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Abstract
This paper focuses on Grover’s quantum search algorithm, which is of paramount
importance as a masterpiece of Quantum Computing software. Given the inherent
probabilistic nature of quantum computers, quantum programs based on Grover’s
algorithm need to be run a number of times in order to generate a histogram of
candidate values for solutions, which are then checked to identify the valid ones. In
this paper, the distribution of the required number of shots to find all or a fraction of
all the solutions to the Grover’s search problem is studied. Firstly, considering the
similarity of the probability problem with the well-known coupon collector’s problem,
two formulae are obtained from asymptotic results on the distribution of the required
number of shots, as the number of problem solutions grows. These expressions allow
to compute the number of shots required to ensure that, with probability p, all or a
fraction of all the solutions are found. Secondly, the probability mass function of the
required number of shots is derived, which serves as a benchmark to assess the
validity of the asymptotic approximations derived previously. A comparison between
the two approaches is presented and, as a result, a rule of thumb to decide under
which circumstances employ one or the other is proposed.
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1 Introduction
Grover’s algorithm [1] is one of the most important and applied algorithms in quantum
computing. The original algorithm has been demonstrated to be optimal for the search
problem [2]. It has been extended to solve problems with multiple solutions [3] and to
improve the probability of finding them [4–7]. It is also the base for the more general
amplitude amplification and amplitude estimation algorithms [8–10], which are funda-
mental parts of other quantum algorithms. Grover’s algorithm has been successfully ap-
plied to many problem domains such as image recognition [11], cryptography [12], global
optimization [13], string matching [14], quantum chemistry [15], genetic algorithm [16],
fuzzy systems [17], Boolean satisfiability problems [18], and machine learning [19, 20], to
mention a few.

Grover’s algorithm relies on the existence of an oracle function that is able to identify a
solution to a search problem of size N . By exploiting the quantum effect of superposition,
it can find an item in an unordered dataset with only �(

√
N) evaluations of the oracle,
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�(
√

N/M) when the search problem has M solutions. This is an improvement over the
�(N) evaluations required by classical algorithms. It comes with the drawback, however,
that it is a probabilistic algorithm and the value it outputs is, therefore, not always a solu-
tion to the problem. This probability depends on the number of Grover iterations i (i.e.,
one oracle evaluation plus an execution of the Grover diffuser) [1] in the quantum circuit,
the size of the space to be explored and the number of solutions [3]:

pG = sin2((2 · i + 1) · θG
)
, being θG = arcsin

(√
M
N

)
. (1)

Another characteristic of Grover’s algorithm is that the value it outputs may coincide
with previously obtained ones (whether solutions or not), since each execution is inde-
pendent of the previous ones. This behaviour is intrinsic to the probabilistic nature of
quantum computing and is compensated by repeatedly re-running the circuit a number
of times (henceforth, “shots”) and analysing the histogram of values output by the algo-
rithm. Since, by design, Grover’s algorithm maximises the probabilities of finding a so-
lution, the most repeated values in the histogram will most probably be solutions to the
search problem.

In this context, this paper focuses on studying the number of shots required to find, with
a given probability, the M solutions or a fraction of them.

This question is relevant because there are scenarios in which you may want to get sev-
eral solutions in order to compare them against other criteria, and because of the scarcity
and high cost of quantum computers, it is necessary to use them efficiently, in a sustainable
way.

From a probability point of view, the problem under study bears much similarity with
the coupon collector’s one which states: if each pack of bubble gum contains a coupon,
and a complete set consists of M different coupons, how many packs of bubble gum does
one have to buy to get, with probability p, a complete set? [21, Sect. 8.1 and 8.4]. Possibly,
the first results published on the coupon collector’s problem can be found in the classical
textbook by Feller [22], where it is called the waiting time problem and the first moments
are derived. Since then, many authors have studied in particular the asymptotic distribu-
tion of the number of required packs as the size of the complete set increases, considering
a range of variations for the sampling scheme, see for example [23, 24] and [25]. In [23],
the mean and variance of the number of trials required to complete the collection are ob-
tained extending the case of equally likely coupons, allowing the probability of selecting a
coupon to vary from one coupon to the other, according to an integral formula. In [24], the
classical coupon collector’s problem is extended to one in which two collectors are simul-
taneously and independently seeking collections, while, more recently, in [25], asymptotic
results for the variance and the distribution of the required number of trials are obtained
under quite general conditions on the probabilities of extracting each coupon, achieving
more general results than [23]. The substantial difference between the problem studied in
this paper and the one considered by the coupon’s collector is that an execution of Grover’s
algorithm outputs one of the M solutions with probability pG (see (1)), while the collector
always gets a coupon when opening a bubble gum pack.

The average number of shots required to find all solutions is straightforward to obtain
and could be considered as a first hint or a rule of thumb about the number of shots re-
quired by Grover’s algorithm. However, there is no guarantee that the probability to get
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all solutions is high enough. To gain knowledge and allow sound decisions to be made,
information about the whole distribution, not only its expectation or variance, is needed.
In this paper, after computing the expectation and variance for the number of required
shots, we take advantage of asymptotic results proved in the classical coupon collector’s
problem to derive approximations for the number of shots required to find the M solu-
tions, or a fraction of them, with a given probability. Afterwards, we extend the work by
providing an exact formula for the probability mass function corresponding to the number
of shots required to find the M solutions to the problem or a fraction of them, depending
on the user’s needs. This exact formula (i) provides a benchmark to assess when the ap-
proximations can be used without incurring large deviations from the exact values, and
(ii) can be used when the number of solutions is small, which would put at risk the validity
of the asymptotic approximations. Lastly, a comparison between the approximated and
the exact formulae is presented and a rule of thumb about when to use the approximated
expressions is suggested.

Without loss of generality, the authors of this paper assume that the number of solutions
is known in advance (which is a requirement in order to design a quantum circuit with high
probability of outputting them), and do not consider the fact that quantum computing de-
vices are noisy, and therefore the values predicted by the formulas described may not co-
incide with the results of current real world experiments. Regarding the first assumption,
[3] describes a modification of Grover’s algorithm to account for this, while [26] proposes
the inclusion of quantum counting algorithms as a previous step before running Grover’s
algorithm. Regarding the second one, the effects of noise have been studied in quantum
computing in general, and noise correction mechanisms have been proposed and success-
fully applied in real quantum computers [27]. The effect of noise in Grover’s algorithm in
particular has also been subject to study in research works such as [28, 29]. In any case,
we are at the beginning of the quantum era, and quantum hardware development is still
very unreliable. But that will change in the coming years, making experiments converge
to the values predicted by this paper.

2 Results
Denote the number of solutions of the search problem by M and let XA,M be the shot on
which, for the first time, the number of different solutions that have been sampled is A + 1.
We are in particular interested, for a given probability p ∈ [0, 1], in the number s that
satisfies:

s = inf
{

r ∈ N : P(XA,M ≤ r) ≥ p
}

, (2)

where, for a set S, inf S denotes the infimum of S, also called the greatest lower bound of S.
The integer s is the answer to the question “how many shots are required to ensure, with

probability p, to have found all M solutions of the problem (or a fraction of them) at least
once?”. More generally, we are interested in the whole distribution of values of XA,M . The
integer s in (2) is then a quantile of that distribution, properly defined using the general-
ized inverse of the distribution function, see [30, p. 39]. The generalized inverse is required
since the random variable XA,M takes discrete values. Several cases regarding A are par-
ticularly relevant for this research:

• A = M – 1. XM–1,M is the shot number in which, for the first time, all different
solutions have appeared at least once.



Kessler et al. EPJ Quantum Technology           (2023) 10:47 Page 4 of 14

• A = 0. X0,M is the first appearance of a solution.
• A = k · M – 1, for some 0 < k < 1. For example, k = 0.5 means that the interest is in

finding M/2 solutions.
Please note that the quantity A = M – 1 is introduced because it leads to more compact

expressions.

2.1 Expectation and variance of XA,M

The first elements of information about the distribution of XA,M that can be easily deduced
are its expectation and variance. Indeed, XA,M has the same distribution as that of the sum
of independent variables

GpG + GpG(M–1)/M + · · · + GpG(M–A)/M, (3)

where each Gp follows a Geometric distribution with parameter p, which models the num-
ber of Bernoulli trials required to get a success, which has probability p. The first Geo-
metric distribution GpG represents the number of shots required to get a first solution,
the second Geometric variable represents the number of shots required to get another
solution different from the previous one (probability of success is pG(M – 1)/M now), etc.

Since for a Geometric distribution, E[Gp] = 1/p and Var(Gp) = 1–p
p2 , the expectation and

variance of XA,M are deduced from (3), where pG is defined in (1):

E[XA,M] =
M
pG

M∑

i=M–A

1
i

, (4)

Var(XA,M) =
M2

p2
G

M∑

i=M–A

1
i2 –

M
pG

M∑

i=M–A

1
i

. (5)

2.2 Approximations to the number of required shots
In this section, an approximation to the distribution of XA,M is derived, which provides
expressions for the number of required shots. This approximation is adapted from the
results in [31]. Two cases are considered: when interested in finding all M solutions and
when only a fraction of all the solutions is required.

Proposition 1 In the case when A = M – 1, i.e., when interested in finding the M solutions,

2 exp –
(

XM–1,M – μM–1,M
M

pG – γ

)
−→ χ2

2 , in distribution as M → +∞, (6)

where γ denotes the Euler constant, see [32, Sect. 5.2(ii)] and χ2
2 denotes a chi-square dis-

tribution with 2 degrees of freedom. The expression for μM–1,M = E[XM–1,M] is given in (4).
As a result, the following approximation for the quantile function holds:

s = μM–1,M +
M
pG

(ln 2 – γ ) –
M
pG

ln
(
ϕ–1

χ2
2

(1 – p)
)
, (7)

where ϕ–1
χ2

2
(q) denotes the inverse of the cumulative distribution function of a χ2 distribution

with two degrees of freedom.
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Proposition 2 In the case when A = k · M – 1, for some 0 < k < 1, i.e., when interested in
finding a fraction of all solutions,

XA,M – μA,M

σA,M
−→N (0, 1), in distribution as M → +∞, (8)

where N (0, 1) denotes the Standard Normal distribution, and expressions for μA,M and
σ 2

A,M can be found in (4) and (5), respectively.
As a result, the following approximation for the quantile function holds:

s = μA,M + σA,M · ϕ–1
Z (p), for 0 < p < 1, (9)

where ϕ–1
Z denotes the inverse of the cumulative distribution function of a Standard Normal

distribution.

A Python script that implements the approximated cumulative distribution function
and the corresponding formulae for s in (7) and (9) can be found on the repository men-
tioned in the Data availability section. It allows the user to specify A, M, pG and choose
the probability p to compute the required number of shots s.

On the other hand, in the case when interested in finding all solutions, it is straightfor-
ward to see from (7) and (4) that the product s ·pG only depends on M and p. It is therefore
possible to construct a unique statistical table which provides values of the product s · pG

for different combinations of p (columns) and M (rows). An example of such a table is
presented in Table 1.

In the case when the interest is in finding only a fraction of the solutions, the expression
(5) of the standard deviation σA,M that appears in (9) prevents s · pG to eliminate the de-

Table 1 Tabulated values of s · pG , where s is the quantile of the distribution of the required number
of shots to find all solutions. The column headers contain the probabilities p, and each row contains
the values of s · pG such that P(XM–1,M ≤ s) = p for a given value of M. Assume, for example, that the
user wants a probability 0.9 of finding all the M = 100 solutions to their search problem, the table
indicates that s · pG should be 686. If pG , see (1), has a value of 0.8 for example, it follows that
approximately 857 shots are required

M Probability p

0.50 0.70 0.80 0.90 0.95 0.99

5 10.36 13.69 16.03 19.78 23.38 31.53
6 13.44 17.42 20.24 24.74 29.06 38.84
7 16.68 21.33 24.61 29.86 34.90 46.31
8 20.06 25.37 29.12 35.13 40.89 53.93
9 23.56 29.54 33.77 40.52 47.00 61.67
10 27.18 33.83 38.52 46.02 53.22 69.52
20 67.74 81.03 90.41 105.42 119.81 152.41
30 113.53 133.46 147.53 170.04 191.64 240.54
40 162.71 189.29 208.05 238.07 266.86 332.06
50 214.43 247.65 271.10 308.62 344.61 426.11
75 351.80 401.63 436.81 493.09 547.08 669.32
100 497.67 564.11 611.01 686.05 758.04 921.03
200 1133.47 1266.35 1360.15 1510.24 1654.20 1980.19
300 1821.59 2020.91 2161.62 2386.74 2602.69 3091.68
400 2543.69 2809.46 2997.06 3297.23 3585.16 4237.15
500 3291.06 3623.27 3857.77 4232.99 4592.90 5407.88
1000 7274.77 7939.19 8408.20 9158.62 9878.45 11,508.40
2000 15,935.33 17,264.17 18,202.18 19,703.04 21,142.70 24,402.60
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pendence on pG and a different table would be needed for each value of pG and for each
value of k. For that case, the aforementioned scripts can be used.

2.3 Exact probability mass function
The approximation derived in the previous section is based on asymptotic results on the
distribution of XA,M as M grows to infinity, and is therefore expected to be more accurate
as M gets large. It is actually possible to derive the exact probability mass function (pmf)
for XA,M , which allows for more accurate numerical computation of any quantity of inter-
est related to the distribution of XA,M , in particular its quantiles. This is the main result
of this section, presented below. As a benchmark, it is also useful to determine the good-
ness of the approximations derived in the previous section. This will be illustrated in the
discussion section, where the approximations are shown to present very good prediction
performance, even for small and moderate values of M.

Proposition 3 Given M > 1 and 0 < A < M, we have, for s ≥ A + 1,

P(XA,M = s) =
(

M
A + 1

)
(A + 1)!

s–1∑

l=A

(
s – 1

l

){
l
A

}(
pG

M

)l+1

(1 – pG)n–1–l, (10)

where, for two integers k ≤ m,
{ m

k
}

is the Stirling number of the second kind, that is the
number of ways of partitioning a set of m elements into k non-empty subsets, see e.g. [33],
Sect. 1.6, and [32, Sect. 28.6(i), Eq. 28.8.5], which can be computed as follows

{
m
k

}

=
k∑

r=1

(–1)k–r rm

r!(k – r)!
. (11)

Notice that, in the case when we are interested in the first appearance of a solution, i.e.,
A = 0, X0,M follows a Geometric distribution of parameter pG:

P(X0,M = s) = (1 – pG)s–1pG, for s ≥ 1.

Formula (10) can be easily implemented. It allows to compute, for any M, A and pG,
the cumulative ditribution of XA,M and therefore compute any related quantity. However,
take into account that, as the number of solutions M grows, higher precision and range
are needed to compute powers, factorials and binomial coefficients. Moreover, the com-
putation of a quantile s using the exact pmf (10) requires computing all point probabili-
ties up to the first integer for which the cumulative distribution function exceeds p. This
may be computationally quite intensive for a large M since both the equation (10) and
the expression for the Stirling coefficient of the second kind (11) involve sums. The afore-
mentioned repository also contains Python and C implementations that compute the pmf
and cumulative distribution function (cdf ) of XA,M for given values of pG, A and M. Both
implementations use the GMP library for more precise computations [34].

For illustration purposes, Fig. 1 and Fig. 2 display, for the case of 100 solutions, the quan-
tile function, i.e., the inverse of the cdf of XA,M : for a varying probability 0 < p < 1 in Ox
axis, the value of s such that P(XA,M ≤ s) = p is represented. In Fig. 1, A = 99 and M = 100,
i.e, the interest is in finding all 100 solutions, while in Fig. 2, A = 49 and M = 100, i.e, we
want to get half of the solutions.
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Figure 1 Number of shots (Oy axis) required to find, with a varying probability p (Ox axis), all solutions, from a
total of M = 100, for pG = {0.7, 0.95, 0.999}. Vertical lines indicate concrete values of p = {0.7, 0.85, 0.95}

Figure 2 Number of shots (Oy axis) required to find, with a varying probability p (Ox axis), half of the solutions,
from a total of M = 100, for pG = {0.7, 0.95, 0.999}. Vertical lines indicate concrete values of p = {0.7, 0.85, 0.95}

For the sake of completeness, the Appendix contains the results and enhancements re-
lated to the original coupon collector problem that served as the basis for deriving and
proving the propositions in this section.
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3 Discussion
In this section, the exact quantile and the approximated quantile functions are compared,
for different values of A, M and pG, in order to get insight about from which value of
M can we safely switch to the simpler approximated expressions, less computationally
demanding, for s.

Firstly, for illustration, Figs. 3 and 4 compare graphically the required number of shots
using the approximated expressions (7) and (9), and the exact cdf of (10). The match is
excellent in the case when we are interested in obtaining the M solutions and very good
in the case when we want to ensure a probability p of finding M/2 solutions. On the other
hand, a more systematic comparison was carried out, assessing the closeness of the exact
and approximated expressions using the absolute error for the obtained number of shots.
It is expectedly easier to approximate a distribution around its center than at its extremes,
so the user defined probability p should be paid particular attention to in the assessment.
The absolute error εp,M = sapprox. – sexact was computed for a varying p as M increases
and for different values of pG. In Fig. 5, which corresponds to the case when the interest
is in getting the M solutions, the distribution of these errors, when p takes values in the
interval [0.5, 0.9] and pG = {0.7, 0.95, 0.999} is displayed through a boxplot for each value of
M represented in the Ox axis. The more extreme value p = 0.99 is represented separately
through individual points. It is remarkable that, on the one hand, the absolute error is
small and stable as M increases. Since the value of required number of shots increases
dramatically as M grows, this implies in particular that the relative error drops very fast. As
an example, it is lower than 4% for M = 10 for all p ≤ 0.99 (absolute error not greater than
3). On the other hand, it is also observed that εp,M is always non negative, which implies
that the approximated number of shots always overestimates the exact required number

Figure 3 Comparison between the exact and approximated quantile functions, when the interest is in
finding all solutions, from a total of M = 100, for pG = {0.7, 0.95, 0.999}. The solid line represents the exact
quantile function while the dashed line with “+” markers represents the approximated quantile function
from (7). Note that the match is excellent
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Figure 4 Comparison between the exact and approximated quantile functions, when the interest is in
finding half of the solutions, from a total of M = 100, for pG = {0.7, 0.95, 0.999}. The solid line represents the
exact quantile function while the dashed line with “+” markers represents the approximated quantile function
from (9)

Figure 5 Representation of the absolute error between the approximate and exact values for the required
number of shots, when interested in finding all solutions (derived from (7) and (10)), as the number of
solutions M grows (Ox axis). Each boxplot is built from the values of the absolute error for p varying in the
interval [0.5, 0.9] for pG = {0.7, 0.95, 0.999}. The extreme case p = 0.99 is represented using individual points.
For a better visualization, a linear scale is used for M≤ 50 and a log scale for M > 50

of shots. As a result, the approximated expression provides a conservative estimate of the
required number of shots, which is actually associated to a higher probability than the
user defined p. Regarding the case when the interest is in getting a fraction (k < 1) of all
solutions, a similar study was carried out for several values of k. Figure 6 displays the
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Figure 6 Representation of the absolute error between the approximate and exact values for the required
number of shots, when interested in finding 90% of all solutions (derived from (9) and (10)), as the number of
solutions M grows (Ox axis). Each boxplot is built from the values of the absolute error for p varying in the
interval [0.5, 0.9] for pG = {0.7, 0.95, 0.999}. The extreme case p = 0.99 is represented using individual points.
For a better visualization, a linear scale is used for M≤ 50 and a log scale for M > 50

absolute error as in the previous figure, for the case when k = 0.90, i.e, when 90% of all
solutions are required to appear. The behaviour of the absolute error is similar to the case
when interested in observing the M solutions, although in this case, the approximation
may underestimate the exact required number of shots. Very similar results were obtained
for other values of 0 < k < 1, with better approximating performance for smaller values of
k. The latter is to be expected since the asymptotic result (8) relies on M – A tending to
infinity as M grows and, for larger values of k like 90% for example, the quantity M – A =
10%M grows slowler.

From those results, a reasonable rule of thumb would therefore be: when interested in
obtaining the M solution or a fraction of them, the approximations (7) and (9) are adequate
if M ≥ 30. This value of M ≥ 30 leads indeed to relative errors lower than 3% even for
values of p close to 1.

Notice that even if for large values of M the approximation provides very satisfactory
precision and is computationally much faster than the exact formula, the latter is relevant
in the case when running a large number of simulations is costly and it is therefore impor-
tant not to overestimate the number of shots. Morever, the exact pmf is essential to assess
the validity of the approximated expressions.

A final remark to conclude the discussion: for the case when we are interested in get-
ting all the solutions, if M is large, it is known, see e.g [35, Sect. 12.3.1] that

∑M
i=1

1
i =

ln M + γ + o(1), where γ is the Euler constant, see [32, Sect. 5.2(ii)]. Consequently, the av-
erage number of shots required to get the M solutions can be approximated, if M is large
enough, by (M ln M)/pG. This is a rule of thumb about how to choose the number of shots
of Grover’s algorithm that can be found in the community. However, if one were to choose
that number of shots, there is no guarantee that the probability to find the M solutions is
satisfactorily high. There is a double reason for that: on the one hand, the expectation of
the distribution needs not be located in the right extreme part of the distribution, and on
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the other hand, (M ln M)/pG is a rough approximation that underestimates the expecta-
tion. In fact, using the exact pmf, the computation for a range of M and pG throws values
in the range [0.3, 0.4] for the probability P(XM–1,M ≤ (M ln M)/pG), which are admittedly
not sufficient. The approximation (7) provides much better precision.

4 Conclusions
In quantum computing, it is common for programmers to set a default number for the
number of shots without reasoning about its suitability, basically relegating themselves to
the facilities offered by the platform to choose an arbitrarily large number. In this paper,
we have shown how to determine, for Grover’s algorithm, the number of shots needed
to get all the solutions (or a fraction of them) with a given probability. This is significant
result because, to our knowledge, up to now no research has been made on this matter.
There are some guidelines in the community to select this number, but no complete study
about it. Besides, there is a growing interest in a sustainable and cost-efficient use of the
scarce quantum resources.

We have made three contributions related to the determination of the number of shots.
Firstly, we provide two approximation equations, based on extensions to the coupon’s col-
lector problem, to calculate the number of shots required to find all solutions or a fraction
of them. Secondly, we have derived an exact formula that considers both cases (all solu-
tions and a fraction of them). Lastly, we have provided a rule of thumb to help users decide
which formula to use depending on the characteristics of the problem, given that the exact
formula is computationally more costly than the approximated ones. Researchers in the
field of quantum computing may also find in this paper a very interesting starting point
to work on the determination of the number of shots for other quantum algorithms that
share the original behavior of Grover’s algorithm.

5 Methods
5.1 Proof of Proposition 1
Proof The proof is obtained from a modification of Theorem 4 in [31]. In the latter,
asymptotic results for the classical coupon collector’s problem are derived under differ-
ent assumptions regarding the relative order of M and A. In our context, the variable
(XM–1,M – μM–1,M)/M is proved to converge in distribution to

Z̃1 =
+∞∑

k=1

(
Ỹk – 1/(pGk)

)
,

where Ỹk are independent random variables with a exponential distribution with mean
1/(pGk). Z̃1 has the same distribution as Z1/pG in formula (21) in [31]. Following the same
steps as in [31], the convergence (6) is deduced.

To deduce (7) it is enough to use:

P(XM–1,M ≤ s) = p

⇔ P

(
2 exp –

(
XM–1,M – μM–1,M

M
pG – γ

)
≥ 2 exp –

(
s – μM–1,M

M
pG – γ

))
= p

⇔ ϕχ2
2

(
2 exp –

(
s – μM–1,M

M
pG – γ

))
) = 1 – p. �
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5.2 Proof of Proposition 2

Proof The proof is based on an asymptotic expansion of the characteristic function of
XA,M–μA,M

σA,M
, ψM(t) = E[e

it(
XA,M –μA,M

σA,M
)
].

By (3), we have ψM(t) =
∏M

M–A φpGk/M(t/σA,M), where φq(t) is the characteristic function
of Gq – 1/q, with Gq a Geometric distribution with parameter q.

Following the proof of Theorem 3, case (i) in [31], using an asymptotic expansion of σA,M

as M → ∞, it is established that ψM(t) → e– 1
2 t2 , from which we deduce the asymptotic

normality. �

5.3 Proof of Proposition 3

Proof Consider the event XA,M = s. The result of the sth shot corresponds therefore to a
solution, it is the first occurrence of that solution and a total of A + 1 different solutions
have appeared in the first s shots. To begin with, there are

( M
A+1

)
ways to choose those A + 1

solutions among the M possible solutions. We shall distinguish the cases depending on the
number j of times, within the s – 1 previous shots, that the output of Grover’s algorithm
is not a solution. The integer j can take values between 0 and s – 1 – A, since at least A
solutions have appeared.

In order to consider all possible events which union consists of XA,M = s, consider a given
value of j. We have to choose j positions among s–1 possibilities for the ocurrences of “non
solutions”. This amounts to

(s–1
j
)

possibilities. For the remaining s – 1 – j shots, we must
assign locations to each of the A different solutions. For that purpose, we first have to build
a partition of the s – 1 – j elements into A elements. There are

{ s–1–j
A

}
ways to do so.

Moreover, the probability of such an individual event, where j shots of the algorithm do
not output a solution, and s – j shots correspond to a solution is:

(
pG

M

)s–j

(1 – pG)j.

Summing up, we obtain:

P(XA,M = s) =
(

M
A + 1

)
(A + 1)!

s–1–A∑

j=0

(
s – 1

j

){
s – 1 – j

A

}(
pG

M

)s–j

(1 – pG)j.

Introducing the index l = s – j – 1 in the sum, the final formula (10) is deduced. �

Appendix
For completion, the counterparts of Propositions 1, 2 and 3 for the original coupon col-
lector problem are presented here.

The coupon collector problem: If each pack of bubble gum contains a coupon, and a
complete set consists of M different coupons, how many packs of bubble gum must one buy
to obtain a complete set with a probability of p? [21, Sect. 8.1 and 8.4].
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Result 1. If T denotes the number of packs the collector has to buy before getting a complete
set, the probability mass function of T is:

For s ∈N, s ≥ M: P(T = s) =
M∑

i=1

(
M
i

)(
M – i

M

)s–1 i
M

(–1)i+1. (12)

A proof of this result can be found in [36, p. 121].
It can be proved that formula (10) of Proposition 3 simplifies to (12) if one sets A = M – 1

and pG = 1, which expresses the fact that the interest is in finding the M solution, i.e.,
T = XM–1,M , and the probability to find a coupon in a pack is 1, respectively.

Regarding Propositions 1 and 2, their counterparts for the original coupon collector
problem can be found as Theorem 4 and Theorem 3 in [31], respectively. The authors of
this reference call WM the drawing, i.e., the pack, on which, for the first time the number of
different coupons that have been obtained is AM + 1, and are interested in the asymptotic
distribution of WM when M and AM both go to infinity. They derive different theorems
depending on the rate of convergence of AM to infinity as M → ∞. The two results relevant
to Propositions 1, 2 are stated below for reference.

Result 2 (Theorem 4 in [31]). If M – AM is a constant b as M goes to infinity, then
exp{–(WM/M – log 2M)} converges in law to the chi-square distribution with 2b degrees
of freedom.

This result is the inspiration for Proposition 1, where AM = M – 1, which implies b =
M – AM = 1 and expresses the fact the interest is in finding all M solutions.

Result 3 (Theorem 3 in [31]). If AM/
√

M and M – AM both go to infinity, then (WM –
E[WM])/

√
var(WM) converges in law to the normal distribution with mean 0 and vari-

ance 1.
This result is the inspiration for Proposition 2, where AM = k · M, for some 0 < k < 1,

which expresses the fact the interest is in finding a fraction of the M solutions.
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