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Abstract
Quantum Fisher information matrix (QFIM) is a fundamental quantity in quantum
physics, which closely links to diverse fields such as quantummetrology, phase
transitions, entanglement witness, and quantum speed limit. It is crucial in quantum
parameter estimation, central to the ultimate Cramér-Rao bound. Recently, the
evaluation of QFIM using quantum circuit algorithms has been proposed for systems
with multiplicative parameters Hamiltonian. However, systems with generic
Hamiltonians still lack these proposed schemes. This work introduces a
quantum-circuit-based approach for evaluating QFIM with generic Hamiltonians. We
present a time-dependent stochastic parameter-shift rule for the derivatives of
evolved quantum states, whereby the QFIM can be obtained. The scheme can be
executed in universal quantum computers under the family of parameterized gates.
In magnetic field estimations, we demonstrate the consistency between the results
obtained from the stochastic parameter-shift rule and the exact results, while the
results obtained from a standard parameter-shift rule slightly deviate from the exact
ones. Our work sheds new light on studying QFIM with generic Hamiltonians using
quantum circuit algorithms.

Keywords: Quantummetrology; Generic Hamiltonian; Fisher information; Stochastic
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1 Introduction
The objective of quantum metrology is that using nonclassical quantum resources to en-
hance the precision in the estimation of unknown parameters [1, 2], including entangle-
ment [3–9] and squeezing states [10–12]. Its cornerstone is the quantum estimation the-
ory, which imposes the lower bound of precision by the quantum Cramér-Rao inequality
[13]. The bound is associated with quantum Fisher information (QFI) for single-parameter
estimation and quantum Fisher information matrix (QFIM) for multiparameter estima-
tion. Beyond the estimation theory, QFI and QFIM also connect to various aspects of
quantum physics, including quantum phase transitions, entanglement witness, and the
Fubini-Study metric, making them being fundamental quantities with broad applications
(See Ref. [14] and references therein). Therefore, the evaluation of QFI and QFIM is crucial
for studying these concepts.
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Numerous studies on QFI and QFIM mainly focus on multiplicative parameters of
Hamiltonians, e.g., a parameter θ in a Hamiltonian θH [15]. However, recent attention was
raised to generic parameters of Hamiltonians, such as quantum magnetometry [7, 15, 16],
unitary parametrization process [17, 18], and time-dependent Hamiltonians [19, 20].
While the estimation with generic Hamiltonians shares some typical properties with the
multiplicative case, it likewise indicates other distinct features, such as getting high effi-
ciency with time scaling [15] and quantum control [19, 20]. The study of QFI/QFIM in
these generic cases will open a broad range of potential applications in quantum metrol-
ogy, quantum computing, and others.

On the other side, quantum computers can outperform classical ones and open sig-
nificant quantum advantages for exponentially speeding up various computational tasks
[21, 22]. Specifically, using Noisy Intermediate-Scale Quantum computers [23] resulted
in the brilliant growth of different quantum algorithms (see Refs. [24, 25].) Among them,
variational quantum algorithms [24] are the most promising approach for improving the
efficiency in noisy and few-qubits devices. These algorithms include variational quantum
eigensolvers [26–28], quantum approximate optimization algorithms [29], new frontiers
in quantum foundations [30–32], and so on.

Besides, many computational tools based on variational quantum circuits were devel-
oped, including the standard parameter-shirt rules (Stand.PSR) [33, 34] and quantum nat-
ural gradient [35]. The Stand.PSR allows us to get the exact partial derivatives of any func-
tion by calculating it with different shifted parameters in the circuits. However, it only
applies to cases where the gate’s generators commute. Otherwise, to apply the Stand.PSR,
additional treatments are required, such as Hamiltonian simulation techniques [36]. Re-
cently, Banchi and Crooks in their seminal work, have developed a stochastic parameter-
shift rule (Stoc.PSR) for general quantum evolutions, which relies on the stochastic repe-
titions of quantum measurement [37].

So far, different variational quantum algorithms for quantum metrology were developed,
which open a new way to achieve quantum-enhanced precision [31, 32, 38, 39]. Moreover,
the Stand.PSR was widely used in various aspects, including finding the QFI with multi-
plicative Hamiltonians [40, 41]. However, it is lacking in the study of generic Hamiltonians.
In reality, many systems are governed by generic Hamiltonians. Therefore, studying these
cases using quantum algorithms is urgent.

This paper introduces a general time-dependent Stoc.PSR and applies it to evaluate
QFI/QFIM. We utilize the proposed Stoc.PSR for the derivatives of evolved quantum
states, then compute the QFI/QFIM and examine the estimation precision in quantum
metrology. Our scheme can execute in universal quantum computers under the family of
parameterized gates. In magnetic field estimations, we show an excellent agreement be-
tween the results obtained from the Stoc.PSR and the exact results while the Stand.PSR’s
results deviate from the exact values. This observation suggests the significance of the
Stoc.PSR for studying QFI/QFIM with generic Hamiltonians and its applicability to varia-
tional quantum metrology. Furthermore, we extend our approach to examine the precision
in many-body Hamiltonian tomography, such as estimating unknown coupling constants
in the Hamiltonian.
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2 Results and discussion
2.1 Quantum Fisher information for generic Hamiltonians
Estimation is a measurement process that uses a probe to extract information from an
interesting system with d unknown parameters in a field B = φ1e1 + · · · + φded , where {ej}
are unit vectors in {j} directions. The probe interacts with the system through a generic
Hamiltonian H(φ) = B · H =

∑d
j=1 φjHj, where the {Hj} do not necessarily commute. The

task of quantum parameters estimation is to evaluate these unknown coefficients by mea-
suring the probe.

Let ρ0 be the initial probe state, it evolves to ρ(φ) = U(φ)ρ0U†(φ) after the interaction,
where U(φ) = e–itH(φ) is the unitary evolution during the interaction time t. Note that H(φ)
is a general Hamiltonian, therefore U(φ) cannot be expanded in terms of multiplicative.
By measuring the probe state in a general basis set, such as the positive operator-valued
measure (POVM) Ex for the outcome x, one can obtain the corresponding probability
distribution p(x|φ) = tr[ρ(φ)Ex], which can be used to estimate the unknown parameters φ.

In the estimation theory, different estimators can be used to obtain the estimated value
φ̌(x) of the unknown parameters φ, each yielding different precisions. The precision is
characterized by the covariance matrix C(φ) = E[(φ – E[φ̌(x)])(φ – E[φ̌(x)])ᵀ] [8], where
E[X̌] =

∫
p(x|X)X̌(x) dx is the expectation value of the estimator X̌(x). The diagonal term

Ck,k ≡ �2φk = E[φ2
k ] – E2[φk] is the variance for estimating φk , and the off-diagonal term

Ck,l is the covariance between φk and φl . An estimator is unbiased when E[φ̌k(x)] = φk ,
∀k ∈ {1, . . . , d}. The precision obeys classical and quantum Cramér-Rao bounds (CRBs)
[13]

M · C(φ) ≥ F–1(φ) ≥ Q–1(φ), (1)

where M is the number of repeated measurements, F(φ) is the classical Fisher information
matrix (CFIM) defined by

Fk,l =
∫ 1

p(x|φ)
[
∂φk p(x|φ)

][
∂φl p(x|φ)

]
dx, (2)

and the maximum over all possible measurements {Ex} yields the quantum Fisher infor-
mation matrix (QFIM) Q(φ) with elements

Qk,l =
1
2

tr
[
ρ(φ){Lk , Ll}

]
, (3)

where Lk is the symmetric logarithmic derivative (SLD) that obeys 2∂φk ρ(φ) = Lkρ(φ) +
ρ(φ)Lk [13]. For a single parameter estimation (such as φ), the CRBs simplify to �2φ ≥
1/F(φ) ≥ 1/Q(φ), where F(φ) =

∫
p(x|φ)[∂φ ln p(x|φ)]2 dx and Q(φ) = tr[L2ρ(φ)] are the

classical and quantum Fisher information, respectively. Note that both CFIM and QFIM
may depend on the parameters φ regardless of the unitary process.

The QFI and QFIM set ultimate bounds for the estimation precision of any estimator.
Therefore, it is crucial to derive these QFI and QFIM for the estimation theory with generic
Hamiltonians. Let us start with the derivative of the unitary evolution [16, 42]

∂e–itH(φ)

∂φj
= –i

∫ t

0
e–i(t–s)H(φ)[∂φj H(φ)

]
e–isH(φ) ds,
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= –iU(φ)Yj, (4)

where Yj =
∫ t

0 eisH(φ)[∂φj H(φ)]e–isH(φ) ds is a Hermitian operator [16]. Then, we obtain

∂ρ(φ)
∂φj

= –iU(φ)[Yj,ρ0]U†(φ). (5)

The QFIM (3) straightforwardly yields

Qk,l = 2
∑

pλ+pλ′ >0

〈λ|∂φk ρ(φ)|λ′〉〈λ′|∂φlρ(φ)|λ〉
pλ + pλ′

, (6)

for ρ(φ) =
∑

λ pλ|λ〉〈λ|, and ∂φk ρ(φ) is given from Eq. (5). For pure quantum states, i.e.,
ρ0 = |ψ0〉〈ψ0|, the QFIM is defined by [13]

Qk,l = 4 Re
[〈
∂φk ψ(φ)

∣
∣∂φlψ(φ)

〉
–

〈
∂φk ψ(φ)

∣
∣ψ(φ)

〉〈
ψ(φ)

∣
∣∂φlψ(φ)

〉]
, (7)

where |ψ(φ)〉 = U(φ)|ψ0〉 is the evolved probe state. Substituting Eq. (4) into Eq. (7), it
yields [7, 16]

Qk,l = 4 Re
[〈ψ0|YkYl|ψ0〉 – 〈ψ0|Yk|ψ0〉〈ψ0|Yl|ψ0〉

]
. (8)

Computing QFI and QFIM requires the derivatives of the probe state, i.e., ∂φjρ(φ),
∀j ∈ {1, . . . , d}. Hereafter, we introduce a stochastic parameter-shift rule (Stoc.PSR) to
compute these derivatives on quantum circuits, allowing for precision evaluation in dif-
ferent quantum computing platforms.

2.2 Stochastic parameter-shift rule
In this section, we present a time-dependent stochastic parameter-shift rule (Stoc.PSR) for
evaluating QFI/QFIM with generic Hamiltonians, where we particularly calculate ∂φjρ(φ)
using quantum circuits. This method is thus helpful for studying different variational
quantum algorithms [24], including variational quantum metrology [31, 32, 39] and eval-
uating Fubini-Study metric tensor in quantum natural gradient [35].

We first recast Eq. (5) in the following form

∂ρ(φ)
∂φj

= –i
∫ t

0
U(φ)[Oj,ρ0]U†(φ) ds, (9)

where Oj = eisH(φ)[∂φj H(φ)]e–isH(φ). Referring to [37] and using the Baker-Campbell-
Hausdorff formula [43] for H2

j = I , we derive

[Oj,ρ0] =
i

sin(2tμ)
[
e–itμOjρ0eitμOj – eitμOjρ0e–itμOj

]
, (10)

for all tμ /∈ π
2 Z. See Methods section for the detailed proof. Recall that Ref. [37] fixes

μ = π/4 and t = 1. Here, we consider any time t and introduce μ as an arbitrary parame-
ter shift, which makes our scheme more general, especially in time-dependent and noisy
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metrology. For tμ = π/4, it reduces to Ref. [37] and maximizes the accuracy for parameter-
shift approaches (se also Ref. [44].) Finally, using e–itμOj = eisH(φ)e–itμ[∂φj H(φ)]e–isH(φ) [42],
and substituting Eq. (10) into Eq. (9), we obtain (see the Methods section):

∂ρ(φ)
∂φj

=
1

sin(2tμ)

∫ t

0

[
ρ+

j (φ, s) – ρ–
j (φ, s)

]
ds, (11)

which is the time-dependent stochastic parameter-shift rule (Stoc.PSR), where

ρ±
j (φ, s) = U±

j (φ, s)ρ0
[
U±

j (φ)
]†, (12)

U±
j (φ, s) = e–i(t–s)H(φ)e∓itμ[∂φj H(φ)]e–isH(φ). (13)

The algorithm for time-dependent Stoc.PSR is described in Algorithm 1, which is an
extended version of the original (without time-dependent) in Ref. [37]. Figure 1 depicts a
quantum circuit for the Stoc.PSR. To obtain ∂φjρ(φ) for a given time t, we perform the fol-
lowing steps: (s1) generate a random number s from a normal distribution within the inter-
val [0, t]; (s2) initialize the circuit with ρ0; (s3) apply the quantum gates e–isH(φ), e–itμ[∂φj H(φ)],
and e–i(t–s)H(φ); (s4) extract the final state ρ+ from the circuit; (s5) repeat steps s2-s4, re-
placing e–itμ[∂φj H(φ)] with eitμ[∂φj H(φ)], and assign the quantum state to ρ–; (s6) repeat steps
s1-s5 N times and compute the derivative via t

N∗sin(2tμ)
∑N

n=1(ρ+ –ρ–). The term t/N comes
from Monte-Carlo sampling, i.e.,

∫ b
a f (x) dx ≈ b–a

N
∑N

i=1 f (xi). Apply the procedure for all
j ∈ 1, . . . , d and use Eqs. (6)-(7) we can compute the QFIM. Finally, we repeat the scheme
for other time instances.

Note that the scheme can be implemented in universal quantum computers. Assuming
a programmable quantum computer that can execute a family of native quantum gates
U(t,φ) = e–itH(φ), where H(φ) =

∑
j φjHj, the evolution terms e–i(t–s)H(φ) and e–isH(φ) in step

3 can be implemented by using the quantum gates U(t – s,φ) and U(s,φ), respectively.
The remaining term e–itμ[∂φj H(φ)] in step 3 yields e–itμHj , which can be implemented by
the quantum gate U(tμ, ej), where ej is a unit vector with 1 at the jth element and zeros

Figure 1 Quantum circuit for time-dependent stochastic parameter-shift rule (Stoc.PSR). For every time t, we
first prepare a quantum state ρ0 and generate a random number s ∈ [0, t]. A sequence of gates e–isH(φ) ,

e
–itμ[∂φj

H(φ)]
, and e–i(t–s)H(φ) applies to the circuit and produces ρ+. We then repeat the scheme while replacing

e
–itμ[∂φj

H(φ)]
by e

itμ[∂φj
H(φ)]

and compute ρ–. The derivative ∂φjρ(φ) is obtained via ρ+ – ρ–. The process is

then repeated for all φj to get the QFIM Q(φ). Then, we move to the next time t′ and do the same procedure
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for the others. Therefore, all the evolution terms can be implemented by the device. The
density states ρ+ and ρ– can be extracted and subtracted from each other using classical
computers or quantum subtraction technology in real hardware, e.g., see Ref. [45].

So far, the accuracy of an approach (such as finite difference, Stand.PSR, and Stoc.PSR)
is determined by its variance, which is a statistical error raising from a finite number of
measurements. The variance of the Stoc. PSR is comparable with that of the Stand. PSR
when an infinite number of measurements are taken. [37]

Finally, the algorithm’s complexity is calculated using the Big O notation (O). Following
Ref. [46], the complexity of the evolution gate e–itH(φ) is O(N3). When considering the set
of three evolution terms shown in Fig. 1, the total complexity is O(3N3), which can be
simplified to O(N3) by removing the constant term.

2.3 Applications
To demonstrate advantaged features of the Stoc.PSR method for evaluating QFIM, we
scrutinize quantum metrology in two cases of single and multiple magnetic fields. We
further discuss its application to Hamiltonian tomography in many-body systems, which
involves determining unknown coupling constants in the Hamiltonian.

2.3.1 Single parameter estimation
Let us consider a magnetic field B = cos(φ)ex + sin(φ)ez, and our goal is to estimate the
angle φ between the field’s direction and the z axis [15]. The field interacts with an exposed
qubit probe and imprints its information into the probe via the interaction Hamiltonian

H(φ) = B · σ = cos(φ)σx + sin(φ)σz, (14)

where σ = (σx,σy,σz) are the Pauli matrices. The unitary evolution is given by U(t,φ) =
e–itH(φ). Applying this transformation, an initial probe state, i.e., |ψ0〉 = (|0〉 + |1〉)/√2
evolves to |ψ(φ)〉 = U(t,φ)|ψ0〉. The evolved probe state |ψ(φ)〉 provides the best quantum
strategy for the estimation of φ, which can be evaluated via the QFI, similar to Eq. (8)

Q(φ) = 4 Re
[〈
ψ0

∣
∣Y 2

φ

∣
∣ψ0

〉
–

∣
∣〈ψ0|Yφ |ψ0〉

∣
∣2]

= 4 sin2(t)
[
1 – cos2(t) sin2(φ)

]
, (15)

where Yφ =
∫ t

0 eisH(φ)[∂φH(φ)]e–isH(φ) ds (see detailed in the Methods section). The QFI
Q(φ) is time-dependent and achieves a maximum value of 4 at t = π/2, as shown by the
solid curves in Fig. 2. This behavior is caused by the rotation of the probe state under mag-
netic field. Furthermore, the QFI depends on the true parameter value, it thus becomes a
function of φ. In the limit φ → 0, the QFI yields Q(φ) = Qmax = 4 sin2(t) [15].

We now apply the Stoc.PSR to a single-qubit quantum circuit. The circuit is initially
prepared in |0〉, and it becomes |ψ0〉 after applying a Hadamard gate. Using the definition
∂φ |ψ(φ)〉 = [∂φU(t,φ)]|ψ0〉, and the first line in Eq. (4), we have

∂|ψ(φ)〉
∂φ

= –i
∫ t

0
U(t,φ)Oφ|ψ0〉ds, (16)
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Figure 2 Quantum Fisher information for single magnetic field estimation. Quantum Fisher information Q(φ)
as a function of the interaction time t for different choices of φ , as shown in the figure. The solid curves are
exact results from theoretical analysis Eq. (15), the dashed curves are obtained from the Trotter-Suzuki
transformation and Stand.PSR, and the dotted curves are obtained from the Stoc.PSR. It can be observed that
Q(φ) varies with time t and reaches its maximum at t = π /2. More importantly, the results show that the
Stoc.PSR agrees with the exact analysis while the Stand.PSR gradually deviates from the exact one. The
mean-square error (MSE) are plotted as error bars and error areas in the figure. They are systematic errors that
caused by different calculation methods

where Oφ = eisH(φ)[∂φH(φ)]e–isH(φ). Similar as above, we have

Oφ |ψ0〉 =
i

2 sin(μt)
[
e–itμOφ – eitμOφ

]|ψ0〉, (17)

where tμ /∈ πZ. Using e–itμOφ = eisH(φ)e–itμ[∂φH(φ)]e–isH(φ), we derive Eq. (16) as

∂|ψ(φ)〉
∂φ

=
1

2 sin(tμ)

∫ t

0

[∣
∣ψ+〉

–
∣
∣ψ–〉]

ds, (18)

where |ψ±〉 are given by

∣
∣ψ±〉

= U(t – s,φ) · e∓itμ[∂φH(φ)] · U(s,φ)|ψ0〉. (19)

In the numerical calculation, we derive ∂φ |ψ(φ)〉 = t
N∗2 sin(tμ)

∑N
n=1[|ψ+〉 – |ψ–〉] with N

samplings of s ∈ [0, t]. This is a simplified version of Algorithm 1 for pure states. We set
N = 1000 and obtain the QFI Q(φ) which is of the form (7)

Q(φ) =
t2

N2 sin2(tμ)
Re

[〈�|�〉 –
∣
∣
〈
�

∣
∣ψ(φ)

〉∣
∣2], (20)

where |�〉 =
∑N

n=1[|ψ+〉 – |ψ–〉].
To implement the Stoc.PSR in quantum computers, we assume there exists a univer-

sal quantum hardware that allows for executing the quantum gate U(t,φ). Changing
the variables in U(t,φ) by U(x, z) = e–it(xσx+zσz) where x = cos(φ) and z = sin(φ), it yields
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Data: ρ0,φ = (φ1, . . . ,φd), H(φ) =
∑

j φjHj

Result: Q(φ)
T ← time (array) N ← sampling number μ ← parameter-shift(rad) for t in T do

for j = 1, . . . , d do
for n = 1, . . . , N do

s = random(0, t) get U±
j (φ, s) get ρ±

j (φ, s) get ∂j += ρ+
j (φ, s) – ρ–

j (φ, s)
end
∂j = ∂j ∗ t

N
1

sin(2tμ) /* comes from Eq. (11), where t/N is the average in
Monte-Carlo sampling. */

end
get Q(φ) /* from Eq. (6) or (7). */

end
Algorithm 1: Stochastic parameter-shift rule for calculating ∂φjρ(φ) in quantum cir-
cuits

∂φU(x, z) = ∂xU(x, z)∂φx + ∂zU(x, z)∂φz. This is a universal quantum device because all the
evolution terms in Eq. (19) can be implemented via this quantum gate in the device.

Finally, let us compare the results with the Stand.PSR. To apply the Stand.PSR, we
first decompose the evolution U(t,φ) into a sequence of sub-evolutions through Trotter-
Suzuki transformation [47]

U(t,φ) = lim
m→∞

(
e–it cos(φ)σx/me–it sin(φ)σz/m)m, (21)

where these sub-evolutions can be executed in quantum circuits through rotation gates,
specifically Rx and Rz. The derivative ∂φ |ψ(φ)〉 now can be implemented by using the
Stand.PSR. See detailed calculation in the Method section.

Figure 2 shows a comparison between the performance of Stand.PSR and Stoc.PSR with
the exact theoretical result. The Stoc.PSR consistently demonstrates a good agreement
with the exact results all the time while the Stand.PSR deviates from the exact results as
time increases. It implies that using Stoc.PSR in quantum circuits for studying quantum
systems with generic Hamiltonian is essential and cannot be replaced by similar approxi-
mation methods. This is further supported by considering the mean-square error (MSE),
defined as (1/M)

∑
i[yi(t) – f (t)]2, where M denotes the number of data points, yi(t) rep-

resents the data obtained using the Stand.PSR or Stoc.PSR and f (t) represents the exact
results given by Eq. (15). We emphasize that the MSE here plays no role with the error of
the estimated parameter, it is rather a systematic error caused by different methods when
comparing with the exact theoretical result. The MSEs are shown in the figure as the error
bars and error areas. As we can see, the MSE for Stoc.PSR remains small throughout the
duration, while that one for the Stand.PSR divers for large sensing time t.

2.3.2 Multiple parameters estimation
Next, we apply the Stoc.PSR scheme to estimate the components of a magnetic field point-
ing in an arbitrary direction. Consider the probe state initially prepared in n-qubit GHZ
state |ψ0〉 = (|00 · · ·0〉 + |11 · · · 1〉)/√2, such that allows for obtaining the maximum QFIM
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[6]. The interaction Hamiltonian is given by

H(φ) =
∑

j

φjJj, for j ∈ {x, y, z}, (22)

where φ = (φx,φy,φz) are three components of the given magnetic field that we want to
estimate, and Jj =

∑n
k=1 σ

(k)
j is a collective Pauli matrix. Potential platforms for the probe

include spin-1/2 ensemble semiconductors, ions traps, NMR systems, and NV centers. In
these systems, such as spin-1/2 ensemble, Jj becomes the collective angular momentum
operator [7].

The QFIM can be obtained theoretically from Eq. (8), and the total variance yields �2φ =
tr[Q–1]. Concretely, with n = 3 qubits and φx = φy = φz = ϕ, we obtain

tr
[
Q–1] =

7
108t2 +

3ϕ2

54 sin2(
√

3ϕt)
. (23)

We show the exact theoretical results by the solid curves for various ϕ in Fig. 3a. For each
ϕ, there is a minimum variance at a certain time t, which is caused by the rotation of the

Figure 3 The total variance for multiphase magnetic field estimation. (a) The total variance �2φ = tr[Q–1] as a
function of the interaction time t for different choices of ϕ as shown in the figure. Here, we use
φx = φy = φz = ϕ for illustration (although in general, these values may differ). The solid curves are exact
results, which are given by theoretical analysis, and the dotted curves are obtained from the Stoc.PSR. It can
be observed that tr[Q–1] varies with t and reaches its minimum at a certain time. More importantly, the results
show a good agreement between the Stoc.PSR and the exact theoretical analysis. (b) Plot of the total variance
versus t under the time-dependent dephasing noise for various decay rates γ . Here, we fixed ϕ = π /10
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probe state under magnetic field. In the limit of small phase, i.e., ϕ → 0, the total variance
is tr[Q–1] = 7

108t2 , which results in the minimum of total variance.
In the Stoc.PSR method, we model the probe in an n-qubit quantum circuit initially pre-

pared in the GHZ state. The circuit can be implemented in the existing noisy intermediate-
scale quantum computers [23]. Its state evolves under the transformation U(t,φ) = e–itH(φ),
and results in the evolved state |ψ(φ)〉 = U(t,φ)|ψ0〉. As discussed above, this unitary evo-
lution can be implemented in a universal quantum computer. Therefore, we employ the
Stoc.PSR using Algorithm 1 to obtain ∂φj |ψ(φ)〉 for all j and get the QFIM as in Eq. (7).
The tr[Q–1] is shown in Fig. 3a (dotted curves) for the number of sampling N = 1000. The
Stoc.PSR’s results agree with the exact results.

We further apply the scheme to noisy cases, where the probe is described by mixed
states. We consider time-dependent dephasing, which is given by a quantum channel E
that acts on a single qubit as

E[ρ] := K1ρK†
1 + K2ρK†

2 , (24)

where we used the Kraus representation for the dephasing channel [31]

K1 =

(
p(t) 0

0 1

)

, K2 =

(√
1 – p2(t) 0

0 0

)

. (25)

The time-dependent probability is p(t) = e–γ t for the Markovian noise, where γ is the
decay rate [31].

We apply the quantum channel E to all qubits in the probe during the interaction time
and use Algorithm 1 to derive the QFIM. The results for the total variance versus the in-
teraction time t are shown in Fig. 3b. We plot the results for several decay rates γ and
compare the Stoc.PSR approach with the theoretical analysis. Again, they match excel-
lently.

2.3.3 Hamiltonian tomography
We additionally discuss the application to Hamiltonian tomography in many-body sys-
tems, which involves determining unknown coupling constants in the Hamiltonian.
Hamiltonian tomography aims to reconstruct a generic many-body Hamiltonian by mea-
suring multiple pairs of the initial and time-evolving states. It is a challenging task due to
the complexity of the many-body dynamics. So far, the progress is limited to particular
Hamiltonians and small-size systems [48–51]. For example, a simple task is to identify
the Hamiltonian in an Ising model of a spin-1/2 chain placed under an external field.
A generic Hamiltonian is given by H =

∑
j cj,j+1σ

(j)
z σ

(j+1)
z +

∑
j hjσ

(j)
x , where the coupling

constants {cj,j+1} and the external field strengths {hj} are unknown factors, j stands for the
site jth in the chain.

Recently, Li et al. introduced a quantum quench approach for the Hamiltonian tomogra-
phy that can apply to both analog and digital quantum simulators [52]. Hereafter, we evalu-
ate the quantum quench precision by using Stoc.PSR to calculate the classical Cramér-Rao
bound.
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A generic Hamiltonian of a many-body system can be decomposed into d-interaction
terms as

H =
d∑

j=1

xjHj, (26)

where {xj} are unknown coupling constants that need to be determined, and {Hj} are
Hermitian operators. An initial state ρ0 evolves to ρ(x) = e–iHtρ0eiHt after time t, for
x = (x1, . . . , xd)ᵀ. The system obeys a conservation law [52]

tr[ρ0H] = tr
[
ρ(x)H

]
, (27)

for every pair of given ρ0 and ρ(x). To determine d coefficients {xj}, we need to solve at
least p ≥ d – 1 linear equations which form a matrix equation as Xx = 0, where X is a p × d
matrix with the elements

Xk,l = tr
[
ρ

(k)
0 Hl

]
– tr

[
ρ(k)(x)Hl

]
, (28)

where k ∈ {1, . . . , p} and l ∈ {1, . . . , d} for different pairs of ρ
(k)
0 , ρ(k)(x). Here, {ρ(k)

0 } is a set
of (random) initial states and {ρ(k)(x)} is a set of evolved states.

For {Hj} are measured observables, such as Pauli matrices, SIC-POVM, and polarization
bases [53], the matrix elements {Xk,l} become measured probabilities under the eigenbases
of these observables. Thus, to evaluate the best estimation of {xj}, we examine the classical
bound, i.e., via the CFIM Eq. (2). Firstly, from Eq. (28), we derive

∂Xk,l

∂xj
= – tr

[(
∂ρ(k)(x)

∂xj

)

Hl

]

, (29)

where ∂ρ(k)(x)
∂xj

is given by Stoc.PSR Eq. (11). We later define the CFIM as

Fi,j =
∑

{k,l}

1
|Xk,l| [∂xi Xk,l][∂xj Xk,l], ∀i, j ∈ {1, . . . , d}, (30)

and hence obtain the classical Cramér-Rao bound, i.e., �2x ≥ tr[F–1]. The equality can be
achieved by an appropriate estimator.

For numerical demonstration, we consider a single-qubit system whose Hamiltonian is
given by [53]

H =
3∑

i=1

xi|ψi〉〈ψi|, (31)

where {xi} are unknown coefficients, |ψ1〉 = |0〉, |ψ2〉 = (|0〉 + |1〉)/√2, and |ψ3〉 = (|0〉 +
i|1〉)/√2. We apply the quantum quench method to find {xi} and analyze the variance �2x.
It is given by the classical Cramér-Rao bound, i.e., �2x = tr[F–1]. The derivative ∂ρ(k)(x)

∂xj
in

Eq. (29) is given by either Stoc.PSR or finite difference approach for comparison. For the
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Figure 4 The classical Cramér-Rao bound in single-qubit Hamiltonian tomography. The results are plotted for
two different approaches: Stoc.PSR (down triangle) and finite difference (up triangle). The standard quantum
limit (SQL) and Heisenberg limit (HL) are shown for comparison. Here, SQL ∝ 1/p and HL ∝ 1/p2

Stoc.PSR, we run 1000 random samples of s ∈ [0, 1], t = 1, μ = π/4. For the finite difference
method, we use ∂xρ(x) = ρ(x+ε)–ρ(x–ε)

2ε
, where ε is a small step size. The variance �2x is

averaged after 10 repetitions.
The results are shown in Fig. 4 as functions of p. In principle, p = d – 1 is sufficient

to estimate d parameters. However, p > d – 1 gives better statistical results [52]. In this
context, we compare the Stoc.PSR and finite difference approach, and find that they tend
to converge when increasing p. While the finite difference method consistently produces
better results, it also has a larger bias due to the computational challenges of computing
ρ(x + ε) and ρ(x – ε) in quantum circuits for ε � 1. Furthermore, since p is equivalent
with the number of repeated measurements, we can define the standard quantum limit
(SQL) as ∝ 1/p and Heisenberg limit (HL) by ∝ 1/p2. We compare the bound in quan-
tum quench with these limits and find that it scales slightly worse than the SQL, opening
further exploring to improve the limit in quantum quench approaches.

3 Conclusions
We proposed a time-dependent stochastic parameter-shift rule (Stoc.PSR) framework
for deriving the differential in studying quantum Fisher information matrix with generic
Hamiltonian generators. This method allows for obtaining the exact derivative using uni-
versal quantum circuits. Different from the standard parameter-shift rule (Stand.PSR),
which particularly replies on commuting Hamiltonians, here, the Stoc. PSR applies to
generic Hamiltonians.

Using the Stoc.PSR approach, the evaluation of QFI/QFIM can be practically executed in
quantum circuits. In all cases, the Stoc.PSR results have agreed with the exact theoretical
analysis, while the Stand.PSR results have deviated from the exact values. This framework
can also be used for Hamiltonian tomography in many-body systems.

While variational quantum algorithms are extensively developing, our framework uses
these advantages for the development of quantum metrology and quantum measurement
with generic Hamiltonian and makes them reliable for studying in the area of quantum
computers.
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4 Methods
4.1 Proof of time-dependent stochastic parameter-shift rule
We consider the derivative of a mixed quantum state as in Eq. (9) in the main text

∂ρ(φ)
∂φj

= –i
∫ t

0
U(φ)[Oj,ρ0]U†(φ) ds, (32)

where Oj = eisH(φ)[∂φj H(φ)]e–isH(φ). We have

[Oj,ρ0] =
i

sin(2tμ)
[
e–itμOjρ0eitμOj – eitμOjρ0e–itμOj

]
, (33)

Proof Using the Baker-Campbell-Hausdorff formula [43], we derive

e–itμOjρ0eitμOj = ρ0 + [–itμOj,ρ0] +
1
2!

[
–itμOj, [–itμOj,ρ0]

]
+ · · · (34)

and

eitμOjρ0e–itμOj = ρ0 + [itμOj,ρ0] +
1
2!

[
itμOj, [itμOj,ρ0]

]
+ · · · . (35)

Subtracting Eq. (35) from Eq. (34) yields

[
e–itμOjρ0eitμOj – eitμOjρ0e–itμOj

]

= –2i
tμ
1!

[Oj,ρ0] + 2i
(tμ)3

3!
[
Oj,

[
Oj, [Oj,ρ0]

]]
– 2i

(tμ)5

5!
· · · , (36)

where using the algebraic expansion with the condition O2
j = I, we have [Oj, [Oj, [Oj,ρ0]]] =

23

2 [Oj,ρ0], and so on. Finally, Eq. (36) becomes

[
e–itμOjρ0eitμOj – eitμOjρ0e–itμOj

]
= –i sin(2tμ)[Oj,ρ0]. (37)

Multiplying two sides of Eq. (37) by i
sin(2tμ) we arrive at Eq. (33)

Now, substituting Eq. (33) into Eq. (32), we have

∂ρ(φ)
∂φj

=
1

sin(2tμ)

∫ t

0
U(φ)

[
e–itμOjρ0eitμOj – eitμOjρ0e–itμOj

]
U†(φ) ds. (38)

Using e–itμOj = eisH(φ)e–itμ[∂φj H(φ)]e–isH(φ) and U(φ) = e–itH(φ), we set

U±
j (φ, s) = U(φ)e∓itμOj

= e–itH(φ)eisH(φ)e∓itμ[∂φj H(φ)]e–isH(φ)

= e–i(t–s)H(φ)e∓itμ[∂φj H(φ)]e–isH(φ). (39)

Substituting Eq. (39) into Eq. (38), we obtain

∂ρ(φ)
∂φj

=
1

sin(2tμ)

∫ t

0

[
U+

j (φ, s)ρ0
[
U+

j (φ, s)
]† – U–

j (φ, s)ρ0
[
U–

j (φ, s)
]†]ds
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=
1

sin(2tμ)

∫ t

0

[
ρ+

j (φ, s) – ρ–
j (φ, s)

]
ds, (40)

where we used ρ±
j (φ, s) = U±

j (φ, s)ρ0[U±
j (φ)]†. �

4.2 Theoretical analysis for single-parameter estimation
Firstly, let us discuss the exact calculation method for quantum Fisher information in sin-
gle parameter estimation. Starting from H(φ) = cos(φ)σx + sin(φ)σz, we derive ∂φH(φ) =
– sin(φ)σx + cos(φ)σz . Substituting it into Yj for j = φ, we obtain

Yφ =
∫ t

0
eisH(φ)[∂φH(φ)

]
e–isH(φ) ds

=
1
2

(
sin 2t cosφ – sin 2t sinφ – 2i sin2 t

– sin 2t sinφ + 2i sin2 t – sin 2t cosφ

)

.

Finally, we derive the quantum Fisher information as in Eq. (7):

Q(φ) = 4 Re
[〈
ψ0

∣
∣Y 2

φ

∣
∣ψ0

〉
– |〈ψ0|Yφ |ψ0

〉|2]

= 4 sin2(t)
[
1 – cos2(t) sin2(φ)

]
, (41)

which results in Eq. (15).

4.3 Trotter-Suzuki transformation and Stand.PSR
From now on, let us show the detailed calculation for the Trotter-Suzuki transformation
and Stand.PSR for single parameter estimation. From the evolution (21), we set

⎧
⎨

⎩

x = 2t
m cos(φ),

z = 2t
m sin(φ)

⇒
⎧
⎨

⎩

∂φx = – 2t
m sin(φ),

∂φz = 2t
m cos(φ).

(42)

Then, Eq. (21) is recast as

U(x, z) = lim
m→∞

(
e–i x

2 σx e–i z
2 σz

)m, (43)

and thus

∂φU(x, z) =
∂U(x, z)

∂x
∂x
∂φ

+
∂U(x, z)

∂z
∂z
∂φ

. (44)

Concretely, we have

∂xU(x, z) =
m
2

(–iσx)U(x, z), (45)

∂zU(x, z) =
m
2

(–iσz)U(x, z). (46)

Note that U(π , 0) = limm→∞(–iσx)m. For m = 4k + 1 ∀k ∈ N, we have U(π , 0) = –iσx, from
which the Pauli matrix σx can be implemented by the unitary (quantum gate) U(π , 0).
Likewise, U(0, z + π ) = –iσz . Now, Eqs. (45), (46) are recast as

∂xU(x, z) =
m
2

U(x + π , z), (47)
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Data: |ψ0〉, φ, U(x, z)
Result: Q(φ)
T ← time (array) ;
m ← 4k + 1 ∀k ∈ N ;
for t in T do

x = 2t cos(φ)/m
z = 2t sin(φ)/m
dx = U(x + π , z)|ψ0〉
dz = U(x, z + π )|ψ0〉
dψ = t[– sin(φ) dx + cos(φ) dz]
get Q(φ) from Eq. (50).

end
Algorithm 2: Standard parameter-shift rule

∂zU(x, z) =
m
2

U(x, z + π ). (48)

Here, m obeys the periodic property, therefore its choice will not affect the results.
Hence, these derivatives (47), (48) can be obtained in quantum circuits by modifying the
Stand.PRS. Substituting Eqs. (47), (48) and Eq. (42) into Eq. (44), we derive

∂φ

∣
∣ψ(φ)

〉
= ∂φU(x, z)|ψ0〉
= t

[
– sin(φ)U(x + π , z) + cos(φ)U(x, z + π )

]|ψ0〉, (49)

where |ψ0〉 is the initial probe state. In this form, the QFI is given as

Q(φ) = 4 Re
[〈
∂φψ(φ)

∣
∣∂φψ(φ)

〉
–
∣
∣
〈
∂φψ(φ)

∣
∣ψ(φ)

〉∣
∣2]. (50)

The procedure for calculating the quantum Fisher information is shown in Algorithm 2.

4.4 Multiple parameters estimation
Hereafter, we derive the multiple parameters estimation. For n = 3, we first calculate Jj for
j = {x, y, z} as

Jj = σj ⊗ I2 ⊗ I2 + I2 ⊗ σj ⊗ I2 + I2 ⊗ I2 ⊗ σj, (51)

where I2 is the 2 × 2 identity matrix. The Hamiltonian H(φ) is given by Eq. (22), and its
derivative yields ∂φj H(φ) = Jj. Similar to the above, we derive Yj

Yj =
∫ t

0
eisH(φ)Jje–isH(φ) ds, (52)

and obtain the quantum Fisher information matrix from Eq. (8).
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