
Barnes et al. EPJ Quantum Technology (2023) 10:36
https://doi.org/10.1140/epjqt/s40507-023-00192-z

R E S E A R C H Open Access

Optimising the quantum/classical interface
for efficiency and portability with a
multi-level hardware abstraction layer for
quantum computers
Kenton M. Barnes1, Anton Buyskikh1, Nicholas Y. Chen1, Gabriel Gallardo1, Marco Ghibaudi1,
Matthew J.A. Ruszala1*, Daniel S. Underwood1, Abhishek Agarwal2, Deep Lall2, Ivan Rungger2 and
Nikolaos Schoinas2

*Correspondence:
matthew.ruszala@riverlane.com
1Riverlane, St Andrew’s House,
59 St Andrew’s St, Cambridge, CB2
3BZ, United Kingdom
Full list of author information is
available at the end of the article

Abstract
Steady progress is being made in the development of quantum computing platforms
based on different types of qubit technologies. Each platform requires bespoke
strategies to maximise the efficiency of the quantum/classical interface when
operating close to the qubits. At a higher level, however, a shared interface allowing
portability of quantum algorithms across all the available quantum platforms is
preferred. Striking the right balance between portability and performance of the
algorithm as implemented on quantum hardware remains a major challenge for this
field. Here, we propose a quantum hardware abstraction layer (QHAL) providing a
multi-level intermediate representation of the quantum stack. A collaborative effort
between software specialists and quantum hardware developers operating on four
major qubit technologies (photonics, silicon, superconducting and trapped ions) led
to the identification of a minimum common set of instructions and metadata
allowing the QHAL to interact efficiently with multiple platforms. Access to the stack
from the higher levels increases latency yet minimises the amount of hardware
architecture parameters to be handled by the algorithm developer, thus simplifying
code development and reducing security threats from misuse or malicious access for
hardware developers. Access to the stack from the lowest—closest to the
qubits—level provides the highest hardware responsiveness, suitable for algorithms
requiring minimum latency for data and instruction transfer. With respect to existing
quantum assembly languages, the QHAL extends further down in the stack by
defining an application-binary interface to interact with the quantum hardware. By
defining a standard representation of the quantum stack, a common reference
framework is provided to both software and hardware developers which would
ensure future integration of their R&D efforts.

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-023-00192-z
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-023-00192-z&domain=pdf
mailto:matthew.ruszala@riverlane.com
http://creativecommons.org/licenses/by/4.0/

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 2 of 13

1 Introduction
Developing uniform quantum computing is a remarkable scientific task. In recent years
the global quantum computing market has grown rapidly, with bigger and smaller quan-
tum developers, both in hardware and software, entering the picture. On a quantum hard-
ware level, there are several types of technologies deemed promising to support qubits,
with a handful of those under development in academic and commercial labs. Each tech-
nological platform also requires a bespoke control system to efficiently manipulate and
read out the qubits, typically through sequences of optical or electric pulses that are unique
to the technology considered. As we move away from the qubits towards higher ends of
the quantum stack, the degree of specificity for the interactions between the quantum and
classical units decreases. Within the growing quantum community, developers of control
software, error correction schemes, compilers and many more pieces of the quantum stack
puzzle pursue several different directions in search of the most highly performing solu-
tions. While such diversity is allowing for many approaches to be evaluated, one risk of
uncoordinated development is that optimal solutions identified for each of these elements
may lose performance when interfaced with the rest of the stack. Early coordination ef-
forts among different players operating in hardware and software development, leading
further along the road to standardisation of the interfaces connecting the various compo-
nents, may enable all the different pieces to interface in a versatile way and combine in an
end-to-end, feasible solution.

Standardised interfaces between software and hardware can offer several benefits to the
relevant parties, with the main one being inter-operability. By clearly defining the bound-
aries between those two worlds, hardware and software developers can focus their R&D
efforts in optimising particular layers of the stack independently, and without worrying
whether they will be able to interface between them, as long as the new advanced features
adhere to the agreed standards. As a result, targeted R&D efforts can be maximised in-
stead of being duplicated among the different parties wasting resources and time in the
broader context.

At the same time, standardisation is a means to balance the quantum ecosystem; natu-
rally, large organisations and their choices in terms of e.g. qubit technology have a bigger
footprint, inevitably affecting any adjacent work carried out by smaller parties. A stan-
dardised interface between software and hardware will allow all qubit technologies to be
seen as equal in terms of merit and potential and will attract similar attention from devel-
opers working across the stack. However, standardisation also carries the risk of realising
suboptimal interfaces that sacrifice quantum hardware performance for the sake of gen-
eralisation. This opens the door to an interesting problem: how to strike the right balance
between portability and efficiency?

Intermediate representations (IRs), across different levels of the stack, can offer a com-
promise between uniformity and specificity needs, with the ultimate goal of speeding up
development across the entire quantum stack. Currently there are intermediate represen-
tations such as Microsoft’s QIR [1] or the MLIR [2] quantum dialect designed for use in
quantum compilers like qcor, XACC [3], and the Q# compiler. Their main advantage is
being seamlessly integrated and able to communicate with other widely accepted plat-
forms for programming quantum computers such as high-level quantum programming
languages like Q# or Silq, quantum assembly languages like OpenQASM [4] or Quil [5],
and software development kits (SDKs) like Qiskit, Cirq, and ProjectQ. SDKs offer applica-

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 3 of 13

tion programming interfaces (APIs) through which a user can submit quantum programs
to cloud-connected quantum computers. In principle, all these languages and SDKs are
interoperable by the ingestion and emission of OpenQASM or another IR.

Yet there still does not exist a hardware-friendly, low level of abstraction to guarantee the
portability of programs and high-level tools across technologies. Low-level management
of the quantum/classical interface and optimisation of latency and other key performance
is delegated to individual hardware developers, who develop bespoke solutions without
considering platform interoperability. However, optimisation of the low-level quantum
stack will rapidly become a hard problem as the complexity of the control system grows to
address advanced functionalities like quantum error correction (QEC). By making their
low-level stack compatible with cross-platform solutions, hardware manufacturers may
benefit from third-party innovations that would significantly reduce in-house costs for
research and development. Rather than an intermediate representation, a low-level hard-
ware abstraction layer is needed to address this issue.

Here we report a multi-level Quantum Hardware Abstraction Layer (QHAL), a quan-
tum-classical interface designed to ensure interoperability between the low-level quan-
tum hardware and control systems and the higher-level stack components. As a result of
a collaborative effort involving quantum hardware developers encompassing four leading
qubit technologies—superconducting (SEEQC, Oxford Quantum Circuits), silicon (Hi-
tachi), trapped ions (Oxford Ionics, Universal Quantum) and photonics (Duality Quan-
tum Photonics)—we identified a series of standard commands and metadata that can be
implemented on most devices. An optimal bitstring representation readable by the control
system hardware has also been defined for these instructions, in order to minimise latency
while allowing broad qubit control and efficient interfacing with virtually any quantum
computing platform able to understand such binaries.

By providing this set of common features, the QHAL extends the IR pipeline and its
benefits much deeper into the hardware stack than otherwise possible. The QHAL also
provides hardware manufacturers the ability to offer different levels of hardware access
to different users, tailoring the balance between latency and security to the user require-
ments and level of trust. In fact, security and intellectual property (IP) protection in a
booming ecosystem is another major concern for all quantum companies. Any standard-
isation approach should ensure that hardware companies can choose which information
to expose without compromising their IP, nor stall the co-development efforts.

The QHAL architecture is a first attempt to provide a standardised interface across dif-
ferent qubit platforms. As research and development evolution in quantum hardware may
fundamentally change the way to operate qubits in the future, we expect QHAL to evolve
accordingly. As such, the architecture has built-in flexibility allowing the key sets of in-
structions and information crossing the quantum-classical interface to expand. The latest
releases of the QHAL and its related documentation are reported in an online repository
for public access on GitHub [6].

2 A quantum hardware abstraction layer (QHAL)
We aimed at developing a QHAL architecture offering an effective low-level of abstraction
and portability across technologies by following two main design guidelines. First, abstrac-
tion of the hardware details should not hamper fast interaction (minimised latency) with
the qubits when this is required for highly demanding algorithms such as the execution

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 4 of 13

Figure 1 The three levels of access to the QPU system stack (dashed box) provided by QHAL. Moving closer to the
qubits from QHAL level 3 to QHAL level 1, a higher integration with fast logic components reduces latency
and ensures faster responsiveness. As a tradeoff, security threats increase due to the increasing amount of
privileged information required to interact with the hardware

of error correction cycles. At the same time, it should allow the hardware manufacturer
to offer access to different types of resources, depending on the user level of trust and
needs. Similar to the hierarchical protection domain mechanisms adopted for classical
CPU architectures [7], the most privileged users should have access to the largest amount
of information and the fastest level of interaction with the hardware resources, whereas
low-trust users should be allowed to communicate with the machine with a reduced level
of control. This is to minimise security threats from malicious behavior aiming at expos-
ing hardware details protected by trade secrets or IP, or aiming at damaging hardware
functionality.

Figure 1 shows a schematic representation of the Quantum processing unit (QPU) sys-
tem stack, together with the three access levels we identified for the QHAL architecture.
The fastest and lowest level—QHAL level 1—is located at the interface with the input-
output (I/O) hardware controlling the qubits. Such close interaction guarantees a very
short latency in transferring instructions and data. Keeping latency below the qubit de-
coherence time enables mid-circuit measurements and circuit branching dependent on
such measurements, both essential conditions for the implementation of quantum error
correction algorithms as well as some NISQ-era algorithms such as the holographic vari-
ational quantum eigensolver [8].

QHAL level 2 provides access to the local classical computing layer managing the
quantum hardware, for instance through field-programmable gate arrays (FPGAs) or
application-specific integrated circuits (ASICs). The classical-to-quantum latency here is
expected to be comparable with the qubit decoherence time. Users accessing this level
can input a single circuit or small batches of circuits, and act upon their results. While
the controlling hardware at this level cannot perform circuit updates upon mid-circuit
measurements, action at the end of single-circuit measurements still ensures fast opera-
tion and minimisation of idle times for the quantum hardware. Examples of algorithms
that can be run with this type of hardware interaction are the iterative/Bayesian phase
estimation [9, 10] and the accelerated variational quantum eigensolver (aVQE) [11].

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 5 of 13

QHAL level 3 is the slowest access point to the quantum system stack, with latency
typically larger than the qubit decoherence time. Interfacing through global classical logics
(global FPGAs or CPU) allows users to input large batches of static circuits and collect
measurements output at the end of the batch. The capabilities offered by this level of access
are comparable to those currently provided by most quantum hardware vendors through
cloud access.

The multi-level architecture seamlessly lends itself to the definition of a hierarchical set
of access privileges that each hardware vendor can customise according to their security
requirements. QHAL level 1 users operate at the lowest level of control, thus requiring
the highest level of hardware information and potentially exposing the hardware to high
risk of resource misuse or malicious attacks; as such, hardware manufacturers may decide
to share this access only with authenticated and trusted users or internal developers. In
contrast, applications executed at a QHAL level 3 require a less direct interaction with
the hardware and a reduced amount of hardware information, thus reducing potential
vulnerabilities by limiting user capability.

In the following sections, we will describe two unique features of the QHAL: the ability
to expose system metadata upstream and a hardware-friendly command set, which enable
the QHAL to achieve efficient qubit control and minimise latency.

2.1 The role of metadata
The QHAL architecture provides two degrees of flexibility, with respect to the type of
hardware technology it is interfacing with and to the type of privilege/level of trust of the
user. Such flexibility is implemented through the definition of a set of metadata available
to the user at each QHAL level. Metadata (Table 1) expose information related to those
hardware resources/parameters that are essential for the users to understand whether the
platform is suitable to their problems and to execute algorithms, and at the same time hide

Table 1 QHALmetadata. Table of metadata exposed when using the QHAL, the QHAL levels at
which they are required and accompanying notes

Metadata Description Level 1
required

Level 2
required

Level 3
required

Notes

NUM_QUBITS Number of qubits
available

Yes Yes Yes –

MAX_DEPTH Maximum depth of
an executable
circuit

Yes Yes Yes Expressed as max
number of universal
gates (Level 3) or native
gates (levels 1-2)

NATIVE_GATES List of native gates Yes Yes No –

CONNECTIVITY Connectivity matrix
of the qubits

Yes Yes No Required for the
correct compilation of
circuits

GATE_TIMES Execution time of
the native gates

Yes No No Advanced users can
also infer this metric
through execution of
test/benchmarking
algorithms

ERROR_RATE Average error rate
for one- and
two-qubit native
gates

No No No Advanced users can
also infer this metric
through execution of
test/benchmarking
algorithms

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 6 of 13

details or trade secrets specific to the hardware implementation. Importantly, although the
metadata set is shared across the three QHAL levels, access to each individual parameter
can be limited according to the specific QHAL level or user privilege. As such, the vendor
can choose to expose only a subset of the full metadata at the higher QHAL levels when
being used by untrusted parties. Additionally, individual hardware manufacturers may
decide to apply further access rules, making some of these metadata accessible only to
internal developers. For instance, it is required that the metadata returns a list of native
gates in a specified order, so when “ERROR RATE” metadata is requested, a list of error
rates corresponding to the hardware native gates in the same order will be returned. This
information can be optionally made available by the manufacturers at a desired QHAL
level or only to specific users. Note that the error quantification method has not been
standardised at this stage.

Table 1 provides a list of essential metadata identified in the first release [6] Metadata
requests are encoded into a single 64-bit integer, whereas results are encoded in one or
multiple 64-bit integers as appropriate for the requested parameter. We refer the readers
to the QHAL Specifications [6] for more details and examples of metadata requests and
responses.

2.2 Core and additional commands
Together with metadata (Table 1), a core set of commands (Table 2) has been defined
for each QHAL level. We have adopted a RISC (reduced instruction set computer)-type
approach to identify a minimum set of instructions that allow full control over qubit func-
tionality (across different qubit platforms) while maximising speed. An additional set of
optional commands specific to each qubit technology has also been defined for advanced
operations where appropriate. Both the core and optional command sets can be flexibly
extended to adapt to future developments in the use of quantum resources.

Table 2 QHAL core commands. Table outlining the QHAL core commands, their parameters,
descriptions, and to which QHAL level they are relevant to

Command Parameters Description QHAL level

NOP None Performs no operation All

State prepare qubit address, state
value

Prepare specific qubit to a known state All

State prepare all state value Prepare all qubits to a |0> state All

Qubit measure qubit address Return the measured state of a qubit All

Rx, Ry, Rz qubit address, angle Perform qubit rotation around the X, Y
or Z axis of the Bloch sphere on a qubit

All

X,Y,Z,H,S,T qubit address Perform the corresponding gate
operation on a qubit

All

CNOT qubits addresses Perform a Controlled-NOT operation 3

Start of session Type of session Define the destination of the received
commands (emulator, hardware,
simulator)

3,2

End of session None Close a session 3,2

Set Page Qubit 0 Offset for the qubit
index (0)

Modify the offset used in the qubit
index computation

All

Set Page Qubit 1 Offset for the qubit
index (1)

Modify the offset used in the qubit
index computation

All

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 7 of 13

For each QHAL level, latency requirements and expected modality of resource usage de-
termine the type and format of required commands. Users accessing the quantum stack at
QHAL level 3 should be able to run large batches of circuits back-to-back, while keeping
their batch separate from those of the previous and next users; hence, they require com-
mands to execute gates from a universal gate set as well as section commands to delimit
the binary sequences corresponding to their batch. In this high latency setting where clas-
sical logic acts upon measurements occurring at the end of the whole batch execution,
compilation, transpilation and buffering steps can be performed offline before transmit-
ting the commands to the target hardware. In QHAL level 2 with intermediate latency—
where classical logic acts upon single-circuit measurements and selects the next circuit to
execute—users require commands to define gates from a native gateset, as well as paral-
lel compilation for branching statements and circuit repetition/reloading. The commands
received by the user are then transpiled to the relevant hardware representation before be-
ing transmitted to the target hardware. The commands and measurements flow in QHAL
level 1 has the lowest latency, with the classical logic being potentially able to act upon
mid-circuit measurements. Here, commands include the execution of gates from a native
gate set. Conversion to hardware control sequences, loading of the sequences and feed-
back of measurements to classical logic must occur within the qubit decoherence time.

An initial selection of core commands is reported in Table 2. It includes commands to
execute single-qubit operations, two-qubit operations and control commands required
for advanced functionalities. We notice that, at this stage, a single two-qubit operation
(CNOT) has been included in the core commands for execution at QHAL level 3 on a uni-
versal gateset, whereas implementation at QHAL levels 2 and 1 of two-qubit operations
on native gatesets is part of the hardware platform-specific list of optional commands. In
fact, each technology leverages unique properties and physical interactions to implement
two-qubit gates in the most effective way. As such, at this stage the adoption of a single type
of native two-qubit gate across different technologies would lead to suboptimal execution
(i.e., the gate will affect the total fidelity of the chain of commands) or to an impossible re-
quest (i.e. the gate cannot be implemented). Similarly, instructions for conditional execu-
tion (FOR/IF) are also part of the list of optional commands, since their format and limits
are platform specific. A future push towards standardisation of the classical-to-quantum
interface would motivate hardware vendors to adapt the format of native two-qubit in-
structions, as well as of these other internal features, to the QHAL structure, making such
commands available to users in the core set across the whole multilevel structure. Within
the core control commands, a “start of session” command is used to specify whether the
user session should be executed on a simulator, real quantum hardware or on proprietary
quantum emulators made available by the hardware vendors.

The QHAL is also expected to return basic responses to notify users at QHAL levels 3
and 2 whether the input circuit has been completed successfully or whether errors (such
as sending an invalid command or an incorrect computation in the quantum computer)
have occurred. Additional platform-specific error codes can be included by each hardware
provider. In order to keep latency at its lowest possible value, these responses are not
expected to be received at QHAL level 1 access.

A bitstring representation of the above-mentioned quantum instructions has been de-
fined in order to be directly interpreted by low-level control system hardware. The choice
of representation can strongly affect the overall communication speed. In particular,

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 8 of 13

throughout this work, we focused on two important elements impacting latency: the com-
mands transfer process from the user application to the quantum control stack and the role
of commands format on parsing speed.

With respect to the transfer process, we have investigated the most hardware-universal
yet optimal data format that works across different types of communication channels. The
definition of a command size of 64 bits originates from its broad applicability. In fact, CPU
registers consist of 64 bits [12]; similarly, FPGA internal buses and external memory inter-
faces tend to favor a 64 bits wide implementation [13]. Notice that transmission through
non-standard interfaces, that some hardware vendors may have developed internally, have
not been considered, as this would hamper future standardisation efforts for the QHAL
architecture. Limiting the register length to 64 bits instead of 128 bits, however, imposes
constraints on the maximum field size for qubit indexing to be dedicated within each com-
mand. Within such constraints, our strategy to maximise qubit addressability is based on
the assumption that, within the same session, parallel operations will be executed within
a patch, or “page”, of a maximum of 210 qubits, whereas different execution sessions can
address up to 236 different pages. At the beginning of each session, a dedicated control
command (“Set Page Qubit” in Table 2) provides the base offset of the qubit indices (en-
coded in binary format in a field size of 36 bits) that will be used for the duration of the
session, whereas the relative offset field (size of 10 bits) is provided within each one-qubit
or two-qubits command. The actual qubit index is expressed by the sum of the base and
relative offsets, thus allowing indexing of up to 246 different qubits.

Parsing speed, represented by how quickly the command decoding logic can convert the
received command into a sequence of low-level directives, strongly depends on the com-
mand format. We performed a sequence of format optimisations with the goal of obtaining

Figure 2 Bit allocation in the 64-bits long command strings. A fixed OPCODE field of 12 bits is used to identify
the command to execute. Control commands (top string) use 16 bits for the command argument, whereas
this field extends to 32 bits for single qubit (middle string) and dual qubit (bottom string) commands. The
RELATIVE_QUBIT_IDX field is used to represent the relative index of qubit 0 and 1 (10 bits each) in single qubit
and dual qubit commands, whereas it corresponds to the base qubit index in the control commands “Set
Page Qubit 0” and “Set Page Qubit 1”. In OPCODEs corresponding to single or dual qubit commands, the
leftmost bit always flags whether the instruction is a one-qubit or two-qubit gate

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 9 of 13

a rapid-to-decode logic that relies on ultrafast checks to decide what to execute. For exam-
ple, the most significant bits—considering a big-endian format—are used to flag whether
the command represents a one-qubit or two-qubit gate instruction. We also adopted a
fixed-length command identifier (12 bits), which allows the use of lookup tables for the
decoder logic thus minimising latency. Figure 2 summarises the bits allocation for each
type of command.

2.3 Testing scenarios
Figure 3 shows three different scenarios proposed to test the QHAL on real quantum hard-
ware or emulators provided by our hardware developer partners. These approaches aim
at performing a simple Rabi flop operation—the quantum “hello world” to check qubit
control and readout across different technologies.

Depending on the access level, the same Rabi flop test must be performed in differ-
ent ways. At QHAL level 3, the application generates command objects that are subse-
quently surrounded by Section delimiters (via, for example, a code factory). On the re-
ceiving end, within the quantum experiment, these commands are parsed, buffered and
converted into low-level instructions ready to be executed. A standard web interface like
a Representational State Transfer (REST) can provide sufficient abstraction to send these
objects to the experimental setup over the internet. Moving to the QHAL level 2, we need
to reduce latency during both the generation and extraction of commands. A protocol

Figure 3 Testing scenarios for the QHAL. Steps to transmit a commands sequence from the application layer to
the quantum computer at QHAL level 3 (top), 2 (middle) and 1 (bottom). At QHAL level 3, communications
occur through the geographical network infrastructures of the Internet. At QHAL level 2, communications
occur through software containers—abstractions at the application layer packaging code and dependencies
together. At QHAL level 1, communications occur through hardware accelerators, which perform specific
functions with greater efficiency than if they had been completed on a generic CPU

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 10 of 13

like gRPC (a high-performance Remote Procedure Call) executed in a local network or as
inter-process communication can meet the more stringent timing requests. Given that the
QHAL level 2 operates via native gates, the translation phase is removed, and additional
latency is shaved off. Finally, at QHAL level 1 the maximum speed in response can be
achieved via a direct implementation, in this case by running within the control hardware
(FPGA or ASIC) of the experiment.

Preliminary tests have been performed using simulators and real hardware made avail-
able by the hardware manufacturers members of the consortium. For instance, control
commands to simulators and hardware for all four hardware technologies (photonics, sil-
icon, superconducting and trapped ions) have been delivered through a QHAL level 3
connection; in these cases, the application layer and QHAL command factory were im-
plemented locally where the commands were then converted into low-level instructions
and processed on the simulator/hardware.

At this stage, tests for communications through QHAL level 2 have also been achieved
on a trapped-ion quantum computer, but QHAL level 1 access has not been attempted
yet. In fact, unlocking maximum benefit from operating at level 1—which is, processing
of QHAL commands on the fly during circuit execution—requires advanced hardware
engineering capabilities, such as the possibility to translate the binary-coded commands
into the analog pulse sequences fed to the qubits with low enough latency, as well as the
possibility to implement mid-circuit measurements. Until such capabilities are developed,
the practical advantage of operating at the lowest QHAL level cannot be fully appreciated;
yet, we may expect that future implementations of smarter, more programmable control
solutions will enable QHAL integration and real-time processing deeper in the control
system.

3 Discussion and conclusions
One of the ideas central to the design of the 3-level QHAL is that different algorithms and
applications will require different amounts of access to the intermediate feedback available
from the quantum computer when the application is running. For simple applications, one
may not need any intermediate access to the results. For algorithms such as aVQE [11],
one needs access to the outcome of a circuit execution to determine the next circuit to
run. In other cases, such as certain implementations of Shor’s algorithm [14] and quantum
phase estimation [10], access to the results of qubit measurement is required to determine
what gate needs to be run in the same circuit. This realisation led to the identification of
a minimum number of levels for the QHAL architecture to provide the most effective
interface to each type of algorithms.

Importantly, a distinctive feature of QHAL as a quantum assembly language and ap-
plication programming interface is its lower-level position within the quantum stack with
respect to existing quantum assembly languages. In fact, QHAL goes one step further than
other IRs by defining an Application-Binary Interface, as opposed to an API. This defines
bitstring representations of quantum instructions which can be interpreted by control sys-
tem hardware; as such, any quantum computer which can understand QHAL binaries will
be able to execute QHAL programs. Quantum compilers, tools, and programs adopting
this common interface will thus be shareable across the industry. In addition, the bitstring
representation has been optimised for minimised latency, which is a critical parameter for
the successful operation of key tools of the quantum stack.

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 11 of 13

One application that demands ultra-low latency is, for instance, quantum error correc-
tion (QEC). In QEC, measurements of auxiliary qubits need to be rapidly transferred to a
decoder, which then computes the errors that have afflicted qubits in the system. For its
successful implementation, there needs to be fast communication between a qubit control
system and a decoder so that the decoding loop occurs well within the decoherence time
of qubits, otherwise new errors would be introduced faster than they can be detected and
corrected. For this application, specifying corrective actions following the detection of er-
rors using existing quantum assembly languages or intermediate representations, which
would need to be written out, transferred, parsed and processed, would likely introduce
too much time overhead. In contrast, QHAL specifies every quantum instruction as a 64-
bit word, which can be encoded, transmitted, and interpreted quickly by hardware. This,
combined with low-latency methods to translate the binary-coded commands into pulse
sequences, may provide a viable strategy to perform quantum error correction. Yet, the
effectiveness of this approach, which aims at preserving platform transferability, with re-
spect to alternative, platform-tailored solutions for fast quantum error correction, will
require further assessment.

The QHAL also lends itself to natural integration in compiler applications deep within
the control system which can complement existing languages and IRs, such as QASM and
QIR. While there will always be a need for hardware-specific transpilation and optimisa-
tion in the backend, the tools which perform and enable these operations can be shared
across the industry.

This is not an exhaustive list of QHAL applications. Classical accelerators, classical pro-
grams, and quantum programs can be qubit-agile, so long as they and the underlying
quantum hardware implements the QHAL. This fosters the sharing of technology and
accelerates the advancement of the field.

Throughout the journey to develop the QHAL a number of lessons have been learnt.
Firstly, in the rapidly changing and developing quantum computing ecosystem, for the
QHAL to remain relevant it will need to be an evolving specification that will change
as the requirements of hardware manufacturers, software developers and end users ad-
vance. One example of a change which has been implemented since the first iteration of the
QHAL is the development of an OpenQASM-to-QHAL compiler to increase user adop-
tion by supporting interoperability with other standards [6]. The purpose of this com-
piler is to enable easier access to the benefits of the QHAL without the user having to
convert circuits which they may already have defined in OpenQASM themselves. Other
improvements under discussion aim to allow the hardware providers to expose custom,
device-specific, operations to the users via the metadata. This will enable the running of
applications such as boson sampling which use operations that might be too specific to
define in the cross-platform QHAL specifications.

As discussed throughout this report, security with regards to access is a topic which is of
utmost importance to any hardware manufacturer who employs the QHAL. A pain point
for hardware manufacturers is allowing low-level access (i.e., QHAL level 1) into their
quantum stack in a secure way. They do recognise today’s benefits for operating at this
level (such as allowing users to run mid-circuit measurements) and the ever-increasing
value that minimising latency will have in the future as the industry continues to make
advances and move out of the NISQ era and closer toward the fault tolerant era of quan-
tum computing. To do this in a portable, qubit agile manner, such as how the QHAL has

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 12 of 13

been designed, then low-level access will be required. As such, ensuring that threats aim-
ing at damaging the hardware uptime or at exposing IP are prevented by the QHAL archi-
tecture are a top priority to ensure broad adoption from hardware manufacturers. At the
same time, any strategy adopted to increase security must be cleverly devised to minimise
impact on performance upon integration of QHAL to the quantum hardware. Other con-
cerns around supportability and maintainability of a QHAL level 1 implementation also
need to be addressed. For this low-level implementation to gain traction within the in-
dustry it needs to ensure smooth compatibility with any future update or replacement of
the control system. Moreover, partitioning of the low-level systems must be carefully de-
signed to avoid any negative impact of the QHAL on the correctness of operations in such
a complex environment.

Further work remains to be done to understand whether the QHAL will be able to ad-
dress all the present and future challenges of the quantum computing industry. Yet, the
fast progress shown by the consortium demonstrates that gathering a team of different or-
ganisations with complementary specialisations is an effective work strategy to address a
problem that affects the entire quantum computing ecosystem. By dividing the workload
between hardware and software specialists and sharing knowledge, hardware manufac-
turers can focus on the evolution of their platforms while software experts can maximise
the functionality of the hardware available through software development and coordinate
future interoperability efforts.

Acknowledgements
The authors would like to thank Innovate UK for funding the NISQ.OS project (48482) which brought the consortium
members together. The work discussed in this paper has been achieved by the collaboration and input from many
people across a number of organisations. As such, the authors would like to thank and acknowledge the following
people and organisations for their contributions; Paul Gleichauf and Hugo Vincent from Arm, Oliver Thomas and Naomi
Solomons from Duality Quantum Photonics, Normann Mertig from Hitachi, Tobias Lindstrom from National Physical
Laboratory, Tom Harty, Chris Ballance, and Vera Schafer from Oxford Ionics, the Oxford Quantum Circuits team, Ksenija
Brankovic, Joe Donlan, Gianmarco Girau, Maria Maragkou, Luigi Matiradonna, Alex Moylett, Leonie Mueck, Brendan Reid,
and Robin Sterling from Riverlane, Jerome Javelle and the wider SEEQC UK team, and Can Nur and Louise Aherne from
Universal Quantum.

Funding
The work outlined in this manuscript was funded by Innovate UK as part of the NISQ.OS project (48482).

Abbreviations
API, application programming interface; ASIC, applicationspecific integrated circuits; aVQE, accelerated variational
quantum eigensolver; CNOT, controlled NOT; CPU, central processing unit; FPGA, fieldprogrammable gate arrays; I/O,
inputoutput; IP, intellectual property; IR, intermediate representation; NISQ, noisy intermediatescale quantum; OPCODE,
operation code; QEC, quantum error correction; QHAL, quantum hardware abstraction layer; QPU, quantum processing
unit; R&D, research and development; RISC, reduced instruction set computer; RPC, remote procedure call; SDK, software
development kits.

Availability of data and materials
All supporting data can be found within the material referenced within the manuscript.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors consent to the publication of this manuscript.

Competing interests
The authors declare no competing interests.

Barnes et al. EPJ Quantum Technology (2023) 10:36 Page 13 of 13

Author contributions
Kenton M. Barnes, Anton Buyskikh, Nicholas Y. Chen, Gabriel Gallardo, Marco Ghibaudi, Daniel S. Underwood, Abhishek
Agarwal, Deep Lall, Ivan Rungger, and Nikolaos Schoinas developed the QHAL. Matthew J. A. Ruszala, Abhishek Agarwal,
Deep Lall, Ivan Rungger, and Nikolaos Schoinas wrote the main manuscript. Matthew J. A. Ruszala prepared the figures.
All authors reviewed the manuscript.

Author details
1Riverlane, St Andrew’s House, 59 St Andrew’s St, Cambridge, CB2 3BZ, United Kingdom. 2National Physical Laboratory,
Teddington, TW11 0LW, United Kingdom.

Received: 20 December 2022 Accepted: 31 August 2023

References
1. Geller A. Introducing quantum intermediate representation (QIR). Q# Blog. 2020.

https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/.
2. McCaskey A, Nguyen T. A MLIR dialect for quantum assembly languages. 2021.

https://doi.org/10.48550/arXiv.2101.11365.
3. McCaskey AJ et al. XACC: a system-level software infrastructure for heterogeneous quantum-classical computing.

2019. https://doi.org/10.48550/arXiv.1911.02452.
4. Cross AW et al. OpenQASM 3: a broader and deeper quantum assembly language. ACM Trans Quantum Comput.

2022;3(3):1–50. https://doi.org/10.1145/3505636.
5. Smith RS et al. A practical quantum instruction set architecture. 2017. https://doi.org/10.48550/arXiv.1608.03355.
6. QHAL—quantum hardware abstraction layer. qhal.npl.co.uk.
7. Schroeder MD, Saltzer JH. A hardware architecture for implementing protection rings. Commun ACM.

1972;15(3):157–70. https://doi.org/10.1145/361268.361275.
8. Foss-Feig M et al. Holographic quantum algorithms for simulating correlated spin systems. Phys Rev Res.

2021;3(3):033002. https://doi.org/10.1103/PhysRevResearch.3.033002.
9. Kitaev A et al. Classical and quantum computation. Providence: Am. Math. Soc.; 2002. www.ams.org.

https://doi.org/10.1090/gsm/047.
10. Somma RD. Quantum eigenvalue estimation via time series analysis. New J Phys. 2019;21(12):123025.

https://doi.org/10.1088/1367-2630/ab5c60.
11. Wang D et al. Accelerated variational quantum eigensolver. Phys Rev Lett. 2019;122(14):140504.

https://doi.org/10.1103/PhysRevLett.122.140504.
12. Grimes JD et al. The Intel I860 64-bit processor: a general-purpose CPU with 3D graphics capabilities. IEEE Comput

Graph Appl. 1989;9(4):85–94. https://doi.org/10.1109/38.31467.
13. Xilinx. DDR4 controller. https://www.xilinx.com/products/intellectual-property/ddr4.html.
14. Monz T et al. Realization of a scalable Shor algorithm. Science. 2016;351(6277):1068–70.

https://doi.org/10.1126/science.aad9480.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/
https://doi.org/10.48550/arXiv.2101.11365
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.1145/3505636
https://doi.org/10.48550/arXiv.1608.03355
http://qhal.npl.co.uk
https://doi.org/10.1145/361268.361275
https://doi.org/10.1103/PhysRevResearch.3.033002
http://www.ams.org
https://doi.org/10.1090/gsm/047
https://doi.org/10.1088/1367-2630/ab5c60
https://doi.org/10.1103/PhysRevLett.122.140504
https://doi.org/10.1109/38.31467
https://www.xilinx.com/products/intellectual-property/ddr4.html
https://doi.org/10.1126/science.aad9480

	Optimising the quantum/classical interface for efﬁciency and portability with a multi-level hardware abstraction layer for quantum computers
	Abstract
	Introduction
	A quantum hardware abstraction layer (QHAL)
	The role of metadata
	Core and additional commands
	Testing scenarios

	Discussion and conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note

