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Abstract
In practical quantum error correction implementations, the measurement of
syndrome information is an unreliable step—typically modeled as a binary
measurement outcome flipped with some probability. However, the measured
syndrome is in fact a discretized value of the continuous voltage or current values
obtained in the physical implementation of the syndrome extraction. In this paper,
we use this “soft” or analog information to benefit iterative decoders for decoding
quantum low-density parity-check (QLDPC) codes. Syndrome-based iterative belief
propagation decoders are modified to utilize the soft syndrome to correct both data
and syndrome errors simultaneously. We demonstrate the advantages of the
proposed scheme not only in terms of comparison of thresholds and logical error
rates for quasi-cyclic lifted-product QLDPC code families but also with faster
convergence of iterative decoders. Additionally, we derive hardware (FPGA)
architectures of these soft syndrome decoders and obtain similar performance in
terms of error correction to the ideal models even with reduced precision in the soft
information. The total latency of the hardware architectures is about 600 ns (for the
QLDPC codes considered) in a 20 nm CMOS process FPGA device, and the area
overhead is almost constant—less than 50% compared to min-sum decoders with
noisy syndromes.

Keywords: Quantum error correction; Syndrome-based decoding; FPGA devices

1 Introduction
Quantum error correction (QEC) is a necessary step in realizing scalable and reli-
able quantum computing. For fault-tolerant QEC, quantum low-density parity-check
(QLDPC) codes are advantageous over surface codes, the current leading candidate [1–5],
in terms of the scaling of qubit overhead and minimum distance. Recent breakthroughs re-
lated to various product constructions of QLDPC codes provided constructions of “good”
QLDPC code families, i.e., codes with finite asymptotic rate and relative minimum dis-
tance [4, 6–9]. Hardware-efficient fault-tolerant quantum computation demonstrations
using high-rate QLDPC codes are exciting and also compatible with recently demon-
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strated experimental capabilities [10–12]. Similarly, there has been significant progress in
improving the iterative decoding performance of finite-length QLDPC codes using post-
processing and heuristic techniques [13–17]. However, the QLDPC decoding problem
still has unanswered questions and, in particular, faster decoders for QLDPC codes are
needed to meet the stringent timing constraints in hardware. The problem is even more
challenging than classical LDPC code decoding since we have to overcome syndrome
measurement errors in addition to the errors on physical qubits. To address these errors
without repeating the measurements, data-syndrome codes and “single-shot” error cor-
rection codes have been proposed [18–21]. The idea of single-shot decoding is to devise
a decoder for a given code such that even with one round of noisy measurements it can
correct errors very well. However, noisy syndrome measurement has not been analyzed
under iterative decoding, which is of great interest while decoding these good QLDPC
codes.

Quantum errors are primarily detected and corrected using the measurement of syn-
drome information which itself is an unreliable step in practical error correction imple-
mentations. Typically, such faulty or noisy syndrome measurements are modeled as a bi-
nary measurement outcome flipped with some probability. However, the measured syn-
drome is in fact a discretized value of the continuous voltage or current values obtained
in the physical implementation of the syndrome extraction.

The first, and primary, challenge is that when a decoder uses a noisy syndrome as input,
it significantly and non-trivially alters the iterative decoding dynamics. Secondly, in the
absence of a referent “true” syndrome, it is difficult to formulate the halting condition,
and an iterative decoder can, in principle, run until reaching the maximum number of
iterations without finding the error pattern. A naïve binary quantization of the syndrome
would lead to an estimated error that is possibly matched to a wrong syndrome.

In the literature, noisy measurements are typically modeled by a simple phenomeno-
logical error model in which binary measurement outcomes are flipped with some prob-
ability. However, the measurement is typically more informative since it corresponds to
continuous voltages, currents, or discrete photon counts based on the specific physical
implementation. Instead of quantizing this analog information to a binary outcome and
losing crucial information, one can leverage the soft syndrome in the iterative decoder and
modify the update rules accordingly. In the work by Pattinson et al. [22], syndrome mea-
surement outcomes beyond simple binary values were considered. The decoders used for
surface codes, such as minimum weight perfect matching and union-find, were modified
accordingly to obtain higher decoding thresholds.

In this work, we model a realistic syndrome measurement by a perfect measurement
with an ideal bipolar (±1) outcome followed by a noisy channel that leads to a continu-
ous soft outcome. We restrict our attention to the simple setting of a symmetric Gaussian
noise on each of the ideal syndrome measurements. In the context of iterative decod-
ing, we modify the min-sum algorithm (MSA) based decoder (a hardware-friendly variant
of the belief propagation (BP) decoder) to use these soft syndrome values as additional
information to drive the message passing algorithm towards convergence [42]. This iter-
ative decoder for QLDPC codes that employs soft syndrome information is novel and is
one of the main contributions of this paper. It is also unprecedented in the setting of it-
erative decoding of classical LDPC codes, although faulty components in decoders have
been studied [23–25]. Furthermore, even if the code does not have the single-shot prop-
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Figure 1 Two-threshold phenomenon observed for ‘Hard Syndrome’ (which uses standard MSA), but the
‘Soft Syndrome’ setting (which uses modified MSA) is devoid of this issue

erty, our strategy allows one to perform effective decoding without repeating syndrome
measurements, which is attractive practically.

We consider three scenarios for decoding:
1. Perfect Syndrome: In this case, there is no noise added to the syndrome and we use

the standard MSA decoder.
2. Hard Syndrome: Here, there is Gaussian noise added to the syndrome, but this

continuous value is thresholded to input a hard syndrome to the standard MSA
decoder.

3. Soft Syndrome: Now, as in the hard syndrome case, the syndrome is noisy and it is
thresholded to produce a sign (±1), but the magnitude is converted into a
log-likelihood ratio (LLR) to also provide soft information. The decoder in this case is
our new modified MSA, where the check node update rules are modified and,
specifically, the LLR corresponding to the syndrome is utilized and also updated
during the check node update.

As one might expect, the threshold for the ‘Hard Syndrome’ case is worse than the ‘Per-
fect Syndrome’, since the decoder is unchanged. But, more interestingly, for the ‘Hard
Syndrome’, when we fix the variance of the Gaussian noise affecting the syndrome and
sweep the qubit depolarizing rate, below what we identify as the usual decoding thresh-
old, there arises a “second (inverted) threshold”; below this (lower) threshold, the logical
error rate creeps up again because the syndrome error dominates the qubit error much
more strongly (see Fig. 1). This suggests that, under realistic settings, it is insufficient to
only optimize the threshold, and one needs to avoid such problematic behavior below the
threshold.

Next, we propose the modified MSA decoder with justification for our new rules for up-
dating nodes as well as the syndrome LLR. We show that the resulting decoder does not
suffer from this spurious “second threshold” phenomenon. Besides, the decoding thresh-
old is now almost as good as that for the ‘Perfect Syndrome’ setting. Hence, our work
paves the way for efficient and effective decoding of good QLDPC codes under a physi-
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cally motivated phenomenological noise model, without the use of repetitive syndrome
measurement rounds.

Finally, we provide an efficient architecture and the results derived from FPGA imple-
mentations for different QLDPC codes (from 442 physical qubits to 1428) showing how
latency can be kept almost constant and very close to standard MSA decoders, around
600 ns for 30 iterations, with similar power consumption.

The paper is organized as follows. In Sect. 2 we introduce the necessary notations and
explain the syndrome-based MSA and its variants. In Sect. 3 we motivate the soft syn-
drome decoders and explain our modification to correct the noisy syndromes. Section 4
presents simulation results showing the benefits of our modified MSA. Section 5 intro-
duces the derived hardware architecture and the results and comparisons of FPGA imple-
mentations for different QLDPC codes. Finally, Sect. 6 concludes this paper with a discus-
sion on future work.

2 Preliminaries
2.1 Pauli operators and CSS codes
The single-qubit Pauli operators are I, X, Z, Y = ıXZ and the n-qubit Pauli group Pn con-
sists of tensor products of single-qubit Paulis up to a quaternary global phase 1, ı , –1, or –ı ,
where ı =

√
–1. There is a useful binary representation [a, b] ∈ {0, 1}2n of Pauli operators,

e.g., X ⊗ Z ⊗ Y �→ [a, b] = [101, 011], so that entries of a (resp. b) indicate which qubits are
acted upon by X (resp. Z), and ai = bi = 1 (resp. 0) indicates a Y (resp. I). An �n, k, d� CSS
code [26] encodes k logical qubits into n physical qubits, and d is the minimum distance of
the code that indicates the minimum number of qubits on which the error channel must
act to disturb the logical information. The CSS code is defined by n-qubit Pauli operators,
called stabilizers, some of which are purely X-type, [a, 0], and the others are purely Z-type,
[0, b]. Hence, the stabilizers can be represented using two binary parity-check matrices HX

(whose rows map to [a, 0]) and HZ (whose rows map to [0, b]) that must satisfy HXHT
Z = 0

so that these Pauli operators commute.

2.2 Noise model
The single-qubit depolarizing channel, also known as the memoryless Pauli channel, is a
widely studied error model characterized by the depolarizing probability p: the channel
randomly introduces a Pauli error according to the probabilities PX = PY = PZ = p/3 and
PI = 1 – p. For the physical data qubits, we assume an i.i.d. depolarizing error model, i.e.,
each physical qubit is affected by an independent depolarizing error. Let e = [eX, eZ] be the
binary representation of a Pauli error acting on the n qubits. The corresponding syndrome
is computed as [sX, sZ] = [HZeT

X, HXeT
Z]T (mod 2). Since we consider decoding of HX and

HZ separately, we avoid using subscripts X and Z in syndrome s.

2.3 Syndrome noise model
As mentioned in Sect. 1, we model a realistic syndrome measurement by a perfect mea-
surement with an ideal bipolar (±1) outcome followed by i.i.d. symmetric Gaussian noise
on each component of the syndrome. After introducing symmetric Gaussian noise ni ∼
N (0,σ 2) to the ideal syndrome (component) si ∈ {±1}, we have a noisy soft syndrome
r̃i = si + ni which when conditioned on si is distributed normally: [r̃i | si = 1] ∼ N(+1,σ 2)
and [r̃i | si = –1] ∼ N(–1,σ 2). Other relevant asymmetric syndrome measurement models
are discussed in [22, Sect. 1.4].
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Based on the normally distributed soft syndromes, we can compute the syndrome log-
likelihood ratios (LLRs) as

γi := log
Pr(r̃i|si = +1)
Pr(r̃i|si = –1)

=
2r̃i

σ 2 . (1)

Since the noise is zero-mean, the sign of the soft syndrome, sgn(γi), indicates if the parity-
check i is satisfied (sgn(γi) = +1) or unsatisfied (sgn(γi) = –1). This is exactly the same as the
measured syndrome si used in a conventional min-sum decoder. However, its magnitude,
|γi|, provides valuable soft information about the reliability of the measured syndrome.

2.4 QLDPC codes and syndrome min-sum algorithm (MSA)
A CSS-QLDPC code has sparse stabilizer generators and is represented by a pair of bipar-
tite (Tanner) graphs whose biadjacency matrices are the stabilizer matrices HX and HZ.
The Tanner graphs have n variable nodes, denoted by j ∈ {1, 2, . . . , n}, represented by cir-
cles in Fig. 2, and m check nodes, denoted by i ∈ {1, 2, . . . , m}, represented by squares in
Fig. 2. If the (i, j)th entry of the binary parity-check matrix is not zero, then there is an
edge between variable node i and check node j. The sets of neighbors of variable node j
and check node i are denoted by N (j) and N (i), respectively.

Like classical LDPC codes, QLDPC codes also employ decoders based on iterative BP
or message-passing algorithms. The fundamental difference between the decoders of
QLDPC codes and classical LDPC codes is that the decoders for the former take as in-
put the syndrome obtained after the stabilizer measurements, whereas decoders for the
latter take as input a noisy version of the codeword. The QLDPC decoder’s goal is to output
an error pattern whose syndrome matches the measured syndrome. Let us first consider
the case when these stabilizer measurements are perfect, meaning there is no noise in the
syndrome measurement process.

Suppose that the coded qubits are corrupted by an X-type or Z-type error, correspond-
ing to the binary error vector e = [e1, e2, . . . , en] whose entries are realizations of indepen-
dent Bernoulli random variables with parameter p. Given binary syndrome s vector of
length m, the decoder performs a finite number of message-passing iterations over the
Tanner graph to compute a posteriori probabilities Pr(ej|s), for j ∈ {1, . . . , n}, correspond-
ing to error bit ej conditioned on the measured syndrome s.

Next, we briefly describe the min-sum algorithm (MSA) based decoder. For this pur-
pose, we first introduce the required notations. Denote by μi,j the message sent from check
node i to variable node j. Similarly, the message sent from variable node j to check node i is
denoted by νi,j. The measured syndrome value is si ∈ {±1}, i ∈ {1, 2, . . . , m}. Since the error
ej, j ∈ {1, 2, . . . , n}, at variable node j is a realization of Bernoulli random variable with pa-

Figure 2 Node updates for MSA based on Eqs. (2) and (3)
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rameter p, the log-likelihood ratio (LLR), denoted by λj, corresponding to the jth variable
node is given by λj = ln( 1–p

p ).
In the first decoding iteration, all the outgoing messages from variable node j, for all j,

are initialized to λj. In subsequent iterations, for i ∈N (j), message νi,j is computed] using
the update rule1

νi,j = λj +
∑

i′∈N (j)\{i}
μi′ ,j. (2)

For j ∈N (i), the message μi,j is computed using the rule

μi,j =
(

si ·
∏

j′∈N (i)\{j}
sgn(νi,j′ )

)
·
(

min
j′∈N (i)\{j}

|νi,j′ |
)

. (3)

The sign function is defined as sgn(A) = –1 if A < 0, and +1 otherwise. The first and second
parenthesis in Eq. (3) give the sign and the magnitude of the computed check-to-variable
message μi,j, respectively. Iteration will be indicated as a superscript of μi,j and νi,j when
required. Min-sum update rules are less complex than that of BP decoders (which are
never used in practice), but as the min-sum approximation overshoots the BP messages,
the MSA is typically modified using a normalized MSA [27], wherein check node messages
are multiplied (in Eq. (3)) by a scalar β as a correction factor, where 0 < β < 1.

A min-sum decoder employs the update functions in Eq. (2) and Eq. (3) in each iteration
� ≤ �max to determine the error at each variable node. The error estimate x̂j at the variable
node j is computed using

x̂j = �̂(λj,μi,j) = sgn

(
λj +

∑

i∈N (j)

μi,j

)
, (4)

for all j ∈ {1, 2, . . . , n}, i.e., it is based on the sign of the decision update function output,
�̂(λj,μi,j), that uses the LLR value and all incoming check node messages to the variable
node j, where i ∈N (j).

Halting Criterion: The output of the decoder at the �th iteration, denoted by x̂(�) =
(x̂(�)

1 , x̂(�)
2 , . . . , x̂(�)

n ), is used to check whether all parity-check equations are matched, i.e.,
whether the syndrome at �th iteration ŝ(�) := x̂(�) ·HT is equal to the measured syndrome s,
in which case iterative decoding terminates and outputs x̂(�) as the error vector. Otherwise,
the iterative decoding steps continue until a predefined maximum number of iterations,
denoted by �max, is reached. The decoding is deemed successful if the true error pattern is
found, i.e., x̂(�) = e. Otherwise, the decoding is said to have failed. Miss-correction as re-
ferred to in the literature of classical coding theory occurs when the post-correction step
with the estimated error pattern results in a logical error. This is also classified as an error
correction failure.

Note that the MSA decoder is exactly the “Perfect Syndrome” decoder, described in
Sect. 1, when the syndrome measurement process is noiseless. When we have a noisy ob-
servation of the syndrome, recall that an estimate of the syndrome is obtained by passing
the observations to a thresholding function. This estimated syndrome is fed to the MSA
decoder to get the ‘Hard Syndrome’ decoder defined earlier.

1Note that the messages can be scaled by an α factor in order to improve the error correction performance of the decoder.
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3 Soft syndrome decoder
As discussed above, under noisy syndrome, the MSA decoder does not use the soft in-
formation available in the measured syndrome and treats the thresholded syndrome as
the correct syndrome. Due to this reason, the decoder typically obtains error pattern es-
timates only close to the true error pattern, but it does not converge to a correct pattern.
Also, note that the halting condition is never met with the standard MSA decoder when
there are noisy syndromes as inputs, so the decoder runs until the maximum number of
iterations and declares a decoding failure. To sum up, using a noisy syndrome has two
disadvantages with the standard MSA decoder: i) drives the decoder to produce error es-
timates matching the measured (noisy) syndrome, even when it is unreliable; and ii) it
makes the iterative decoder’s halting condition ambiguous, even after the decoder con-
verges to the true error estimate. As it will be described next both problems can be solved
separately, which, for some cases, can be useful, i.e. hardware implementations are con-
strained by latency for the maximum number of iterations, so including extra resources
for a halting condition may not introduce any advantage when it comes to area, timing
and power consumption of the hardware implementation of the decoder.

In this section, we propose a modified MSA decoder [42] that uses the soft information
available in the measured syndrome to address these issues: i) to converge to an error
pattern only based on reliable information and ii) to update the measured syndromes to
implement a halting condition. Note that the first issue is necessary to make the decoder
converge to a valid error pattern, but the second one is necessary to reduce the average
number of iterations by means of applying the halting criterion. As mentioned in Sect. 1,
we refer to the proposed decoder as ‘Soft Syndrome’ (MSA).

3.1 Node update with soft information from the observed syndrome
To use the soft information from the observed syndrome, we modify the Tanner graph
by adding another type of node, called “virtual variable nodes”, in addition to the existing
variable and check nodes. A virtual variable node is added corresponding to each of the
m check nodes. There is an edge between a virtual variable node and the corresponding
check node. The connections between the variable and check nodes are not altered. Hence,
the standard MSA decoder still holds.

The initialization and update rules at the variable nodes for the ‘Soft Syndrome’ decoder
are the same as that of the MSA decoder described in Sect. 2. We now describe the up-
date rules at the check nodes and virtual variable nodes for the ‘Soft Syndrome’ decoder. In
addition to the measured syndrome s, a binary vector of length m, the ‘Soft Syndrome’ de-
coder receives the respective reliability (i.e., syndrome LLR) values γi as defined in Eq. (1).
The goal of this ‘Soft Syndrome’ iterative decoder in the noisy syndrome setting is to find
an error pattern that matches the perfect syndrome s̃ using the syndrome reliability γ and
the qubit LLR λ.

The magnitude of the soft syndrome LLR value determines the reliability of the check
information. To deploy the ‘Soft Syndrome’ decoder, we determine a cutoff above which
the soft syndrome value is deemed reliable and below which it is not. If the syndrome
is reliable, i.e., if the |γi| corresponding to check node i is greater than the predefined
cutoff, then we use the conventional check node update rule given in Eq. (3). Choosing this
cutoff value denoted by 
 is important and it can be optimized to improve the decoding
performance. There are two main changes to the minimum rule used at the check nodes.
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With the soft syndrome γi available from the virtual variable node, first, we compute the
check to variable message as the minimum of magnitude of the extrinsic variable node
messages as well as the soft syndrome magnitude |γi|. For j ∈ N (i), the magnitude and
sign of message μi,j are given by

|μi,j| =

⎧
⎨

⎩
(minj′∈N (i)\{j} |νi,j′ |) for |γi| > 
,

(minj′∈N (i)\{j}(|νi,j′ |, |γi|)) otherwise;
(5)

sgn(μi,j) =
(

si ·
∏

j′∈N (i)\{j}
sgn(νi,j′ )

)
. (6)

These two equations allow the decoder converge to a correct error pattern, even when the
measured syndromes are unreliable.

3.2 Updating the halting condition
Second, we update the soft syndrome, both magnitude and reliability, based on the magni-
tude and sign of all the incoming messages to the check node from its neighboring variable
nodes, thus effectively pushing the estimated syndrome towards the correct syndrome. By
applying Eq. (7) and (8) we avoid an ambiguous halting condition, reducing the average
number of iterations of the algorithm. In the �th iteration, the estimated sign and relia-
bility of syndrome corresponding to check node i is denoted by s̃(�)

i and γ̃
(�)
i , respectively.

In the first iteration, we initialize s̃(1)
i = si and γ̃

(1)
i = |γi|. In the subsequent iterations, the

reliability γ̃
(�)
i of the estimated syndrome corresponding to the check node i is updated

using

γ̃
(�)
i = min

j′∈N (i)
|νi,j′ | (7)

if minj′∈N (i) |νi,j′ | > |γ̃ (�–1)
i | and s̃(�–1)

i =
∏

j′∈N (i) sgn(μi,j′ ), otherwise γ̃
(�)
i = γ̃

(�–1)
i .

The sign of the estimated syndrome corresponding to the check node i is updated using

s̃(�)
i �→ (–1) · s̃(�–1)

i (8)

if minj′∈N (i) |νi,j′ | > |γ̃ (�–1)
i | and s̃(�–1)

i 
= ∏
j′∈N (i) sgn(μi,j′ ), otherwise s̃(�)

i = s̃(�–1)
i .

The halting criterion for the ‘Soft Syndrome’ decoder is whether all parity-check equa-
tions are matched to these updated signs s̃(�)

i ∀i ∈ {1, 2, . . . , m}, i.e., whether the syndrome
at �th iteration, x̂(�) · HT is equal to the s̃, in which case decoding terminates and outputs
x̂(�) as the error vector. The modified decoding rules are illustrated in Fig. 3.

Though in the simulation results in Sect. 4, we use the ‘Soft Syndrome’ discussed above,
we also identify another variant where one does not update the reliability or the sign of the
estimated syndrome given in Eq. (7) and (8), this variant is described in Sect. 5 showing
similar logical error rate and less complexity in terms of hardware resources.

Note that we are not using an explicit syndrome code for protecting the syndrome bits
as in [19, 28], instead relying on the message passing algorithm to infer what the syn-
dromes should be. Using this modified MSA decoder, we hope to avoid the overhead of
repeated measurements as we can identify the measurement errors in the instances where
this decoder converges. Since the approach can be used for any message-passing variant
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Figure 3 Modification of the check node update for the ‘Soft Syndrome’ decoder based on a predefined
cutoff, 
 . In addition to the ‘minimum’ update, check to virtual variable updates (shaded variable node) are
updated conditionally

of iterative decoder, we can also deploy our solution jointly even with post-processing
approaches such as an ordered-statistics decoder [13]. Beyond the scope of this paper are
alternative decoders like small-set-flip decoders for quantum Tanner codes [29] which will
need adaptation of our approach to appropriately weigh the inputs and perform decoding
over quantum Tanner codes.

4 Monte-Carlo simulation results
4.1 QLDPC codes and simulation setup
We use lifted product (LP) QLDPC codes proposed by Panteleev and Kalachev [30] which
provide flexibility in constructing finite length QLDPC codes from good classical (and
quantum) quasi-cyclic (QC) [31] LDPC codes. We choose QC-LDPC codes as constituent
classical LDPC codes to construct LP code families for demonstrating our simulation re-
sults. For example, from the [155, 64, 20] Tanner code [32] with quasi-cyclic base ma-
trix of size 3 × 5 and circulant size L = 31, we obtain the �1054, 140, 20� LP Tanner code
[33]. To show the decoding threshold plots, we also chose the LP code family described
in [33, Table II]. LP-QLDPC codes with increasing code length and minimum distance
(d = 12, 16, 20, 24) are chosen to demonstrate the thresholds. The syndrome-based MSA
is chosen with a normalization factor of β set to 0.75 empirically, and has a preset maxi-
mum of �max = 100 iterations. For the Monte-Carlo simulations, specifically for the thresh-
old plots, we collect at least 10,000 logical errors (sufficient to avoid statistical errors). The
Cutoff 
 is set to 10 for Fig. 1 and to 5 for the rest of the simulation plots.

Different scenarios of simulation setups—‘Perfect’, ‘Hard’, and ‘Soft’ syndrome decoding
as described in Sect. 1—are considered, with depolarizing noise as the underlying noise
for the physical qubits. We also denote the respective MSA decoders as ‘perfect synd’, ‘hard
synd’, and ‘soft synd’.

4.2 Threshold plots
Threshold on Syndrome Noise: To observe the syndrome noise threshold, we plot in Fig. 4a
the logical error rate for a fixed depolarizing probability of p = 0.05 against different values
of the syndrome noise standard deviation σ . In this setting, the ‘Hard Syndrome’ decoder
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Figure 4 Benefits of the ‘Soft Syndrome’ decoder: (a) syndrome noise threshold, (b) average number of
iterations

produces an early threshold at syndrome noise σ ≈ 0.25. Above this syndrome noise level,
a hard decoder cannot improve the decoding performance even by increasing the code
length arbitrarily. However, with the ‘Soft Syndrome’ decoder we see that the threshold
point is at a higher syndrome noise value of σ ≈ 0.4. This indicates that the modified
MSA decoder is more robust and can tolerate noisier syndromes.

This experiment also gives us the range of syndrome noise where ‘Soft Syndrome’ de-
coder performs close to the ‘Perfect Syndrome’ decoder at p = 0.05 (from Fig. 1). Inter-
estingly, at low levels of syndrome noise (σ < 0.25), the ‘Soft Syndrome’ decoder is able to
perform at least as good as the ‘Perfect Syndrome’ decoder. This is a particularly encour-
aging noise regime where the soft information about noisy syndromes can be dealt with
the modified MSA intrinsically, without repeating measurements or requiring single-shot
property in the code. For our subsequent simulations, we use the syndrome noise σ = 0.3
to observe the decoding threshold and the logical error rate suppression with respect to
qubit depolarizing probability.

Threshold on Depolarizing Noise: Using the same QLDPC code family and a fixed syn-
drome noise standard deviation σ = 0.3, we plot the logical error rate against depolarizing
probability for the decoders of interest in Fig. 5. One can see the transition from error sup-
pression to error enhancement with increasing p which signifies the existence of the error
threshold. As expected, since we use the same standard MSA decoder, we see in Fig. 5a
that the threshold for the ‘Hard Syndrome’ case is worse than ‘Perfect Syndrome’. More
interestingly, when we look at lower p in Fig. 1, below what we identify as the usual decod-
ing threshold, there exists another crossover point for the ‘Hard Syndrome’ case where
the logical error rate rises up again because the syndrome error starts to dominate the
qubit error much more strongly. However, the ‘Soft Syndrome’ curves in both Fig. 1 and
Fig. 5b show that, besides achieving the same decoding threshold as ‘Perfect Syndrome’,
the modified MSA is also devoid of the spurious “second threshold” phenomenon.
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Figure 5 The set of curves in figures (a) and (b) correspond to the use of different decoders in the perfect and
noisy syndrome setting. The transition of the curves with increasing p signifies an error threshold

4.3 Faster decoder convergence
As we discussed in Sect. 1 and Sect. 3, the stopping criterion of an iterative decoder in the
presence of measurement errors is ambiguous. To understand the correct decoding per-
formance of these decoders in the presence of syndrome errors, we do not automatically
declare a logical error if the decoder exhausts the maximum number of iterations and fails
to find an error matching the (evolved) syndrome. Instead, we declare a logical error if the
true error ‘plus’ the error estimate produced by the decoder has a non-trivial syndrome or
results in a logical error. This gives a fair chance to the iterative decoders in the presence
of syndrome errors.

Even in the presence of noisy syndrome, the ‘Soft Syndrome’ decoder corrects the syn-
drome and data errors and converges to the true error pattern. The faster convergence of
‘Soft Syndrome’ decoder is shown in Fig. 4b, which clearly shows that it requires an av-
erage number of decoding iterations very close to that of the ‘Perfect Syndrome’ decoder.
Hence, under moderate syndrome noise, besides avoiding repeated syndrome measure-
ments and single-shot property, the modified MSA also does not suffer from a high penalty
in decoding latency, as we will show in the next section—an attractive feature for hardware
implementation.

4.4 Simulation for other code constructions
To explore the versatility of our proposed decoder, we conducted simulations on other
codes with different construction methods: hypergraph codes and bicycle codes. Two well-
known hypergraph codes, B1 and C2, as well as the A2 bicycle code from [34] were simu-
lated under the same conditions described at the beginning of this section. The results,
as depicted in Figs. 6, 7 and 8, reveal a consistent impact of the proposed algorithm
across all simulated codes, irrespective of their construction method. Notably, it can be
observed more substantial improvements for the B1 and C2 codes, where an early error
floor emerges if our proposal is not applied and noisy syndromes are present. Conversely,
the A2 code, exhibits suboptimal performance in the waterfall region even without noisy
syndromes (perfect syndromes), only commencing error correction at a physical error rate
of 10–2, so, in that case, the proposed decoder does not have room for improving the be-
havior, as it can be seen if we compare our solution to the perfect syndrome performance.
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Figure 6 Performance for the B1 hypergraph code

Figure 7 Performance for the C2 hypergraph code

5 Hardware implementation
We first discuss some of the salient points we adopt and consider when implementing a
finite precision iterative decoder in hardware. We ensure that the precision and perfor-
mance of the ‘Soft Syndrome’ decoder is similar to the existing standard MSA decoder
(‘Hard Syndrome’ decoder). In the second part of this section, the focus is on the derived
architecture and how hardware complexity is reduced by simplifying some parts of the
algorithm. In the final subsection, we compare the differences in timing, power, and area
of the ‘Soft Syndrome’ decoder architecture, implemented for several QLDPC codes, and
the extra cost in area and speed compared to the standard MSA decoder (‘Hard Syndrome’
decoder) architecture for the same codes.
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Figure 8 Performance for the A2 bicycle code

5.1 Finite precision analysis
One of the main simplifications of the standard ‘Hard Syndrome’ MSA decoder from a
hardware point of view was initializing the channel LLR value λj to 1 instead of λj = ln( 1–p

p ).
This simplification has two important advantages: first, it was not necessary to quantize
λj and consider it as an input for the architecture (reducing buffers and pin-out); second,
the growth of the messages exchanged in the algorithm is smaller, which leads to similar
error correction performance with less number of bits for the quantization. These allowed
us to quantize the architectures, whose implementation results are detailed in Table 1,
with only 6-bit precision messages and with negligible differences compared to the full-
precision analysis. This also reduces the wiring and the dynamic power consumption and
increases the speed of the final decoders that we derived.

However, the ‘Soft Syndrome’ decoder relies upon comparisons between the λj mes-
sages and the soft information from the syndromes γi. (It is important to remark that λj

is used in the computation of νi,j′ , see Eq. (2).) For this reason, λj cannot be simplified,
because the difference in reliability between the messages in the variable nodes and the
syndrome information is important to update the check-node messages and make a deci-
sion on which update rule needs to be applied (case 1 or case 2 from Fig. 3). To measure
with enough precision these two reliability values (λj and νi,j′ ), some extra bits are required
compared to the ‘Hard Syndrome’ decoder. This increases the wiring and the complexity
of the operations involved (additions and comparisons) and, hence, reduces the maximum
clock frequency achievable. As can be seen in Fig. 9, the finite precision versions require
two extra bits compared to the ‘Hard Syndrome’ decoder to obtain a similar logical error
rate as the full-precision decoders.

For the codes we tested: (�442, 68, 10�, �714, 100, 16� and �1020, 136, 20�), the ‘Hard Syn-
drome’ decoder is not able to improve the logic error rate beyond 10–2, while the ‘Soft
Syndrome’ decoder performs in all cases close to the ‘Perfect Syndrome’ scenario (syn-
drome without noise). Note that �442, 68, 10� and �714, 100, 16� perform well with 8 bits
as can be seen in Fig. 9. It is interesting to see that error correction performance would
suffer some negligible loss when the code grows, e.g., �1020, 136, 20� and beyond for the
‘Soft Syndrome’ decoder.
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Table 1 Summary of implementation results for standard MSA decoder (‘Hard Syndrome’ decoder)
architecture with 6-bit quantization (xcvu095 FPGA device, 20 nm CMOS process)

Code �n, k,d� �442, 68, 10� �544, 80, 12� �714, 100, 16� �1020, 136, 20� �1428, 630, 24�
Clock period 8 ns 8 ns 8 ns 8 ns 10 ns
Total latency (@30it) 480 ns 480 ns 480 ns 480 ns 600 ns
Lookup Table (LUT) 69,586 (13%) 85,487 (15.9%) 16112,042 (20.8%) 159,564 (29.7%) 221,022 (41.1%)
Flip Flop (FF) 15,801 (1%) 19,427 (1.8%) 25,472 (2.4%) 36,339 (3.4%) 50,834 (4.7%)
Power 1.77 W 2.7 W 3.02 W 4.43 W 4.64 W

Figure 9 Error correction performance of standard MSA decoder (‘Hard Syndrome’ decoder) and ‘Soft
Syndrome’ decoder (quantize and full-precision versions) with noisy syndromes and ‘Perfect-syndrome’
decoding with 30 iterations. The ‘Soft Syndrome’ decoder does not implement Eq. (7) and (8) for the
syndrome update and the halting condition

To sum up, even if we increase the number of bits to infinity with other algorithms, like
the ‘Hard Syndrome’ decoder, we would not be able to perform any error correction in the
presence of noise in the measurement of the syndromes. These algorithms only work well
for scenarios that are similar to ‘Perfect Syndrome’ decoding.2 So, we can conclude that, in
terms of quantization, a few extra bits is the price to be paid to allow the ‘Soft Syndrome’
decoder to work in a quantum processor with noisy syndrome measurements.

Finally, one important effect is the extra error correction can be reached by quantization.
Similar to what happened in classical decoding, the introduction of non-linearity in the
quantized messages may improve the error correction in message-passing algorithms [35].
Further research is required to exploit this property.

5.2 Hardware architecture and simplification of the algorithm
Before starting with the hardware architecture it is necessary to understand intuitively
what makes the algorithm work under noisy conditions in the measurement of the syn-
dromes. The main changes are in case 1, when the syndrome is not reliable enough
(|γi| ≤ 
). Case 2 is just the ‘Hard Syndrome’ decoder that treats the syndrome as reli-
able, similar to the ‘Perfect Syndrome’ scenario.

28-bit finite precision analysis for ‘Perfect syndrome’ decoders is omitted in the figure for simplicity as it achieves the same
performance as the full precision version.
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As detailed in Sect. 3, for case 1 we can distinguish two different updates, those that
affect the magnitude of the messages μi,j (Eq. (5) and (6)) and those that affect the syn-
drome si (Eq. (7) and (8) to compute the revised syndrome). For the former, the algorithm
needs to choose between the minimum magnitude of νi,j′ and γi, which means that the
magnitude (i.e., reliability) of the generated messages will be determined by the least reli-
able information at the check node, which can be the input soft syndrome (γi) or the LLRs
(νi,j′ ) from variables connected to that check node. The new update rules for the check
node messages μi,j determine the convergence of the algorithm to a correct error pattern.

On the other hand, for the latter, the change of the sign of the syndrome is useful to
revise the incoming (measured) hard syndromes and allow the decoder to implement the
halting criterion, i.e., the estimated error matches the revised syndrome. Note that if the
measured syndromes are noisy and no update has been performed, then the syndromes
obtained by the iterative process will never match the measured syndromes and, hence,
no halting will be implemented, as explained in Sect. 3. However, for quantum processors,
the limiting parameter is latency in the worst-case scenario and not average latency. So,
including or not a halting criterion will not improve the final hardware characteristics
of the decoder. On the contrary, it will add extra hardware (extra registers or memories
to store old syndrome values, extra wiring to feedback information from one iteration
to another, etc.), which is not necessary for the convergence of the algorithm. For this
reason, the derived architecture will not add the extra hardware required to implement the
syndrome update and it will just focus on the convergence of the algorithm by introducing
the new update rule of |μi,j| described in case 1. In other words, the decoder still uses
the syndrome magnitude to decide whether to update the messages or not, but it does
not revise the syndrome itself. Following this reasoning, when the syndrome is very noisy
and case 1 is applied, the decoder will end when the maximum number of iterations is
reached. When the syndromes are considered perfect, the decoder works just as the ‘Hard
Syndrome’ decoder.

In Fig. 10 we can see the circuit scheme for the check node unit of the ‘Soft Syndrome’
decoder, including the above simplification. The extra inputs compared to the ‘Hard Syn-

Figure 10 Architecture for a check-node unit for the ‘Soft syndrome’ decoder. sl bits indicate if the connected
VNU contains the first minimum or not. γup is the maximum value of |γi| that can be quantized
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Figure 11 Architecture for check-node unit for the ‘Hard syndrome’ decoder

Figure 12 Architecture for variable-node unit for the ‘Soft syndrome’ decoder

drome’ decoder in Fig. 11 are |γi| and |
|. The additional operations include the compari-
son necessary to decide if the syndrome is reliable enough, and the comparisons to update
the messages νi,j′ with the magnitude of the syndrome or the less reliable message received
at the check node.

For the variable node, the main difference (see Fig. 12 and Fig. 13) is that the incoming
messages for the initialization are no longer constants, one input is required to include
the quantized information of λj = ln((1 – p)/p). The second difference, not included in the
figure but mentioned in the previous subsection, is that more bits are required to quantize
λj. The complexity of the operations (adders in the variable-node unit and comparisons
in the check-node unit) is larger, occupying more area and increasing the critical path.
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Figure 13 Architecture for variable-node unit for the ‘Hard syndrome’ decoder

5.3 Comparison of architectures and codes
In this section, we compare the full-parallel architecture for the ‘Hard Syndrome’ decoder
from [36] to the ‘Soft Syndrome’ decoder introduced in this paper. The decoder was imple-
mented for five different codes of different lengths and minimum distances (�442, 68, 10�,
�544, 80, 12�, �714, 100, 16�, �1020, 136, 20�, and �1428, 630, 24�) in order to see the ef-
fect of scaling the number of qubits in hardware results. All the architectures were im-
plemented in a Xilinx FPGA xcvu095 (20 nm technology3) to allow a fair comparison.
The ‘Hard Syndrome’ decoders were implemented with 6-bit quantization and the ‘Soft
Syndrome’ decoders were implemented with 8-bit quantization to obtain a similar per-
formance comparable to the full-precision versions. All the decoders were implemented
with a maximum number of iterations equal to 30.

An FPGA was prioritized to GPUs or ASICs, as a platform to implement all the experi-
ments for the following key aspects:

1. FPGAs have been extensively studied in environments with cryogenic temperatures,
akin to those in which superconducting technology operates. References such as [37]
demonstrate that although they exhibit different behavior at these temperatures
compared to room temperature, they do not experience significant changes in terms
of latency, which is a critical parameter.

2. Additionally, these devices are already integrated within the architecture of quantum
computers for control tasks and have demonstrated robust performance, so they can
be considered a realistic evaluation platform.

3. Power consumption is another crucial factor. FPGA devices are preferred over GPUs
for decoding architectures. While a specific study comparing power consumption
has not been conducted for quantum LDPC codes, other surveys have reported such
comparisons for classical codes. FPGA devices are considered more efficient

3https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale.html.

https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale.html
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Table 2 Summary of implementation results for the ‘Soft Syndrome’ decoder architectures with 8-bit
quantization (xcvu095 FPGA device, 20 nm CMOS process)

Code �n, k,d� �442, 68, 10� �544, 80, 12� �714, 100, 16� �1020, 136, 20� �1428, 630, 24�
Clock period 9.5 ns 10 ns 10 ns 10 ns 12 ns
Total latency (@30it) 570 ns 600 ns 600 ns 600 ns 720 ns
Lookup Table (LUT) 104,482 (19.4%) 128,004 (23.8%) 168,150 (31.3%) 237,422 (44.2%) 335,109 (62.3%)
Flip Flop (FF) 24,063 (2, 3%) 30,257 (2.814%) 39,684 (3.7%) 48,657 (4.5%) 79,267 (7.4%)
Power 1.67 W 1.94 W 2.39 W 4.26 W 4.59 W

compared to GPUs in power, area, and timing, as shown in [38]. Additionally, FPGA
devices implement a customized architecture, reducing the exchange of information
between the processing units of the decoder and the memory/registers. GPU
architectures are more constrained in this regard. Even achieving similar timing
results with GPUs would entail higher power consumption costs compared to FPGA
devices.

4. While FPGAs may exhibit higher latency and power consumption in comparison to
ASICs, the shorter design and verification time represent significant advantages.
Given the current stage, where there isn’t a definitive consensus on the optimal
quantum LDPC code or decoder, we favored real FPGA implementation results over
ASIC synthesis. The reconfigurable nature of FPGAs facilitates modifications to
implemented designs and the testing of various configurations, encompassing
different codes and decoders. This abbreviated design time, combined with FPGA
reconfigurability, empowered us to implement and evaluate five different codes, each
with two different decoders. Conducting such a comprehensive implementation
analysis would have been impractical within the scope of ASIC design. To the best
knowledge of the authors, ASIC implementation will become more critical as the
number of protected qubits surpasses ten thousand. Until that juncture, satisfactory
results can be attained through full custom FPGA design to perform fair
comparisons of hardware implementations of QEC decoders.

The results are summarized in Tables 1 and 2.
For the timing results, it can be seen that the decoders from [36] have an almost con-

stant delay, except when the number of check nodes grows significantly (�1428, 630, 24�),
in which case the delay increases due to the limitations of the internal routing of the FPGA
device. Similar behavior can be observed for the ‘Soft Syndrome’ decoders, with the de-
lay remaining almost constant for the three shorter codes and an increase of 2 ns for the
denser code due to the routing. The difference of about 2 ns between both architectures is
due to the extra bits needed to take into account the soft information in both syndromes
and initialization messages. It is also because of the addition of comparators and multi-
plexers to implement the new update rules in case 1 of the algorithm (see the differences
already mentioned between Fig. 10 and 11). Regarding the total latency of the decoders, we
can see how ‘Soft Syndrome’ is beyond the most restrictive timing requirement reported
in [39] for superconducting quantum processors, between 400 ns and 500 ns. To solve
this issue, several options can be followed: the reduction of the number of iterations, the
implementation in a more modern device, or the implementation over ASIC. The same
happens with the largest code for the architecture described in [36].

Comparing the power consumption results, we can see that the ‘Soft Syndrome’ decoder
consumes less power than the ‘Hard Syndrome’ decoder. This is due to the fact that the
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frequency of operation of our proposed decoder is smaller than the one that can be em-
ployed for the decoder from [36], reducing the overall power consumption. However, in all
the cases the power consumption is beyond 1 W, which was reported as a possible power
budget in [40] if the FPGA was set as close as possible to the quantum chip. To improve
these results, other technology improvements and deeper analysis should be explored.

Finally, if we compare area results, we can see that the ‘Soft Syndrome’ decoder needs
around 50% more LUTs than the ‘Hard Syndrome’ decoder in all cases. This comes from
the increase in the number of bits and the extra hardware required to implement the mag-
nitude update in case 1. The increase in Flip Flops (FFs)is almost negligible compared to
the overall resources available in the FPGA. An important point to note is that no ex-
tra memories or feedback wiring is required, simplifying the whole architecture. If larger
QLDPC codes need to be processed, then it would be necessary to migrate to larger de-
vices as the interconnections between cells would be saturated with an occupation of more
than 60%.

6 Conclusions and future directions
Despite recent advancements in QLDPC code constructions, one still needs to develop fast
and effective decoders for these codes under practical settings where the syndrome mea-
surement process can itself be noisy. In this work, we considered the MSA-based decoder
for QLDPC codes. We showed that standard MSA is affected severely by syndrome noise,
and proposed a modified MSA that is robust to a reasonable amount of syndrome noise
even without repeated measurements. In this paper, we demonstrated how it is possible to
obtain efficient hardware implementations of this new decoder with almost constant de-
lay and a moderate increase of area resources compared to standard MSA decoders. The
results are promising for practical applications even for the most restrictive technologies
such as superconducting quantum processors. In future work, we will extend our analysis
to further investigate systematic ways [41] to understand iterative decoding under noisy
syndromes, and also consider realistic circuit-level noise models.
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24. Vasić B, Ivanis P, Declercq D. Approaching maximum likelihood performance of LDPC codes by stochastic resonance

in noisy iterative decoders. In: Inf. theory and applications workshop, San Diego. 2016.
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