulation. It is feasible to use the voltage modulation switch to prove the cooling
result. Therefore, the cooling scheme is experimentally feasible.

In general, the condition for determining whether a mechanical resonator (rf resonator)
can be cooled to the quantum ground state is determined by whether final mean phonon
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number is less than 1 (nf < 1). However, such a dynamic balance is not achieved imme-
diately. The physical process can be better understood by Fig. 4(a). At the initial time
(ω0t = 0), there is no interaction between the systems, and the system is in the initial ther-
mal equilibrium. The mechanical (rf ) resonator is in thermal excitation equilibrium. After
a short period of evolution (ω0t = 100), the thermal phonon number of the two resonators
will appear in the form of Rabi oscillation, and the system tends to evolve towards a steady
state, although it does not reach the final steady state immediately. This is because both the
interaction between the photon and the mechanical resonator, as well as the interaction
between the mechanical and the rf resonators, is essentially an energy exchange between
a large number of particle numbers. As a result, the interaction takes a certain amount of
time to reach stability, rather than achieving stability instantly. The time to reach the steady
state depends on the parameters of the system, such as the photon numbers, initial ther-
mal phonon numbers, optomechanical coupling strength, electro-mechanical coupling
strength, and so on. After a long period of evolution (ω0t = 4000), the energy exchange
between the components of the system reaches dynamic equilibrium, and the number of
thermal excitation of the two resonators can be approximated as constant.

An experimentally achievable silicon nitride membrane forms the mechanical resonator
[38]. The two different frequencies of the resonators considered in this scheme have also
been experimentally realized [11, 64]. In this paper, we choose the frequency of the rf res-
onator as ωlc = 2π × 106 Hz. In contrast to the scheme using GHz resonators, this scheme
consider the rf resonator around MHz, as the lower frequency LC resonator corresponds
to a tremendous amount of charge [39, 66]. Radio frequency signals in the MHz domain
are widely used in various research fields and are advantageous for sensitive astrophysics
detection.

On the other hand, the synchronization phenomenon has extended to the quantum do-
main. Many researchers have connected quantum synchronization with quantum corre-
lation [62, 63]. The concept of synchronization can be divided into classical synchroniza-
tion and quantum synchronization. Experimentally, the synchronous measurement of the
system is realized by optomechanical devices [59, 64]. Quantum synchronization is a rel-
atively new field of research, and researchers are still facing significant challenges in areas
such as quantum computing and quantum sensing. The concepts of multi-mode cool-
ing and synchronization have been proposed, but the relationship between them needs
to be clarified. The synchronization and cooling relationship between two resonators has
been proposed in Ref. [65]. Therefore, it is feasible to discuss the relationship between
ground state cooling and quantum synchronization of two resonators. Regarding the syn-
chronization phenomenon, the system initially exhibits more irregular oscillations for a
shorter period, and then transitions into a relatively regular and stable oscillation over
time. Since φ– = φ1 – φ2, the system moves to a stable equilibrium position regardless of
the initial phase difference. With time evolution, the phase difference gradually tends to
zero, and the coordinates are almost identical with long time evolution, signifying clas-
sical synchronization is achieved. Based on the above discussion, our scheme is feasible
experimentally.

5 Conclusions
In conclusion, we have proposed a highly effective scheme for enhancing the ground state
cooling and quantum synchronization of the mechanical and rf resonators in optoelec-
tromechanical systems. Even at ultracryogenic temperatures, we find that the rf resonator
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is thermally excited due to its low frequency. We demonstrate that the two resonators
can be cooled to the quantum ground states by introducing a DC bias voltage modula-
tion switch, regardless of whether the frequencies of the two resonators are identical or
largely different. When the frequencies of two resonators are identical, the rf resonator
can be cooled to the quantum ground state by the beam-splitter interaction with the me-
chanical resonator, regardless of whether the modulation is present. However, when the
voltage modulation is not introduced, the effective electro-mechanical coupling between
the two resonators will disappear if the frequency difference of the two resonators is large.
Once the bias gate voltage modulation switch is turned on, the beam-splitter interaction
can be reconstructed, which is essential for the ground state cooling of the rf resonator.
Furthermore, we find that quantum synchronization is also achieved when ground state
cooling is realized, but the ground state cooling is not a necessary condition for quantum
synchronization. Controlling rf circuits at the quantum level is extremely significant due
to its potential for detecting the rf signals with higher sensitivity. Moreover, our work has
unique advantages for manipulating rf signals of various frequencies, which may be useful
in detecting diverse quantum-limited rf signals.

Appendix A: Linearization of the system Hamiltonian
Since the cavity field is in a strong driving regime, the system can be manipulated by lin-
earized Langevin equations in order to study the mechanical and rf resonators cooling.
Under the case, the operators can be expressed as a sum of steady state mean value and a
small quantum fluctuation operator, i.e., O = Os +δO (O = a, q1, q2, p1, p2). The steady-state
solution in Eq. (2) can be calculated as

αs =
E

i�eff + κ/2
,

p1s = 0,

q1s = –
g1|α1s|2 + g2q2

2s
ω0

,

p2s = 0,

q2s =
VDC cos(ηωt)

ωlc + 2G2
, (6)

and the linear quantum Langevin equations for the quantum fluctuations

δ̇a =
(

–i�eff –
κ

2

)
δa1 – iG1δq1 +

√
κain,

δ̇p1 = –ω0δq1 – G
(
δa† + δa

)
– γmδp1 – gδq2 + ξ ,

δ̇q1 = ω0δp1,

δ̇p2 = –ω′
lcδq2 – δV – gδq1 – γlcδp2,

δ̇q2 = ωlcδp2, (7)
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where �eff = �+ g1q1s, g = 2g2VDC cos(ηωt)/ω′
lc, G1 = g1α1s, G2 = g2q1s, and ω′

lc = ωlc + 2G2.
For convenience, we drop the fluctuation operator symbol “δ” throughout the rest of the
text (i.e., δa → a).

Due to the linearity of dynamics and input noise with a zero-mean Gaussian nature, the
state of the system will maintain their Gaussian nature, which indicates that the stationary
state of the system will evolve towards a Gaussian state [71]. Therefore, the properties
related to the dynamics of the system are entirely characterized by a covariance matrix
denoted as M(t) whose matrix elements are defined as

Mkl(t) =
1
2
〈
uk(t)ul(t) + ul(t)uk(t)

〉
(k, l = 1, 2, . . . , 6), (8)

where u(t) = [X(t), Y (t), q1(t), p1(t), q2(t), p2(t)]T is the vector of the quadrature fluctuation
operators. The quadrature fluctuation operators with regard to the cavity field can be ex-
pressed as X(t) = [a†(t)+a(t)]/

√
2, Y (t) = i[a†(t)–a(t)]/

√
2, and corresponding quadrature

noise operators are X in(t) = [a†
in(t) + ain(t)]/

√
2, Y in(t) = i[a†

in(t) – ain(t)]/
√

2.
The equations of motion for the system in Eq. (7) can be rewritten as

u̇(t) = A(t)u(t) + n(t), (9)

where n(t) = [
√

κX in(t),
√

κY in(t), 0, ξ (t), 0, –δV (t)]T is the vector of noise operators and
the drift matrix

A =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

– κ
2 � 0 0 0 0

–� – κ
2 –

√
2G1 0 0 0

0 0 0 ω0 0 0
–
√

2G1 0 –ω0 –γm –g 0
0 0 0 0 0 ωlc

0 0 –g 0 –ω′
lc –γlc

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (10)

where G1 has been assumed to be real. From Eqs. (8) and (9), we obtain the covariance ma-
trix M(t), which governs the steady state of the system by solving the Lyapunov equation
[72]

A(t)M(t) + M(t)AT (t) = –D, (11)

where D = Diag[κ/2,κ/2, 0,γm(nm + 1
2 ), 0,γlc(nlc + 1

2 )] represents the diffusion matrix. Since
ωa � (ω0,ωlc), it is assumed that the cavity is in a vacuum state and the mechanical (rf )
resonator is initially prepared in a thermal state with temperature T during the evolution
of the system, so that M(0) = Diag[1/2, 1/2, nm + 1/2, nm + 1/2, nlc + 1/2, nlc + 1/2].

Appendix B: Derivation of effective electro-mechanical coupling
According to Eq. (7), after implementing the linearization procedure, the resulting Hamil-
tonian is

Heff = �a†a +
ω0

2
(
p2

1 + q2
1
)

+
ωlc

2
(
p2

2 + q2
2
)

+ g ′q1q2 + G1
(
a† + a

)
q1, (12)
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where g ′ = g cos(ηωt). In order to illustrate the generation of effective coupling between
the mechanical and rf resonators, we redefine the new operators as

b1 =
ip1 + q1√

2
,

b†
1 =

–ip1 + q1√
2

,

b2 =
ip2 + q2√

2
,

b†
2 =

–ip2 + q2√
2

, (13)

where b1 and b2 denote the annihilation operators of the mechanical and rf resonators,
respectively. After the conversion of operators, we insert Eq. (13) into Eq. (12), the trans-
formed Hamiltonian can be written as

H ′
eff = �a†a + ω0b†

1b1 + ωlcb†
2b2 + J

(
b†

1b2 + b†
2b1

)
+ G

(
a† + a

)(
b†

1 + b1
)
, (14)

where J = g ′/2 and G = G1/
√

2. To clearly analyze the effects of the bias voltage modulation,
we define the following rotating transformation

U(t) = exp
[
–i

(
�a†a + ω0b†

1b1 + ωlcb†
2b2

)
t
]
. (15)

In the rotating frame with respect to U(t), the transformed Hamiltonian is

Hint = U†(t)H ′
eff U(t) + i

dU†(t)
dt

U(t)

= HM-R
int + HM-O

int , (16)

with

HM-R
int = J

[
e–i(ωlc+ω0)tb1b2 + e–i(ω0–ωlc)tb†

1b2
]

+ H.c.,

HM-O
int = G

[
ab1e–i(�+ω0)t + ab†

1e–i(�–ω0)t] + H.c., (17)

where HM-R
int denotes the interaction between the mechanical resonator and the rf res-

onator, and HM-O
int denotes the linear coupling between the optical field and the mechani-

cal resonator. We can find that when the system is in the red detuning regime, the beam-
splitter interaction between the optical field and the mechanical resonator dominates. In
contrast, the two-mode squeezing interaction is a high-frequency oscillation term that
can be neglected. Thus, the interaction Hamiltonian between the mechanical resonator
and the optical field can be rewritten as

HM-O
int = G

[
ab†

1e–i(�–ω0)t + H.c.
]
, (18)

so the mechanical resonator can be cooled to its quantum ground state by the optical
cold damping under the appropriate parameter regime. On the other hand, the type of
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interaction between the mechanical and the rf resonators is closely related to the voltage
modulation switch and the frequency of the rf resonator. By choosing the voltage modula-
tion frequency as ω = |ω0 – ωlc|, the interaction between the mechanical and rf resonators
can be rewritten as

HM-R
int = g

[(
ei(η+1)(ωlc–ω0)t + ei(η–1)(ωlc–ω0)t)b†

1b2 + ei[(η–1)ωlc–(η+1)ω0]tb1b2

+ e–i[(η+1)ωlc–(η–1)ω0]tb1b2
]

+ H.c.. (19)

On the one hand, when we turn off the voltage modulation switch (η = 0), the corre-
sponding Hamiltonian in Eq. (19) is reduced as

HM-R
int = g

[
e–i(ωlc+ω0)tb1b2 + ei(ωlc–ω0)tb†

1b2
]

+ H.c.. (20)

For two resonators with identical frequencies, the interaction Hamiltonian between the
mechanical and the rf resonators can be rewritten as

HM-R
int = g

(
b†

1b2 + H.c.
)
, (21)

where we have ignored the high frequency oscillation term. Obviously, there is a beam-
splitter interaction between the two resonators, so the rf resonator can also be cooled to
its quantum ground state. However, in the case of ωlc � ω0, for example, ωlc/ω0 = 10, the
interaction Hamiltonian between the mechanical and the rf resonators is

HM-R
int = g

[
e–11iω0tb1b2 + e9iω0tb†

1b2
]

+ H.c.. (22)

Both the beam-splitter interaction and the two-mode squeezing interaction are high-
frequency oscillation terms, which means that the rf resonator is almost dynamically de-
coupled, so that the rf resonator is always in thermal equilibrium and cannot be cooled to
its quantum ground state at all, even when the system reaches its steady state, as shown
by the ginger curve in Fig. 4(b). Therefore, when the voltage modulation switch is turned
off, the rf resonator can only be effectively cooled if the frequencies of the two resonators
are identical or nearly identical.

On the other hand, when we turn on the voltage modulation switch (η = 1), the corre-
sponding Hamiltonian in Eq. (19) is reduced as

HM-R
int = g

[
e–2i(ωlc+ω0)tb1b2 +

(
e2i(ωlc–ω0)t + 1

)
b†

1b2
]

+ H.c.. (23)

For two resonators with identical frequencies, the interaction Hamiltonian between the
mechanical and the rf resonators is

HM-R
int = 2g

(
b†

1b2 + H.c.
)
. (24)

Obviously, the beam-splitter interaction between the two resonators still exists, so the
rf resonator can be cooled to its quantum ground state, as shown in Fig. 8(a). For two
resonators with large frequency difference (ωlc = 10ω0), Eq. (23) can be rewritten as

HM-R
int = g

[
e–22iω0tb1b2 +

(
e18iω0t + 1

)
b†

1b2 + H.c.
]
. (25)



Wang et al. EPJ Quantum Technology           (2023) 10:34 Page 18 of 20

Naturally, even when the frequency difference between the two resonators is large, the
resonant beam-splitter interaction g(b†

1b2 + b†
2b1) still occurs. This makes it possible to

achieve the ground state cooling of the rf resonator. Therefore, the introduced bias voltage
modulation reconstructs the effective coupling between the mechanical and rf resonators.
This allows them to indirectly interact with the cavity field in the red sideband regime, thus
achieving ground state cooling of the rf resonator regardless of whether the frequencies
between the two resonators are identical.
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