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Abstract
Quantum authentication is a fundamental first step that ensures secure quantum
communication. Although various quantum authentication methods have been
proposed recently, their implementation efficiency is limited. This paper proposes a
key-controlled maximally mixed quantum state encryption (MMQSE) method using
only a single qubit, unitary operation, minimized quantum transmissions, and a single
qubit measurement, which improves implementation feasibility and operation
efficiency. We applied it to representative quantum authentication applications,
namely, quantum identity and message authentication. The security of our
authentication schemes was verified by analyzing the relationship between the
integral ratio of Uhlmann’s fidelity and probability of successful eavesdropping.
Moreover, we demonstrate the higher authentication efficiency of the proposed
scheme in a real quantum-channel noise environment. The upper bound of the valid
noise rate was quantified using the integral ratio of Uhlmann’s fidelity in a noise
environment. Finally, the optimal number of authentication sequences was estimated.

Keywords: Quantum identity authentication; Quantummessage authentication;
Unitary operation; Uhlmann’s fidelity

1 Introduction
Modern cryptography has been threatened by the explosive development of quantum-
computing technology that can implement quantum algorithms such as Shor’s [1–3].
Quantum cryptography is a representative alternative technology [4–7] providing data se-
curity based on physical laws such as the superposition of quantum states, irreversibility
of quantum measurement, no-cloning theorem, and the uncertainty principle. In the field
of quantum cryptography, quantum authentication is the first and most fundamental pro-
cess in secure communication. Its representative applications include quantum identity
authentication (QIA) and quantum message authentication (QMA). First, QIA ensures
the legitimacy of the identity by verifying that the claimant possesses secret information
[8, 9]. The key technological element for QIA is the use of time variant parameters to en-
sure timeliness or uniqueness. Since Dušek et al. proposed a QIA scheme in 1999 that com-
bines the BB84 quantum key distribution with identity authentication [10], various QIA
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schemes have been proposed [11–21]. Second, QMA ensures the origin and integrity of
the message by validating quantum message authentication code (QMAC) [8, 9]. QMA is
performed using an encoded quantum message state called a quantum message authen-
tication code (QMAC). Beginning with a proposal by Curty et al. in 2002 [22], various
QMA scheme studies have been proposed [23–25]. Furthermore, QMA can be extended
to quantum signatures with the addition of non-repudiation [26–32].

The above quantum authentication methods have successfully proposed a secure au-
thentication process. However, most require complicated resources such as entangled
states, CNOT operation, Bell state measurement (BSM), swap test, and multiple quan-
tum transmissions [19, 33–42]. This paper proposes a key-controlled maximally mixed
quantum state encryption (MMQSE) method for quantum authentication schemes. It en-
ables the easy encryption and decryption of quantum states using pre-shared secret keys
between users with single qubit preparation, unitary operation, single qubit measurement,
and minimized quantum transmissions [21, 43]. We applied the key-controlled MMQSE
method to design QIA and QMA schemes that are secure, convenient, and easy to im-
plement. The proposed QIA uses cryptographic challenge-response protocols to prove
its identity as a verifier without revealing the secret [9]. The proposed QIA and QMA
schemes are practical because they require only a single operation on a single quantum
state and a single measurement [44]. Moreover, QIA and QMA were efficiently performed
with only two and one quantum transmissions, respectively. As Uhlmann’s fidelity is a con-
venient analytical tool for quantifying the distance between quantum states, we analyzed
the security of the proposed scheme by relating the integral ratio of Uhlmann’s fidelity to
the probability of successful eavesdropping. We proved the security of the proposed QIA
scheme against impersonation and intercept-and-resend attacks. In addition, we proved
the security of our QMA scheme by analyzing the message origin and the impossibility
of forgery. Furthermore, we demonstrated the integral ratio of the Uhlmann’s fidelity in a
real quantum channel noise environment without eavesdropping and calculated the upper
bound of the valid noise rate. We then used it to estimate the optimal number of authen-
tication sequences.

The remainder of this paper is organized as follows. Section 2 introduces the primary
concept of the key-controlled MMQSE method for the physical realization of quantum
authentication. Section 3 proposes QIA schemes based on the key-controlled MMQSE
method and analyzes their security. Section 4 proposes QMA schemes based on the key-
controlled MMQSE method and analyzes their security. Finally, Sect. 5 analyzes the au-
thentication efficiency for the noise and compares the proposed quantum authentication
schemes with an existing scheme.

2 Key-controlled maximally mixed quantum state encryption
For quantum cryptography, we designed a key-controlled MMQSE method for the phys-
ical realization of quantum authentication. Additionally, using the proposed method, a
legitimate user with a secret key can easily decrypt the quantum state, whereas an eaves-
dropper, who does not know the secret key, finds it difficult to decrypt a quantum state.
The key-controlled MMQSE method comprises three phases: quantum state preparation,
unitary operation, and quantum state measurement.

In the quantum state preparation phase, users pre-share a secret key and prepare an ap-
propriate quantum state according to the secret key k̂AB; k̂AB = (sin θ cosφ, sin θ sinφ, cos θ )
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is the rotation axis of the single qubit rotation operator. θ and φ are the polar and az-
imuthal angles of the rotation axis in Bloch sphere, respectively; it is also represented as
k̂AB = (θ ,φ) in this paper. Subsequently, we consider the arbitrary quantum state |�〉 =
cos(α/2)|0〉+ eiβ sin(α/2)|1〉, where α and β are the polar and azimuthal angles of quantum
state |�〉 in the Bloch sphere, respectively. In the key-controlled MMQSE method, quan-
tum state |�(α,β)〉 has the following constraint depending on the secret key k̂AB(θ ,φ):
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Second, for the unitary operation phase, consider an arbitrary unitary operator U =
ei�Rk̂AB

(�), where � is the global phase and Rk̂AB
(�) = cos(�/2)I2 + i sin(�/2)(k̂AB ·−→

σ )

is the rotation operator with rotation angle �, rotation axis k̂AB, and Pauli vector −→
σ =

(σx,σy,σz). If � = 2mπ (m: integer) and � = π/2, the unitary operator U can be expressed
as the rotation operator V = Rk̂AB

(π/2). Consequently, using Eq. (1), the results of unitary
operation for |�〉 and |�〉⊥ becomes
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The counterclockwise rotated quantum state |R〉 and the clockwise rotated quantum state
|L〉 are orthogonal, because |�〉 and |�〉⊥ = sin(α/2)|0〉 – eiβ cos(α/2)|1〉 are orthogonal.
From the point of view of an eavesdropper, |R〉 and |L〉 are arbitrary quantum states, and
k̂AB(θ ,φ) is an arbitrary rotation axis. Hence, the density matrix ρE for Eq. (2) becomes

ρE =
∫ 2π

φ=0

∫ π
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Pr(θ ,φ)Rθ ,φ

(
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2
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ρR†
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, (3)

where the probability density function Pr(θ ,φ) = (
∫ 2π

φ=0
∫ π

θ=0 dθ dφ)–1 = (2π2)–1 for a uni-
form distribution in the Bloch sphere; ρ =

∫

β

∫

α
Pr(α,β)|ψ(α,β)〉〈ψ(α,β)|dα dβ is an en-

semble of pure states |ψ(α,β)〉 with probability density function

Pr(α,β) =
(∫ 2π

β=0

∫ π

α=0
dα dβ

)–1

=
(

2π2)–1.

As shown in Eq. (3), the density matrix of the quantum state |R〉 or |L〉 is a maximally
mixed state. Therefore, an eavesdropper who does not know the secret key cannot obtain
any information from the quantum state of Eq. (2).

Finally, in the quantum state measurement phase, we consider a single qubit measure-
ment B = λRBR +λLBL = λR|R〉〈R|+λL|L〉〈L|, that satisfies B|R〉 = λR|R〉, B|L〉 = λL|L〉, where
λR and λL are eigenvalues of B. The measurement operator B should also satisfy the com-
pleteness relation

∑

m B†
mBm = I , (m = R, L). Then, |R〉 and |L〉 can be completely measured

by B. Therefore, only legitimate users who know the secret key can obtain accurate mea-
surement results. For example, in Fig. 1, the key-controlled |�〉, |R〉, and |L〉 are repre-
sented geometrically in the Bloch sphere when the secret key is k̂AB = (π/4, 0). The orange
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Figure 1 Geometric representation of the key-controlled |�〉, |R〉, and |L〉 in the Bloch sphere. The red arrow
represents the secret key k̂AB = (π /4, 0) and the red sphere represents a specific |�〉 among all possible points
represented by the orange solid line. The blue and cyan spheres represent |R〉 and |L〉 generated by the
rotation operatorRk̂AB

solid line represents a specific |�〉 satisfying Eq. (1). If |�〉 is a red sphere on the orange
solid line, |R〉 and |L〉 generated by the rotation operator Rk̂AB

are represented by the blue
and cyan spheres, respectively.

The key-controlled MMQSE method encrypts the single qubit |�〉 generated in the
quantum state preparation phase using the rotation operator V in the unitary operation
phase and decrypts it using single qubit measurement B in the quantum state measure-
ment phase. By applying the key-controlled MMQSE method to the quantum authenti-
cation schemes, legitimate users can easily encrypt and decrypt the quantum states, and
eavesdropping is impossible. Specifically, it provides a security service of confidentiality
that allows only legitimate users to encrypt and decrypt completely using the rotation axis
corresponding to the secret key. In addition, from the user perspective, |R〉 and |L〉 in Eq.
(2), encrypted using a fixed rotation angle π/2, are known quantum states perpendicular
to each other. Therefore, they can be easily decrypted using the single qubit measure-
ment. However, from the eavesdropper perspective, eavesdropping on quantum states is
fundamentally difficult because |R〉 and |L〉 are maximally mixed states, as shown in Eq.
(3). Therefore, we designed QIA and QMA schemes that are feasible and efficient for im-
plementation based on single qubit, single qubit rotation operator, and single qubit mea-
surement using the proposed method. This process is described in detail in the following
sections.

3 Quantum identity authentication scheme based on the key-controlled
MMQSE method

3.1 Quantum identity authentication scheme
The schematic representation of QIA based on the key-controlled MMQSE method is
given in Fig. 2. Verifier Bob confirms the legitimacy of the claimant Alice and the exis-
tence of an illegal third party. The scheme consists of three phases: preparation, identity
authentication, and verification.
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Figure 2 Schematic representation of QIA. When Alice requests authentication, Bob generates a challenge
qubit and sends it to Alice. Alice then generates a legitimate response qubit and sends it to Bob to complete
the identity authentication process

3.1.1 Preparation phase
Alice and Bob pre-share the secret key sequence KAB = (k1

AB, k2
AB, . . . , ki

AB, . . . , kN
AB), where

ki
AB ∈ {n̂1, n̂2, . . . , n̂j, . . . , n̂O}, N is the number of authentication sequences, O is the num-

ber of rotation axes, and n̂j = (sin θj cosφj, sin θj sinφj, cos θj) is the rotation axis of the sin-
gle qubit rotation operator. θj and φj are the polar and azimuthal angles of the rotation
axis, respectively, also represented as n̂j = (θj,φj) in this study. The size of the secret key is
|ki

AB| = log2 O and that of the secret key sequence is |KAB| = N log2 O. KAB determines the
rotation axis of the rotation operators and generates the challenge qubits. Subscripts A
and B represent Alice and Bob, respectively. Once Alice requests authentication, Bob ran-
domly generates classical bits C = (c1‖c2‖ · · · ‖ci‖ · · · ‖cN ), where ci ∈ {0, 1}. Subsequently,
Bob generates a sequence of N challenge qubits |Q〉 =

⊗N
i=1 |Q〉i =

⊗N
i=1 |ψi〉ci , where au-

thentication qubit |ψi〉 = cos(αi/2)|0〉 + eiβi sin(αi/2)|1〉. If ci =0, then |ψi〉0 = |ψi〉; else,
|ψi〉1 = |ψi〉⊥. Here, the pairs of angles (αi,βi) and (θj,φj) satisfy the condition of Eq. (1). At
this point, |Q〉i can be considered a time-variant parameter used to ensure the uniqueness
or timeliness of the QIA scheme.

3.1.2 Identity authentication phase
Bob sends |Q〉 to Alice. Subsequently, Alice generates a sequence of N response qubits
|A〉 =

⊗N
i=1 |A〉i, |A〉i ∈ {|R〉i, |L〉i} to send to Bob by applying the single qubit rota-

tion operators Rki
AB

(π/2) to |Q〉i as |R〉i = Rki
AB

(π/2)|ψi〉 or |L〉i = Rki
AB

(π/2)|ψi〉⊥ =
Rki

AB
(–π/2)|ψi〉, where |R〉i and |L〉i are orthogonal.

3.1.3 Verification authentication phase
Bob performs the single qubit measurement on |A〉 using measurement operator B =
|R〉ii〈R| – |L〉ii〈L|; for convenience, λR is 1 and λL is –1. Because only Bob has a se-
cret key and time-varying parameter, he can obtain the measurement outcome C′ =
(c′

1‖c′
2‖ · · · ‖c′

i‖ · · · ‖c′
N ). If Bob’s measurement outcome is |R〉i, c′

i = 0; else if the measure-
ment outcome is |L〉i, c′

i = 1. Finally, Bob compares C and C′ to confirm Alice’s identity.
If C = C′, Alice’s identity is successfully authenticated. Otherwise, Bob aborts the identity
authentication process.
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3.2 Security analysis
Suppose Eve (eavesdropper) is intended to pass the verification process without being de-
tected or obtain the secret key information. Eve can eavesdrop, pretending to be claimant
Alice (impersonation attack) or intercept information in the middle of the quantum chan-
nel (intercept-and-resend attack).

First, we analyze Eve’s impersonation attack to pass the verification process without be-
ing detected. We present a security analysis of the proposed QIA scheme using Uhlmann’s
fidelity. Fidelity is a measure of the distance between the quantum states [45]. Given two
quantum states ρ and σ , the fidelity is defined to be F(ρ,σ ) ≡ tr

√

ρ1/2σρ1/2. Let |�〉 and
|�〉 be any purification of ρ and σ , then the fidelity is the maximum value of |〈�|�〉| for
any purification |�〉 and |�〉 using Uhlmann’s theorem: F(ρ,σ ) = max|�〉,|�〉 |〈�|�〉|. As-
suming that both ρ = |ψ〉〈ψ | and σ = |φ〉〈φ| are pure state, the fidelity is represented as
F(ρ,σ ) = |〈ψ |φ〉|. If |ψ〉 and |φ〉 are orthogonal, then fidelity is 0. If |ψ〉 and |φ〉 are the
same, then fidelity is 1. For Eve to pass the verification process, it is necessary to estimate
the secret key KAB or generate a legitimate response qubit |A〉. Most simply, Eve can esti-
mate some secret key information by measuring the challenge qubit |Q〉i transmitted by
Bob because the secret key information (θj,φj) imposes constraints on the challenge qubit
information (αi,βi), as shown in Eq. (1). However, (θj,φj) is a function of (αi,βi), and even if
Eve knows a specific (αi,βi), the secret key cannot be estimated because there are multiple
combinations of (θj,φj) satisfying Eq. (1). Moreover, Eve does not know whether the qubit
transmitted in the sequence is |ψ〉 or |ψ〉⊥ by the time-varying parameters R, which only
Bob knows. Therefore, quantum state measurement using the above method causes quan-
tum state collapse. Eve cannot generate the correct quantum state to transmit to Bob based
on the irreversibility of quantum state measurements and the no-cloning theory. Bob then
knows of Eve’s existence in the quantum channel and aborts the authentication process.
Thus, Eve encodes the received challenge qubits using a self-generated arbitrary rotation
operation as an optimized impersonation attack and transmits them to Bob. When ci = 0
in the ith sequence, the fidelity between legitimate response qubit |A〉i = Rki

AB
(π/2)|ψi〉

and response qubit estimated by Eve |AE〉i = REi (π/2)|ψi〉 is as follows:

F =
∣
∣
i〈A|AE〉i

∣
∣ =

∣
∣〈ψi|R†

ki
AB

(π/2)REi (π/2)|ψi〉
∣
∣. (4)

Here, subscript E refers to Eve, and components of Ei = (θE,φE) represent polar and az-
imuthal angles, respectively. Eve randomly selects the rotation axis Ei to generate |AE〉i.
Since challenge qubits |ψi〉 are randomly selected by Bob to follow Eq. (1), the average
fidelity for all possible challenge qubits is as given in Fig. 3.

As shown in Fig. 3, when |A〉i = Rki
AB

(π/2)|ψi〉 and |AE〉i = REi (π/2)|ψi〉 are orthogo-
nal, the fidelity is zero. Then, the estimated Ei is orthogonal to ki

AB = (π/4, 0). In addition,
the closer they are to each other, the closer their fidelity is to 1, implying that Ei and ki

AB
have the same components. If fidelity is 0, that is Ei = (3π/4,π ), then Eve fails to pass the
verification process. Therefore, as the integral ratio of the average fidelity approaches 1,
the QIA scheme cannot guarantee security against Eve’s impersonation attack. In Fig. 3,
the integral ratio of the average fidelity for all Ei values that Eve can select is 0.6555. As
the number of authentication sequence N increases, integral ratio of the average fidelity
gradually approaches 0, as shown in Fig. 4. Specifically, when N is 2, 5, 10, and 20, the in-
tegral ratio of the average fidelity is 0.5000, 0.3073, 0.1979, and 0.1229, respectively. When
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Figure 3 Average Uhlmann’s fidelity between legitimate response qubit |A〉i =RkiAB
(π /2)|ψi〉 and response

qubit estimated by Eve |AE〉i =REi (π /2)|ψi〉 on (a) 3D and (b) 2D contour plot, where kiAB = (π /4, 0). θEi and
φEi are the polar and azimuthal angles of the secret key Ei estimated by Eve, respectively

Figure 4 Average fidelity when the number of identity authentication sequences N is 1, 2, 5, 10, 20, and 30
on 3D; the integral ratio in this plot is 0.6555, 0.5000, 0.3073, 0.1979, 0.1229, and 0.0920, respectively

N increases to 30, the ratio becomes 0.0920. Therefore, as N increases, Eve cannot pass
the verification process, and the proposed QIA scheme ensures security against imper-
sonation attacks.

Next, we analyzed the security of the secret key of the proposed QIA scheme by ana-
lyzing Eve’s intercept-and-resend attack to obtain secret key information. Similar to the
impersonation attack, Eve cannot estimate the exact secret key information by measur-
ing the challenge qubits from Bob. Therefore, Eve attempts to estimate the secret key
while intercepting Alice and Bob. Eve first stores the challenge qubit |Q〉 sent by Bob and
then transmits |0〉 to Alice to extract the secret key information. Subsequently, Eve ap-
plies the unitary operator corresponding to the secret key estimated by Alice’s response
qubit |A′〉i = Rki

AB
(π/2)|0〉 to the stored challenge qubit. Thus, Eve can obtain fidelity be-

tween |0〉 state and |A′〉i with secret key information: F = |〈0|A′〉i| = |〈0|Rki
AB

(π/2)|0〉| =
|1 – i cos θj|/

√
2. Assuming that the same secret key is used for each sequence, θj seems to

be known, but the key is different for each sequence. Furthermore, the polar angle θj of
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the secret key can be estimated, but not the azimuth angle φj. When ci = 0, the probability
of estimating the exact secret key is related to fidelity as follows:

∫

F dv
∫

dv
=

1
4π

∫∫

θEi ,φEi

∣
∣〈ψi|Rki

AB
(π/2)REi (π/2)|ψi〉

∣
∣ sin θEi dθEi dφEi

=
1

4π

∫∫

θEi ,φEi

√∣
∣〈ψi|REi (π/2)Rki

AB
(π/2)|ψi〉

∣
∣
∣
∣〈ψi|Rki

AB
(π/2)REi (π/2)|ψi〉

∣
∣

× sin θEi dθEi dφEi

=
1

4π

∫∫

θEi ,φEi

√
∣
∣
i〈RE|R〉〈R|RE〉i

∣
∣ sin θEi dθEi dφEi

=
1

4π

∫∫

θEi ,φEi

√
∣
∣
i〈RE|B†

RBR|RE〉i
∣
∣ sin θEi dθEi dφEi

=
1

4π

∫∫

θEi ,φEi

√

pR(θEi ,φEi ) sin θEi dθEi dφEi

=
√

PR. (5)

Here, |RE〉i = REi (π/2)|ψi〉 is estimated by Eve. If the state in the verification phase is |RE〉i

before measurement, then the probability that the result |R〉i occurs is PR for all possible
secret key information estimated by Eve; pR(θEi ,φEi ) is the probability of estimating the ex-
act secret key at a specific value (θEi ,φEi ), where 0 ≤ θEi ≤ π , and 0 ≤ φEi < 2π . Therefore,
for all secret keys Ei estimated by Eve, the square of the probability that the result is |R〉i is
the integral ratio of fidelity. The probability that Eve succeeds in the intercept-and-resend
attack can be calculated as the integral ratio of fidelity: (

∫

F dv/
∫

dv)2. As the authenti-
cation sequence N is performed several times, the probability of Eve’s success decreases,
(
∫

F dv/
∫

dv)2N . Thus, the probability of Eve being detected is

Pfail = 1 – (PR)N = 1 –
(∫

F dv/
∫

dv
)2N

. (6)

As shown in Fig. 5, when N is 17, Pfail = 0.999999; hence, the probability of Eve being
detected is Pfail ≈ 1.

Figure 5 Probability Pfail of Eve being detected increases as the number of authentication sequence N
increases. If N ≥ 16.36, Pfail ≥ 0.999999 is satisfied
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Figure 6 Schematic representation of QMA. Alice generates a QMAC corresponding to the message and
sends them to Bob. Bob verifies the QMAC using the message to complete the message authentication
process

4 Quantum message authentication scheme based on the key-controlled
MMQSE method

4.1 Quantum message authentication scheme
The schematic representation of QMA using the key-controlled MMQSE method is given
in Fig. 6. In the QMA scheme, verifier Bob confirms the integrity of the message and au-
thenticates the origin of the message from sender Alice. The proposed QMA scheme con-
sists of three phases: preparation, message authentication, and verification.

4.1.1 Preparation phase
Alice and Bob pre-share the secret key KAB as in the proposed QIA scheme. Then,
Alice generates the message M = (m1‖m2‖ · · · ‖mi‖ · · · ‖mN ), where mi ∈ {0, 1}. Subse-
quently, Alice generates the initial quantum state

⊗N
i=1 |ψi〉mi , where |ψi〉 = cos(αi/2)|0〉 +

eiβi sin(αi/2)|1〉. If mi =0, then |ψi〉0 = |ψi〉; else |ψi〉1 = |ψi〉⊥, where |ψi〉⊥ is orthogonal to
|ψi〉. As in the QIA schemes, the pair of angles (αi,βi) and secret key angles (θj,φj) satisfy

the condition of Eq. (1). Furthermore, with specific values αi = 2 arctan(sin θj +
√

1 + sin2 θj)
and βi = φj + θj, the quantum states are completely dependent on the secret key informa-
tion.

4.1.2 Message authentication phase
Alice generates a sequence of N QMAC, |QMAC〉 =

⊗N
i=1 |QMAC〉i, by applying the

single qubit rotation operator Rki
AB

(π/2) to the initial quantum states as |QMAC〉i =
Rki

AB
(π/2)|ψi〉mi . If mi = 0, |QMAC〉i = |R〉i = Rki

AB
(π/2)|ψi〉 else |QMAC〉i = |L〉i =

Rki
AB

(π/2)|ψi〉⊥ = Rki
AB

(–π/2)|ψi〉. |R〉i and |L〉i are orthogonal. Subsequently, Alice trans-
mits M and |QMAC〉 to Bob.

4.1.3 Verification phase
Bob performs a single qubit measurement to |QMAC〉 using the measurement operator
B = |R〉ii〈R| – |L〉ii〈L|. Because Bob has the secret key KAB, he can obtain the measurement
outcome M′. If Bob’s measurement outcome is |R〉i, m′

i = 0. However, if the measurement
outcome is |L〉i, m′

i = 1. Finally, Bob verifies Alice’s message by comparing M and M′. If M =
M′, the message M is authenticated; else, Bob aborts the message authentication process.
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4.2 Security analysis
In the proposed QMA scheme, Eve intends to disturb the message origin authentication
and contaminates the message integrity without being detected. Thus, Eve causes confu-
sion about the origin of the message by generating a quantum message that only legitimate
users can create (security of the message origin). Alternatively, Eve forgeries the message
to induce incorrect message delivery (impossibility of forgery).

First, we analyze the security of the message origin, in which Eve generates illegal quan-
tum messages to cause confusion about the origin of the message, and show a security
analysis of the proposed QMA scheme using fidelity. Eve attempts to cause confusion
about the message origin using arbitrary classical messages ME = (mE1‖mE2‖ · · · ‖mEi‖ · · ·
‖mEN ), where mEi ∈ {0, 1}, and QMAC |QMACE〉 =

⊗N
i=1 REi (π/2)|ψEi〉mEi pairs because

only legitimate users know the secret key. When mEi = 0 in the ith sequence, the fidelity
between legitimate quantum message |QMAC〉i = Rki

AB
(π/2)|ψi〉 and Eve’s quantum mes-

sage |QMACE〉i = REi (π/2)|ψEi〉 is as follows:

F =
∣
∣
i〈QMAC|QMACE〉i

∣
∣ =

∣
∣〈ψi|R†

ki
AB

(π/2)REi (π/2)|ψEi〉∣∣. (7)

Eve generates the initial quantum state |ψEi〉 = cos(αEi /2)|0〉 + eiβEi sin(αEi /2)|1〉 with spe-
cific value αEi = 2 arctan(sin θEi +

√

1 + sin2 θEi ) and βEi = φEi +θEi using secret key informa-
tion Ei = (θEi ,φEi ) estimated by Eve. Therefore, Eve’s initial quantum states are completely
dependent on the Ei = (θEi ,φEi ). The fidelity of QMAC is shown in Fig. 7.

When mi = 0, i.e., |QMAC〉i = |R〉i, the range of the polar angle of the |QMAC〉i is from
π/4 to π/2. However, since there is no Ei where |QMACE〉i is orthogonal to |QMAC〉i

corresponding to ki
AB = (π/4, 0), the fidelity cannot be 0 in Fig. 7. If Ei = (π/4, 0) and

ki
AB are the same, then the fidelity is 1. In Fig. 7, even if Ei is different from the ac-

tual secret key, the fidelity can be 1 when |QMACE〉i = |QMAC〉i. However, Eve’s prob-
ability of manipulating and selecting such a scenario is almost 0. Therefore, assuming
that Eve knows the classical message mi that Alice wants to send, the fidelity integral
ratio for all Ei that Eve can select is 0.7517. As in QIA, as the number of authentica-
tion sequence N increases, the quantum message is represented by the product state
|QMACE〉 =

⊗N
i=1 |QMACE〉i =

⊗N
i=1 REi (π/2)|ψEi〉, and the fidelity integral ratio gradu-

Figure 7 Fidelity between legitimate QMAC |QMAC〉i =RkiAB
(π /2)|ψi〉 and Eve’s QMAC

|QMACE〉i =REi (π /2)|ψEi 〉 on (a) 3D, and (b) 2D contour plot. θEi and φEi are the polar and azimuthal angles
of the secret key Ei estimated by Eve, respectively
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Figure 8 Fidelity when the number of message authentication sequences N is 1, 2, 5, 10, 20, and 30 on 3D;
the integral ratio in this plot is 0.7517, 0.6020, 0.3895, 0.2641, 0.1730, and 0.1314, respectively

ally approaches zero, as shown in Fig. 8. Specifically, when N is 2, 5, 10, and 20, the fidelity
integral ratio is 0.6020, 0.3895, 0.2641, and 0.1730, respectively. When N increases to 30,
the fidelity integral ratio becomes 0.1314. Therefore, as N increases, Eve cannot send the
intended message and is not authenticated as the legitimate user Alice. Thus, the proposed
QMA scheme ensures the security of the message origin.

Next, we analyze the security of the proposed QMA scheme using Eve’s forgery strat-
egy that attempts to violate the integrity of the message and QMAC pair. Eve’s purpose
is to forge the message and QMAC pair owned by Alice to pass the verification process
undetected. Eve flips the bit of message M, and applies an arbitrary unitary operator UEi

to |QMAC〉i. The forged QMAC |QMACE〉i in which Eve applies UEi to |QMAC〉i is as
follows:

|QMACE〉i = UEi |QMAC〉i

= UEiRki
AB

(π/2)|ψi〉. (8)

Eve performs message authentication using the forged message ME and QMAC
|QMACE〉i. For example, we consider the case of rotation axis ki

AB = (0, 0) and initial quan-
tum state |ψi〉 = 1√

2 (|0〉 + |1〉). Then, |QMAC〉i ∈ {|R〉i, |L〉i} that Alice transmits to Bob is
as follows:

|QMAC〉i =

⎧

⎨

⎩

|R〉i = 1√
2 (|0〉 + i|1〉),

|L〉i = 1√
2 (|0〉 – i|1〉).

(9)

Eve flips the message bit and applies the unitary operator UEi = RẐ(π ) to |QMAC〉i for the
forgery sequence. If mi = 0, Eve forges message bit to mEi = 1 and |QMAC〉i to |QMACE〉i =
RẐ(π )|R〉i = |LE〉i. Figure 9 presents Eve’s forgery for message and QMAC pair using UEi =
RẐ(π ) when the secret key is ki

AB = (0, 0).
For Eve to succeed in forgery, Ei = ki

AB must be satisfied. We consider a universal quan-
tum NOT gate (U-NOT) that evolves any arbitrary quantum state |ψ〉 into |ψ〉⊥. If Eve
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Figure 9 Eve’s forged message and QMAC pair using UEi =RẐ (π ) when the secret key is kiAB = (0, 0). (a) Eve
forges QMAC |R〉i to |LE〉i whenmi = 0. (b) Eve forge QMAC |L〉i to |RE〉i whenmi = 1

flips the message bit and performs U-NOT instead of UEi in Eq. (8), in forgery for any
rotation axis ki

AB will be successful. However, being an antiunitary operator, the U-NOT
gate can only partially be implemented [46–48]. If Eve attempts forgery using a gate ap-
proximated to the U-NOT gate, the probability of evolving |ψ〉 into |ψ〉⊥ is 2/3. Thus, the
probability of Eve being detected is

Pfail = 1 – (2/3)N . (10)

As shown in Eq. (10), when N is 14, Pfail reaches 0.999999, indicating that the probability
of Eve being detected is approximately 1. Therefore, in practice, Eve’s forgery of messages
and QMAC pairs are impossible.

5 Performance
This section compares the proposed quantum authentication schemes with previously
proposed schemes. Subsequently, we demonstrate that the proposed schemes are robust
to noise through several important noise cases. In addition, we calculated the point where
the probability of Eve being detected and the probability of success in a secure authenti-
cation process in a noisy environment are optimal for the number of sequences.

5.1 Comparison
We compared the proposed quantum authentication schemes with previously proposed
schemes. Most previously proposed schemes were designed without considering the fea-
sibility of implementing factors such as quantum sources, quantum operations, quantum
measurements, and the number of quantum transmissions. First, quantum authentication
schemes based on entangled states, such as the Bell or GHZ states, are difficult to gener-
ate and maintain [34–36]. It is difficult to generate and maintain high quality entangled
states using spontaneous parametric down-conversion [49–51]. Second, most methods
implement quantum operations, such as the controlled operation of two or more qubits,
probabilistically [37–39]. Even the antiunitary operations are practically impossible to im-
plement [46–48]. Third, quantum measurements, such as the swap test and BSM, cannot
be completely implemented using linear optics [40–42, 52]. The swap test is only proba-
bilistically implemented, and the BSM based on linear optics cannot measure the Bell state
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Table 1 Comparison between the proposed and existing QIA schemes

CMQIA [16] QIA [21] DSQC QIA [17] Our scheme

Method Password Challenge-response Password Challenge-response

Quantum source 2N GHZ-like states 2N single qubits 2N Bell states N single qubits

Quantum operation N Pauli operation 4N single rotation
operation

N CNOT operation,
2N Pauli operation

N single rotation
operation

Measurement 2N single qubit
measurement,
2N Bell state
measurement

N swap test N single qubit
measurement,
2N Bell state
measurement

N single qubit
measurement

Number of
quantum
transmission

4N times 4N times 2N times 2N times

Decoy state O O O X

Table 2 Comparison between the proposed and existing QMA schemes

QMA [22] QR QMA [23] QMA [25] Our scheme

Quantum source 2N single qubits,
N Bell states

N single qubits 2N single qubits N single qubits

Quantum
operation

2N single unitary
operation

2N controlled
operation,
N/2 swap
operation

4N single rotation
operation,
2N single Pauli
operation

N single rotation
operation

Measurement N single qubit
measurement

N single qubit
measurement

N swap test N single qubit
measurement

Number of
quantum
transmission

N times N times 3N times N times

Decoy state � O X X

�: Not used, but required to verify the security of quantum channels

|�±〉. Finally, noise on the quantum channel reduces the efficiency of quantum authenti-
cation schemes as the number of quantum transmissions increases. Conversely, because
our QIA and QMA schemes are based on the key-controlled MMQSE method, they are
feasible and efficient for implementation. In the proposed method, the single qubits and
single qubit measurement corresponding to the secret key facilitate the quantum state
preparation and measurement process. Single qubit rotation operators for encryption are
simpler to implement than multi qubit or antiunitary operations. Moreover, our schemes
are robust to noise because the number of quantum transmissions is less [44], and highly
efficient because the sequences used as decoy qubits can also be used as authentication
qubits [21, 43]. Decoy qubits added for protocol security are difficult to implement in
practice, and no research has been published on their implementation to date. Tables 1
and 2 compare the quantum sources, quantum operations, quantum measurements, and
the number of quantum transmissions between the proposed and conventional quantum
authentication schemes.

In Table 1, our QIA scheme uses N single qubits as the quantum source, compared to
the control mutual quantum entity authentication scheme using 2N GHZ-like states pro-
posed by Kang et al. in 2018 [16]. Our QIA scheme applies only N rotation operators
and performs only 2N quantum transmissions, compared with the quantum identification
scheme with many quantum operations and quantum transmissions proposed by Choi et
al. in 2020 [21]. Our QIA scheme performs single qubit measurement instead of two or
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more qubits measurement, such as the BSM used in the scheme proposed by Dutta et al.
in 2022 [17]. In Table 2, compared with the simple QMA scheme proposed by Curty et al.
in 2002 [22], our QMA scheme uses N single qubits. Finally, in Table 2, compared with the
QMA schemes proposed by Bartkiewicz et al. in 2014 [23] and Kang et al. in 2021 [25],
our QMA scheme has fewer operations and quantum transmissions and does not use the
swap test.

5.2 Analysis of noise environment
The proposed schemes are robust to noise because the number of quantum transmissions
is less than that of other schemes. Even without eavesdropping, we analyze the authenti-
cation efficiency for noises in the quantum channels using fidelity. There are several im-
portant examples of noise in a quantum channel: bit flip noise, phase flip noise, bit-phase
flip noise, and depolarizing noise. In noisy environments, noise causes authentication er-
rors even in the absence of eavesdroppers. The fidelity integral ratio without noise is 1. As
noise increases gradually, the fidelity integral ratio decreases. However, when there was no
noise and only eavesdropping in the channel, the fidelity integral ratios were 0.6555 and
0.7517 in QIA and QMA, respectively. Therefore, the valid upper bound for the bit flip
noise rate (εb), phase flip noise rate (εp), bit-phase flip error rate (εb+p), and depolarizing
noise rate (εd) is calculated for the security of the proposed schemes [45].

The simulation results in Fig. 10 indicate that QIA, which performs quantum transmis-
sion twice, is more affected by noise than QMA, which performs quantum transmission
once. Figure 10(a) shows that in QIA, the integral ratio of the average fidelity decreases
similarly for all noises but is slightly more sensitive to bit-phase flip noise, represented
by red lines and dots. The upper bound of the valid noise rate not exceeding the inte-
gral ratio of the average fidelity 0.6555 when Eve eavesdrops is εb ≤ 5.79%, εp ≤ 5.79%,
εb+p ≤ 5.78%, and εd ≤ 5.79%; the corresponding integral ratio of the average fidelity for
each upper bound of the valid noise rate are 0.6556, 0.6557, 0.6557, and 0.6557, respec-
tively. Figure 10(b) shows that in the QMA, the slope of the fidelity integral ratio decreases
differently. The slope decreases more rapidly for bit flip noise than in others. This is be-
cause the polar angle range of the |QMAC〉i = |R〉i state used in the simulation is set to
π/4 ∼ π/2; if bit flip noise occurs in the |R〉i state, the result is closer to the |L〉i state rather
than |R〉i state unconditionally. Therefore, the probability that the fidelity is closer to zero
increases and the integral ratio of fidelity decreases more rapidly. The upper bound of the

Figure 10 In the proposed QIA and QMA schemes (a) average fidelity integral ratio, and (b) fidelity integral
ratio to noise rate
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valid noise rate not exceeding the fidelity integral ratio of 0.7517 when Eve eavesdrops is
εb ≤ 9.83%, εp ≤ 30.90%, εb+p ≤ 9.83%, and εd ≤ 17.90%; the corresponding fidelity in-
tegral ratios in each upper bound of the valid noise rate are 0.7518, 0.7521, 0.7518, and
0.7518.

If the noise rate of the quantum channel is higher than the upper bound of the valid
noise rate, security of the proposed scheme cannot be guaranteed because it is impossible
to determine whether the authentication error is due to noise in the quantum channel or
eavesdropping by Eve. In addition, as the number of transmissions increases, the noise
rate increases. This reduces the integral ratio of fidelity and increases authentication er-
rors. Quantum authentication schemes with many transmissions are not robust to noise
because the upper bound of the valid noise rate increases. Therefore, the proposed quan-
tum authentication schemes are efficient and secure because they reduce the number of
quantum transmissions.

Furthermore, we can also calculate the upper bound of the valid noise rate in various
types of noisy environments. For example, if bit flip, phase flip, and bit-phase flip noise
occur simultaneously with the different probabilities p1, p2, and p3, respectively. Subse-
quently, the noise operator for two or more types of noise at the same time in the quantum
channel can be expressed as follows:

Emix =
√

1 – (p1 + p2 + p3)

(

1 0
0 1

)

+
√

p1

(

0 1
1 0

)

+
√

p2

(

1 0
0 –1

)

+
√

p3

(

0 –i
i 0

)

. (11)

In Eq. (11), depolarizing noise occurs when p1 = p2 = p3. Using Eq. (11), QIA and QMA
fidelity can be expressed with respect to the noise operator Emix, and according to Eq. (5),
the (average) fidelity integral ratio can be calculated. Finally, the upper bound of the valid
noise ratio can also be expressed as a function of probabilities p1, p2, and p3, after which
it can be analyzed in a more straightforward manner.

In the proposed QIA scheme, when the number of authentication sequences N = 17,
the probability of Eve being detected is Pfail ≈ 1, i.e., a user can complete a secure au-
thentication process against Eve. Therefore, even in a noisy environment, at least N = 17
authentication sequences must be performed for secure authentication. Similarly, in the
QMA scheme, N ≥ 25 must be applied. Quantitatively, the probability of success in a se-
cure authentication process in a noisy environment is PQIA|ε(N) =

∑1
r=0 N Crpr(1 – p)N–r

and PQMA|ε(N) =
∑2

r=0 N Crpr(1 – p)N–r , which depends on the valid noise rate ε. r is the
number of times noise occurring in the total sequence N and depends on the valid noise
rate. In quantum cryptography systems, the quantum bit error rate is typically less than
3%, and depends on the system form, distance, and environment and is particularly af-
fected by channel noise [53–56]. Therefore, we assume that the noise p of the quantum
channel occurs at 3%. Specifically, in the QIA scheme, for the quantum states passing
through the quantum channels to be robust to noise, noise should not occur more than
twice in the 17 sequences. Therefore, even in noisy environments, the probability of suc-
cess in a secure authentication process PQIA|ε(N) is 90.91%. Similarly, in the QMA scheme,
PQMA|ε(N) is 96.20% when the number of authentication sequences N is 25. As the se-
quence increases, the quantum state is frequently exposed to noise. Thus, the probability
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Figure 11 Optimal number of authentication sequences between the probability of Eve being detected
Pfail(N) and probability of success in a secure authentication process in a noise environment;
PQIA|ε (N) =

∑1
r=0 NCrpr (1 – p)N–r , PQMA|ε (N) =

∑2
r=0 NCrpr (1 – p)N–r (a) QIA and (b) QMA schemes

of success in a secure authentication process decreases. Figure 11 shows the optimal point
between the probability of Eve being detected and the probability of success in a secure au-
thentication process in a noisy environment for the number of authentication sequences.
Therefore, the most optimal number of sequences is when N = 6 in QIA and N = 11 in
QMA. Here, the probability of Eve being detected is Pfail(N = 6) = 0.9937 in the QIA and
Pfail(N = 11) = 0.9981 in the QMA.

6 Conclusion
We propose a key-controlled MMQSE method that uses only a single qubit operation
with remarkable advantages in terms of implementation. First, the rotation operator cor-
responding to single qubit operation can be easily implemented by combining half- and
quarter-wave plates in linear optics. Second, because the rotation angle of the rotation op-
erator is fixed, legitimate users possessing the secret key can easily decrypt it using only a
single qubit measurement. Third, using a single qubit instead of an entangled state makes
generating and maintaining quantum sources easy. We apply this to the QIA and QMA
schemes and confirm the legitimacy of an identity or message by performing a single qubit
operation. They provide unconditional security because of the arbitrary rotation axis cor-
responding to the pre-shared secret information. This implies that the security of a quan-
tum channel can be verified without decoy qubits. Furthermore, our schemes are robust to
noise because they perform fewer quantum transmissions in real quantum-channel noise
environments.

We analyzed the security of the proposed quantum authentication scheme using
Uhlmann’s fidelity against various eavesdropper attacks. We demonstrated the relation-
ship between the integral ratio of the Uhlmann’s fidelity and the probability of successful
eavesdropping. Using the QIA scheme, we proved the security of our scheme against im-
personation and intercept-and-resend attacks. We estimate the probability of successful
eavesdropping by Eve as the fidelity integral ratio and demonstrate that the probability of
Eve being detected is almost 1 when the number of authentication sequences is 17. We
prove the security of our QMA scheme by analyzing the message origin and the impossi-
bility of forgery using the fidelity integral ratio. In addition, the probability of Eve forging
the message and QMAC pair is almost zero when the number of authentication sequences
is 14.

Subsequently, we show that our schemes improve efficiency compared to previously
proposed schemes in terms of quantum sources, quantum operations, quantum measure-
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ments, and quantum transmissions. The proposed schemes are robust to noise because
the number of quantum transmissions required is less compared to other schemes. We
demonstrate the integral ratio of the Uhlmann’s fidelity to the noise rate in the proposed
QIA and QMA schemes, even without eavesdropping. We also calculated the upper bound
of the valid noise ratio, which did not exceed the fidelity integral ratio when Eve eaves-
dropped. In the QIA scheme, the upper bound of the valid noise is εb ≤ 5.79%, εp ≤ 5.79%,
εb+p ≤ 5.78%, and εd ≤ 5.79%. In the QMA scheme, the upper bound of the valid noise
rate is εb ≤ 5.79%, εp ≤ 5.79%, εb+p ≤ 5.78%, and εd ≤ 5.79%. Furthermore, the optimal
number of sequences determined was N = 6 in QIA and N = 11 in QMA. Therefore, we
demonstrated QIA and QMA schemes that are secure, convenient, and feasible using the
key-controlled MMQSE method.
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