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Abstract
A large class of optimisation problems can be mapped to the Ising model where all
details are encoded in the coupling of spins. The task of the original mathematical
optimisation is then equivalent to finding the ground state of the corresponding spin
system which can be achieved via quantum annealing relying on the adiabatic
theorem. Some of the inherent disadvantages of this procedure can be alleviated or
resolved using a stochastic approach, and by coupling to the external environment.
We show that careful engineering of the system-bath coupling at an individual spin
level can further improve annealing.
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1 Introduction
Quantum computation is expected to outstrip its classical counterpart in certain math-
ematical algorithms such as integer factorisation [1], in data searches [2], and also in
large scale optimisation [3], especially if the target function corresponds directly to the
quantum-mechanical description of the system, e.g., ground state [4] or correlation struc-
ture [5]. Hence, should a challenging combinatorial problem be mapped onto a quantum
system, a quantum simulator may indirectly solve the original problem in reasonable time.

A prototypical and suitable physical system is an Ising spin system, which suits experi-
mental realisation, and all details of the hypothetical problem (e.g., the travelling salesman
problem [6]) are encoded in the interaction strengths between spins, Jij. By finding the
ground state, for given Jij, one solves the original problem [7–14]. Of course, finding the
ground state is itself an NP-hard problem for a large Ising system [15], in general. How-
ever, a potentially feasible strategy is to let Nature find the solution in a quick experimental
protocol.

One approach–exploiting Kato’s theorem [16]– is to prepare the system in the ground
state of a simple Hamiltonian, and tune this Hamiltonian to the one whose ground state
we are actually seeking. Kato’s adiabatic theorem states that if a self-adjoint operator has
an isolated eigenvalue with a potentially degenerate eigenspace and this eigenvalue does
not split under a smooth self-adjoint perturbation, then there is a unitary transformation
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which transforms the unperturbed eigenspace to the corresponding perturbed eigenspace.
In other words this theorem guarantees that a ground state of an unperturbed Hamiltonian
can be evolved into the ground state of another Hamiltonian as long as the change of
Hamiltonians happens smoothly enough.

One may apply a strong magnetic field in the x-direction to align all spins initially, then
turning off the field slowly, and eventually measuring the spins in the z-directions. Unfor-
tunately, in this process the energy levels of the instantaneous Hamiltonian usually become
very close, and hence the driving must slow down to remain adiabatic (viz. critical slowing
down [17–21]). Alternatively, proceeding in a finite time elevates the probability of the sys-
tem being excited. As real quantum systems always interact with their environment, one
may make a virtue of necessity, and allow the spins to couple to the thermal or quantum
fluctuations of this external bath [22–25]. Repeating the experiment a number of times
yields an ensemble of final states from which we can pick the lowest energy configuration
since calculating the energy for a given configuration is simple. In this approach, the like-
lihood of ‘not finding the true ground state’ diminishes exponentially with the number of
trials [26].

Engineering the interaction with the environment can improve quantum annealing
[27–34], and such active design, perhaps individually to each qubit, forms the heart of this
paper. Inspired by energy transport optimisation through site-dependent coupling to the
environment in photosynthetic systems [35, 36], or individually addressable qubits on sil-
icon [37–39], we propose the use of site-specific dissipation. We investigate this approach
by evolving an Ising system via the Bloch-Redfield master equation. Within its approx-
imations quantum annealing can achieve high efficiency [40–46]. We show that online
learning and adjustment of the individual coupling of each qubit to the environment in-
deed increases the probability of success, and that the annealing time is also an important
factor in the protocol.

2 Model
Let us consider a collection of N identical, interacting qubits arranged at the vertices of
an undirected graph, G, as depicted in Fig. 1:

HG = –m0σ
z
0 –

1
2

N∑

i,j=0

Jijσ
z
i σ z

j

with ferromagnetic couplings. A small field, m0 = 8 × 10–2, is pinning a single qubit, σ0,
in order to resolve the degeneracy of the ground state. The system is controlled by time-
dependent external magnetic field

Hext = –me–t/τ
N∑

i=0

σ x
i ,

where τ is the annealing time, and m = μB0 is chosen to overwhelm all other terms at
the start of the experiment, i.e., B0 � max(Jij). Here μ is the magnetic moment of a single
qubit, and it is considered to be unity in the simulation, while the maximal magnetic field
is chosen to be B0 = 4.
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Figure 1 Schematics of 7 qubits (black dots) interacting with each other with strengths Jij (olive solid lines)
and with a Markovian bath (red springs) with couplings κi

We consider two cases: (a) uniform coupling (Jij = J), and (b) random couplings, where
every Jij are drawn from a normal distribution N (2, 0.1). We distinguish three classes of
graphs: random non-complete graphs, a linear graph and a complete graph. The latter
two are unique by their adjacency structure and form the extremes of connected graphs: a
linear graph has the least, while the fully connected graph the most edges while being con-
nected. In experiments we envisage a system somewhere in between these cases. In order
to investigate these ‘more typical’ non-complete graphs, we sampled connected graphs
for which half of all possible edges were missing. An exhaustive simulation could explore
random connected graphs with k edges, but uniformly sampling this set of graphs is not
a trivial task [47].

The Ising system is brought into contact with an infinitely large bath in thermal equilib-
rium modelled as

Hbath =
∑

λ

�ωλb†
λbλ.

The summation runs over the oscillator modes, while b†
λ and bλ are the bosonic creation

and annihilation operators for mode λ. Finally, the qubit-environment interaction is

Hint =
∑

i

Ai ⊗ B,

where we opted for Ai = κi(σ +
i + σ –

i ) with site-specific coupling κi, and B =
∑

λ(b†
λ + bλ)

as operators of the quantum system and of the environment, respectively. For the sake of
simplicity, although unphysical, we assume κi being independent of energy, i.e., a qubit is
coupled to all bath modes equally.
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We mention an alternative approach for regulate the system on a site-dependent basis,
in which each qubit is controlled by its own transverse field [48], rather than an individ-
ually controlled interaction strength. Within a mean-field-like model Susa et al. showed
that with such a spatio-temporal inhomogeneous control-field the detrimental first-order
phase transition, present in a uniform system, can be avoided, hence the performance of
the quantum annealing protocol can be improved.

The Hamiltonian, H = HG + Hext + Hbath + Hint, governs the time evolution ρ̇total =
–i[Hint,ρtotal] in the interaction picture. As we are interested in the dynamics of the qubits,
we trace over the bath states and obtain

ρ̇(t) = –
∫ t

0
ds Trbath

[
Hint(t),

[
Hint(s),ρtotal(s)

]]
. (1)

In solving Eq. (1) we make the three standard assumptions and follow Refs. [49–51].
The qubit-bath coupling is weak (Born approximation). The bath is initially uncorrelated.
The density matrix can be factorised (i.e., no appreciable correlation between system
and bath) which is kept throughout the evolution, hence ρtotal(t) ≈ ρ(t) ⊗ ρbath, where
ρbath ∝ exp(–βHbath) is the canonical density matrix at inverse temperature β . Finally, the
bath is assumed to be Markovian, which allows us to change the integration limit in Eq. (1)
from t to ∞ leading to

ρ̇(t) =
∑

jk

∫ ∞

0
ds

[
Aj(t); Ak(s)ρ(s)

]
Cbath + h.c. (2)

Here Cbath = Trbath(B(t)B(t′)ρbath) is the bath time-correlation function. Using the energy
eigenbasis of Hsys = HG +Hext, e.g., 〈a|A(t)|b〉 = Aabeiωabt , we transform Eq. (2) into a matrix
equation

ρ̇ab ∼= –iωabρab –
∑

cd

Rabcdρcd. (3)

where ωab = ωb – ωa, and ωa, ωb are the eigenfrequencies corresponding the eigenstates
|a〉 and |b〉, respectively. We discard fast oscillatory terms and keep only those terms in the
summation for which |ωab – ωcd|–1 � τrelax. For clarity, we introduced the Bloch-Redfield
tensor Rabcd = – 1

2
∑

jk(δbdrjk
ac + δacrjk

db) with rjk
ac =

∑
n Aj

anAk
ncS(ωcn) – Aj

acAk
dbS(ωca) and rjk

db =
∑

n Aj
dnAk

nbS(ωdn) – Aj
acAk

dbS(ωdb). Here S(ω) =
∫ ∞

–∞ dτeiωtC(t) ∼= 2π J(ω)(1 + n(ω)) is the
noise power-spectrum of the bath. The function J(ω) = ηωe–ω/ωc is the Ohmic spectral
density function with a cut-off frequency ωc and a dimensionless parameter η [52], while
n(ω) = (eβ�ω – 1)–1 is the mean oscillator number in mode ω at inverse temperature β . In
the following we use κ(ω) = η/4πωe–ω/ωc (1 + n(ω)), thus the system couples differently to
different modes of the bath. The aim of annealing is finding the ground state of a known
Hamiltonian, hence in the following we report that value of κ (or κ = mean({κi})) which
it had at the moment when the probability of being in the instantaneous ground state
stopped decreasing after the initial decline (see later in Figs. 2 and 3). Usually, for cold
enough baths the relaxation rate is considered to be Ohmic [53], and, alternatively, an
ensemble of coherent two-level systems can also reproduce Ohmic excitation spectrum
[54, 55].
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We emphasise: the bath correlation time, τbath, must be short enough, such that

τbath � τrelax. (4)

In other words, the fast oscillating quantities average out, and the terms with frequency
ωab – ωcd will not give any significant contribution to the system evolution by t′ such that
|ωab – ωcd|–1 � t′ � τrelax. This condition also sets a limit on the time-scale of the simula-
tion [51, 56], as beyond τrelax the observables do not change any more.

As a crude approximation τrelax ∝ κ–2 [57, 58] while τbath ∼= max ( 2π
ωc

,β). Hence as long
as τbath � τrelax is fulfilled, Eq. (3) should be an adequate description. The suitable β also
depends on the graph and we use β = 22 for the linear graph, 30 for the random non-
complete graph, and 40 for the complete graph. These β values lead to κi � 0.007.

3 Results
Fidelity is a central measure in quantum computation and an upper bound can be calcu-
lated as [59, 60]

F(ρ1,ρ2) ≤ Tr (ρ1ρ2) +
√

1 – Tr
(
ρ2

1
)√

1 – Tr
(
ρ2

2
)
, (5)

where ρ1 and ρ2 are any two density operators. In the following ρ1 is fixed by the instanta-
neous ground state, while ρ2 = ρ(t) is the instantaneous density operator. We also follow
the time evolution of the instantaneous energy of the system, ε(t) = Tr(ρHsys(t)), compared
to Tr(ρHsys(t = ∞)).

As a benchmark, we prepare the 7-qubit chain in its ground state with constant Jij = 1,
and anneal with different τ without coupling to the environment. The probability of being
in the instantaneous ground state, P, together with the logarithm of the gap between the
ground state and the first excited state (dashed line), log(), are shown in the Fig. 2. The
gap initially diminishes rapidly, reaches its minimal value around t/τ ≈ 0.5, and then levels
off at a value on the order of unity. Not surprisingly, around the min() fidelity drops as
different states start mixing. However, for slower annealing (τ = 2, 4) scattering into the
excited states is less, and higher P values are maintained, as expected from earlier studies
[30, 61–65], hence τ plays an important role [57]. Although short annealing time reduces

Figure 2 The time dependence of P is plotted for an isolated 7-qubit chain (Jij = 1) for different τ (solid lines).
The dashed line is the logarithm of the energy gap, , as a function of scaled time
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Figure 3 (Top) Probability of being in the ground state (solid lines) over time for isolated (κ = 0) and open
system (κi ≡ κ = 0.001) for 7 qubits placed on an incomplete graph, where not all of them interacting with
each other. The instantaneous energy (dashed lines) of both systems approaching the target energy. (Bottom)
Populations of all 27 energy eigenstates at the end of the experiment for both systems

probability of being in the ground state, we do aim to anneal fast, and hope that coupling
to the environment helps the system to release its surplus energy and regain some of its
lost population in the ground state.

Let us compare the population of the ground state for open and closed systems with
fixed τ = 1

2 and uniform coupling to the environment. Figure 3 shows ε(t) and P for closed
(κ = 0) and open (κi ≡ κ = 0.001 for all i) systems. The open system coupled uniformly
and weakly to the environment ends up in the instantaneous ground state with higher
probability, and simultaneously the instantaneous energy, ε(t) approaches the target en-
ergy. The bottom panel of Fig. 3, compares population of states of each system: the ground
state population remains much higher for a weakly coupled system than for the isolated
system. Concluding, weak coupling to the environment may help the system to evolve into
its ground state with higher probability.

Figure 4 shows Pfin for fixed non-optimal coupling and for κ
opt
i . It is apparent that Pfin <

Poptimised for a non-optimal κ , and also the final energy of the optimised case is closer to
the target energy (the true ground state energy) than for the non-optimised system.

Next we vary κi to maximise the population of the ground state at the end of the simu-
lation, Pfin. First, we consider a uniform coupling, κi = κopt, while later we allow for site-
dependence, κi = κ

opt
i . The evolution of Pfin and the average coupling strengths, κ , are

depicted in Fig. 5. We pick {κi} corresponding to the highest Pfin. Each simulation consists
of two parts: one solves the Bloch-Redfield master equation and measure the fidelity be-
tween two given states, and the other optimises the target function y = 1 – max(fidelity)2

with the constraint 0 < κ . We rely on the python3 module scipy.optimize imple-
menting the Nelder-Mead algorithm [66]. A run starts with an initial guess for κ , measures
F as in Eq. (5), and then y is evaluated.

One may ponder upon the stability of the ground state population above some κ . We
have simulated the time evolution for both non-optimised and optimised system-bath
couplings. Figure 6 shows the results for a non-complete graph with 5 nodes coupled
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Figure 4 (Top) The probability of being in the instantaneous ground state at the end of the simulation, Pfin, is
shown as a function of the average coupling strength κ . The graph contains N = 6 qubits, and it is a
non-complete graph as described in the text. The graph is fixed for all simulations. The maximal value of Pfin is
reached around κ = 0.025. The red and blue dashed lines depict εfin for the optimised and non-optimised
cases, respectively. The gray dashed line shows the target energy. Here εfin is calculated from the state when
the annealing was stopped. (Bottom) The histograms illustrate the populations of states for the optimised and
non-optimised (fixed κ ) cases. The more pronounced bunching around the ground state, as expected, is
visible for the optimised coupling strengths

Figure 5 The probability of being in the ground state at the end of the simulation for a non-complete graph
for random Jij ∼ N (2, 0.1). The coupling to the bath is either kept constant or it is optimised. The histograms
show the populations of each energy eigenstates at the end of the evolution. Other parameters: N = 6,
β = 30, and ωc = 30

to a bath at inverse temperature β with 0.001 ≤ κi ≤ 0.007. If the annealing is stopped
at t ∼ 3.2, one attains the highest χ = F2(ρgs,ρ(t)) which we interpret as the probability
of being in the instantaneous ground state. If the process continues, the system ends up
with a smaller population in the ground state than expected from Boltzmann’s distribu-
tion. While the optimised system undergoes a qualitatively similar evolution, χ reaches a
higher value even though there is a period (see 1.5 � t � 2.7) when other couplings tem-
porarily achieve higher χ values.

We have also analysed whether annealing is better compared to suddenly turning m(t)
off at the very beginning of the time evolution after preparing the initial state. We chose
a non-complete graph with 5 nodes, fixed Jij values, and varied τ from 0 to 2. The exper-
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Figure 6 Time evolution of χ for a non-complete random graph for 5 qubits and fixed τ = 0.5. All five qubits
are coupled to the environment with the same strength, hence all κi are equal to κ . The gray dashed line
shows the probability expected for the final ground state in thermal equilibrium. The coloured solid lines are
for non-optimized open systems with 0.001≤ κ ≤ 0.007. The top solid black line is for the optimised system
while the bottom solid black line corresponds to an isolated system

Figure 7 Comparison of annealing and non-annealing processes by varying the annealing time, τ . The solid
lines are for open systems with κ = 0.003 (top) and 0.02 (bottom). The dash-dotted lines correspond to
optimized κ , while the dashed lines are for an isolated system

iments are repeated for two coupling strengths κ = 0.003 and 0.02. The results are plot-
ted in Fig. 7 by line-triplets using the same colour for corresponding systems. One may
draw three conclusions. First, all open annealed systems achieves higher χ values than the
‘no-annealing’ protocol, although for strong environmental coupling the excess probabil-
ity is small. Secondly, a slow protocol (τ = 2) may outperform asymptotically all quicker
quenches and optimisation does not improve χ appreciably. Finally, for all τ > 0 the time



S. Najafabadi et al. EPJ Quantum Technology           (2023) 10:44 Page 9 of 13

evolution of χ starts flat ( d
dt χ ≈ 0), contrary to the ‘no-annealing’ protocol which starts

increasing immediately. Let us now focus on the coupling of medium strength, κ = 0.003
(top panel of Fig. 7). Comparing lines with identical colours, one may observe that their or-
der changes as τ varies. For a quick protocol, τ = 1

2 , the closed system performs the worst,
an open system can improve on χ around t ≈ 3, while optimising κ further increases χ .
For an intermediate value, τ = 1, the closed system outperforms the open system for long
enough experiments, but it is still worse than the optimised system. Driving the magnetic
field even slower (τ = 2) the closed system and the optimised system performs identically,
i.e., optimisation does not improve the outcome. However, in reality no isolated system
can be prepared, hence the conclusion remains: optimisation improves χ and may worth
the effort.

The bottom panel of Fig. 7 corroborates our remarks. It is worth making two further
comments. First, ‘no-annealing’ protocol seems to reach its asymptotic value very quickly
for stronger couplings, hence repeating it twice or thrice, instead of any smooth quenches,
may be a better approach. Second, the maxima of χ for open systems with annealing proto-
cols are significantly reduced and they perform only slightly better than the ‘no-annealing’
protocol.

For both optimised and non-optimised cases we calculate the cumulative probability,
Pc, of ‘not finding the true ground state in n consecutive experiments’ as

Pc(n) =
n∏

i=1

(1 – Pi),

where Pi is the probability of ending up in the ground state in the ith experiment. In experi-
ments, where the system-bath coupling is not optimised for, Pi remains constant through-
out, hence Pc(n) = (1 – P1)n. However, with optimisation Pi changes in each iteration and
one may achieve a faster decrease than in the non-optimised case. Figure 8 demonstrates
the difference between these approaches: in the optimised case the probability of missing
the ground state tends to zero faster than the non-optimised case. As we learn better κi

values after each iteration, the probability of finding the ground state is higher than in the

Figure 8 The cumulative probability, Pc, is shown for four runs, with random initial couplings. In two runs
(red) these initial couplings are frozen and kept constant, while in the other runs κ is optimized (blue) in each
step. Even for the ‘bad’ initial guesses the curves decrease faster. (Inset) Same data with logarithmic ordinate
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non-optimised case. We note that, since the submission of our manuscript, some recent
studies reached similar conclusion to ours, for example in terms of greedy optimisation of
interaction parameters [67] or via genetic optimization of the annealing schedule [68].

4 Conclusion
We have studied the annealing of an archetypal transverse Ising spin (qubit) system cou-
pled to an infinite heat bath with which it exchanges energy. We focused upon the proba-
bility of finding the ground state by the end of an experiment in finite time, if repeated runs
are permitted. While these repetitions may extend the overall run-time of the annealing
procedure, the probability of missing the true ground state in all experiments diminishes
exponentially. We have also analysed the role of the annealing time, τ , and that of the
site-dependent qubit-bath coupling strengths. However, it is left for future research to in-
vestigate the effects of graph theoretical quantities, such as adjacency structure, centrality,
in-betweenness, etc, on the annealing procedure.

Focusing on a single experiment, we identified parameter ranges in which the environ-
ment can assist and improve the performance of the annealing. We have shown that the
quench parameter, τ , and the system-environment couplings, {κi}, can be optimised to
improve the annealing process and keep the state of the quantum system close to the in-
stantaneous ground state throughout the entire experiment.

Finally, repeating the simulation multiple times, the system ground state can be identi-
fied quicker if the system-bath coupling strength is varied in a supervised way at each it-
eration, compared to if one repeats the simulation with the system-bath coupling strength
maintained constant.
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