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Abstract
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient
solution to handle multi-photon signals emitted by laser sources, and provides the
same secret key rate scaling as ideal single-photon sources. It requires, however, that
the phase of each emitted pulse is uniformly random. This might be difficult to
guarantee in practice, due to inevitable device imperfections and/or the use of an
external phase modulator for phase randomization in an active setup, which limits
the possible selected phases to a finite set. Here, we investigate the security of
decoy-state QKD when the phase is actively randomized by faulty devices, and show
that this technique is quite robust to deviations from the ideal uniformly random
scenario. For this, we combine a novel parameter estimation technique based on
semi-definite programming, with the use of basis mismatched events, to tightly
estimate the parameters that determine the achievable secret key rate. In doing so,
we demonstrate that our analysis can significantly outperform previous results that
address more restricted scenarios.

Keywords: Quantum key distribution; Decoy state; Phase randomization; Source
imperfections

1 Introduction
Quantum key distribution (QKD) is a method for securely establishing symmetric cryp-
tographic keys between two distant parties (so-called Alice and Bob) [1–3]. Its security
is based on principles of quantum mechanics, such as the no-cloning theorem [4], which
guarantee that any attempt by an eavesdropper (Eve) to learn information about the dis-
tributed key inevitably introduces detectable errors. Importantly, when combined with
the one-time-pad encryption scheme [5], QKD provides information-theoretically secure
communications.

The field of QKD has made much progress in recent years, both theoretically and exper-
imentally, leading to the first deployments of metropolitan and intercity QKD networks
[6–9]. Despite these remarkable achievements, there are still certain challenges that need
to be overcome for the widespread adoption of this technology. One of these challenges
is to close the existing security gap between theory and practice. This is so because QKD
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security proofs, typically consider assumptions that the actual experimental implementa-
tions do not satisfy. Such discrepancies could create security loopholes or so-called side
channels, which might be exploited by Eve to compromise the security of the generated
key without being detected.

Indeed, practical QKD transmitters usually emit phase-randomized weak coherent
pulses (PR-WCPs) generated by laser sources. These pulses might contain more than one
photon prepared in the same quantum state. In this scenario, Eve is no longer limited by
the no-cloning theorem, because multi-photon signals provide her with perfect copies of
the signal photon. As a result, it can be shown that the secret key rate of the BB84 pro-
tocol [10] with PR-WCPs scales quadratically with the system’s transmittance due to the
photon-number-splitting (PNS) attack [11, 12]. This attack provides Eve with full informa-
tion about the part of the key generated with the multi-photon pulses, without introducing
any error.

To overcome this limitation, the most efficient solution today is undoubtedly the decoy-
state method [13–15], in which Alice varies at random the intensity of the PR-WCPs
that she sends to Bob. This allows them to better estimate the behavior of the quan-
tum channel. Indeed, using the observed measurement statistics associated to different
intensity settings, Alice and Bob can tightly estimate the yield and phase error rate of
the single-photon pulses, from which the secret key is actually distilled. As a result, the
decoy-state method delivers a secret key rate that scales linearly with the channel trans-
mittance [13–16], matching the scaling achievable with ideal single-photon sources. This
technique has been extensively demonstrated in multiple recent experiments [17–23], in-
cluding satellite links [24, 25] and the use of photonic integrated circuits [26–29]. Also,
decoy-state QKD setups are currently offered commercially by several companies [30–34],
which highlights its importance.

Importantly, standard decoy-state security proofs assume perfect phase randomization,
i.e., that the phase, θ , of each generated WCP is uniformly random in [0, 2π ). That is, its
probability density function (PDF), g(θ ), should satisfy g(θ ) = 1/2π . However, none of the
two main methods used today to generate PR-WCPs, namely passive and active, fulfill
this condition exactly. In the passive scheme a technique known as gain-switching is used
to effectively turn the laser on and off between pulses. However, in these configurations
[20, 22, 23, 35–38], device imperfections can prevent the phases θ from being uniformly
distributed. In the active scheme [26, 27, 39, 40], an external phase modulator is used
to imprint one of N possible random values to the phase of each pulse, such that only a
discrete number of phases is selected. Both scenarios violate a crucial assumption of the
decoy-state technique.

The security of QKD with imperfect passive phase randomization has, under certain
assumptions, been recently demonstrated in [41]. This analysis however, is not applicable
to the numerous existing active setups that rely on an external phase modulator for phase
randomization .1 The security of the latter approach has been analyzed in [42] (see also
[43]), but these works restrict themselves to the case in which the discrete random phases

1This is because the analysis in [41] requires that there is a known non-zero parameter q such that g(θ )≥ q for all θ ∈ [0, 2π ).
In the case of active phase randomization, only a discrete number of phases is selected, and therefore there might be many
values θ ∈ [0, 2π ) such that g(θ ) = 0.
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are evenly distributed in [0, 2π ), i.e., they assume that g(θ ) satisfies

g(θ ) =
1
N

N–1∑

k=0

δ(θ – θk), (1)

where δ(x) represents the Dirac delta function, and θk = 2πk/N , with N being the total
number of selected phases. Under this assumption, [42] shows that it is possible to ap-
proximate the secret key rate achievable in the ideal situation where g(θ ) = 1/2π , with
around N = 10 random phases. While this result is remarkable, in practice, inevitable im-
perfections of the phase modulator and electronic noise might prevent the phases θ from
being exactly evenly distributed, thus invalidating the application of the results presented
in [42] to a real setup.

The main contributions of this paper are as follows. First, we introduce an analysis that
can be applied in the more realistic and practical scenario in which g(θ ) is an arbitrary
PDF, due to imperfections in the active phase randomization process, and we provide
asymptotic secret key rates for this general situation, thus filling an important gap in the
literature.

Second, we show that this analysis can be applied in the scenario in which the PDF g(θ ) is
not fully characterized. This feature significantly simplifies the applicability of our results
to a practical setup, where an accurate characterization of the PDF describing the phase
might be challenging.

Third, we make a noteworthy finding regarding the utilization of basis mismatched
events which are typically discarded in QKD security analyses, including that in [42]. The
use of basis mismatched events is already known to provide a key-rate advantage in the
presence of bit-and-basis encoding flaws [44] but here, we show that they can also be
advantageous in the presence of imperfections due to a faulty phase randomization pro-
cess. We believe that this additional result is highly nontrivial as intuitively the decoy state
method has no relation with the state preparation flaw in encoding the bit information.

Fourth, when considering the ideal discrete-phase-randomization case described by
Eq. (1), our analysis delivers considerably higher secret key rates than those provided by
the seminal work in [42], or to put it in other words, it requires to spend fewer random
bits for phase selection to achieve an equivalent performance.

As a side remark, we note that our results are also useful for other quantum commu-
nication schemes that go beyond QKD and employ laser sources, as they often rely on
decoy-states with active phase randomization.

Finally, it is worth mentioning that, although, for simplicity, in our derivations we con-
sider collective attacks, our analysis can be lifted to general attacks by applying the ex-
tension of the quantum de Finetti theorem [45] to infinitely-dimensional systems [46].
Because of this, the asymptotic key rates that we derive in this paper are also valid against
general attacks.

The paper is organized as follows. In Sect. 2.1, we describe the quantum states emitted
by Alice when θ follows an arbitrary PDF, g(θ ). Then, in Sect. 2.2 we introduce the decoy-
state protocol considered, together with its asymptotic secret key rate formula. Next, in
Sect. 2.3, we present the parameter estimation technique based on SDP, as well as on the
use of basis mismatched events, to calculate the different parameters required to evaluate
the secret key rate. Then, in Sect. 3 we simulate the achievable secret key rate for various
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functions g(θ ) of practical interest, both for the cases in which this function is fully (or
only partially) characterized. Section 4 concludes the paper with a summary. The paper
includes as well some Appendixes with additional calculations.

2 Methods
2.1 Phase randomization with an arbitrary g(θ )
In this section, we describe the quantum states emitted by Alice when each of them has a
phase θ that follows an arbitrary PDF, g(θ ).

In particular, a WCP of intensity μ and phase θ can be written in terms of the Fock basis
as

∣∣√μeiθ 〉 = e– μ
2

∞∑

n=0

(√μeiθ )n
√

n!
|n〉, (2)

where |n〉 represents a Fock state with n photons.
If Alice selects the phase θ of each generated signal independently and at random ac-

cording to g(θ ), its state is simply given by

ρ
μ

[g(θ )] =
∫ 2π

0
g(θ )P̂

(∣∣√μeiθ 〉)dθ , (3)

with P̂(|φ〉) = |φ〉〈φ|.
Any quantum state can always be diagonalised in a certain orthonormal basis. For the

states given by Eq. (3), we shall denote the elements of such basis by |ψn,μ,g(θ )〉, since, in
general, they might depend on both the intensity μ and the function g(θ ). Here, the sub-
script n simply identifies the different elements of the basis, which are not necessarily the
Fock states. This means, in particular, that we can rewrite the states given by Eq. (3) as
follows

ρ
μ

[g(θ )] =
∞∑

n=0

pn|μ,g(θ )P̂
(|ψn,μ,g(θ )〉

)
, (4)

where the coefficients pn|μ,g(θ ) ≥ 0 satisfy
∑∞

n=0 pn|μ,g(θ ) = 1. That is, these coefficients can
be interpreted as the probability with which, in a certain time instance, Alice emits the
state |ψn,μ,g(θ )〉, given that she chose the intensity μ and θ follows the PDF g(θ ).

For instance, in the ideal scenario where g(θ ) is uniformly random in [0, 2π ), the emitted
signals are a Poisson mixture of Fock states given by

ρ
μ

[ 1
2π ]

=
1

2π

∫ 2π

0
P̂
(∣∣√μeiθ 〉)dθ = e–μ

∞∑

n=0

μn

n!
P̂
(|n〉), (5)

i.e. pn|μ,1/2π = e–μμn/(n!) and |ψn,μ,1/2π 〉 = |n〉.

2.2 Protocol description and key generation rate
For concreteness, we shall assume that Alice and Bob implement a decoy-state BB84
scheme with three different intensity settings {s,ν,ω} in each basis, with s > ν > ω ≥ 0.
Moreover, we consider that they generate secret key only from those events in which both
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of them select the Z basis and Alice chooses the signal intensity setting s. This is the most
typical configuration of the decoy-state BB84 protocol. We remark, however, that the anal-
ysis below could be straightforwardly adapted to other protocol configurations, or to other
combinations of intensity settings.

In each round of the protocol, Alice probabilistically chooses a bit value b ∈ {0, 1} with
probability pb = 1/2, a basis α ∈ {Z, X} with probability pα , an intensity value μ ∈ {s,ν,ω}
with probability pμ, and a random phase θ according to the PDF given by g(θ ). Then,
she generates a WCP of intensity μ and phase θ , |√μeiθ 〉, and applies an operation that
encodes her bit and basis choices b and α into the pulse. From Eve’s perspective, these
states are described by Eq. (4) due to her ignorance about the selected phase θ . On the
receiving side, Bob measures each arriving signal using a basis α ∈ {Z, X}, which he selects
with probability pα . We shall assume the basis independent detection efficiency condition
throughout the paper. That is, the probability that Bob obtains a conclusive measurement
outcome does not depend on his basis choice.

Once the quantum communication phase of the protocol ends, Alice and Bob broadcast
(via an authenticated classical channel) both the intensity and basis settings selected for
each detected signal. The results related to those detected signals in which both of them
used the Z basis with intensity setting s constitute the sifted key. For the detected rounds
in which Bob chose the X basis, Alice reveals her bit values b and Bob announces his
corresponding measurement outcomes. This data is used for parameter estimation, i.e.,
to determine the relevant quantities needed to evaluate the secret key rate formula. Finally,
Alice and Bob apply error correction and privacy amplification to the sifted key to obtain
a final secret key, following the standard post-processing procedure in QKD [1–3]. For a
more detailed description of the protocol steps of a decoy-state BB84 scheme, we refer the
reader to e.g. [16].

In the ideal scenario where g(θ ) = 1/2π , Alice’s state preparation process is equivalent to
emitting Fock states |n〉 with a Poisson distribution of mean equal to the intensity setting μ

selected, as shown by Eq. (5). In this situation, both the single-photon and vacuum pulses
with the intensity setting s contribute to secret bits [47]. The multi-photon signals are in-
secure due to the PNS attack. Similarly, when θ follows an arbitrary PDF, g(θ ), and Alice
chooses the intensity setting μ, from Eq. (4) we have that her state preparation process
is equivalent to generating pure states |ψn,μ,g(θ )〉 with probability pn|μ,g(θ ). The closer the
function g(θ ) is to a uniform distribution, the closer the signals (probabilities) |ψn,μ,g(θ )〉
(pn|μ,g(θ )) are to the Fock states |n〉 (probabilities e–μμn/n!). In this scenario, Alice and Bob
can in principle distill secret bits from any |ψn,μ,g(θ )〉 with μ = s, though the main contri-
bution would mainly arise from those with indexes n = 0, 1, which are the ones closer to
vacuum and single-photon pulses. These are the contributions that we consider below. In-
deed, for the examples studied in Sect. 3, we have tested numerically that the improvement
in key rate that can be obtained when considering n > 1 is negligible.

This means that, in this imperfect state preparation scenario, the asymptotic secret key
rate formula for the decoy-state BB84 protocol considered can be written as [15, 47, 48]

R ≥ p2
Zps

{ ∞∑

n=0

pn|s,g(θ )Y Z
n,s,g(θ )

[
1 – h(en,s,g(θ ))

]
– fQZ

s,g(θ )h
(
EZ

s,g(θ )
)
}

≥ p2
Zps

{ 1∑

n=0

pL
n|s,g(θ )Y

Z,L
n,s,g(θ )

[
1 – h

(
eU

n,s,g(θ )
)]

– fQZ
s,g(θ )h

(
EZ

s,g(θ )
)
}

, (6)
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where Y Z
n,s,g(θ ) denotes the yield associated to the state |ψn,s,g(θ )〉 encoded (and measured)

in the Z basis, i.e., the probability that Bob observes a detection click in his measurement
apparatus conditioned on Alice and Bob selecting the Z basis and Alice preparing the
state |ψn,s,g(θ )〉; the parameter en,s,g(θ ) represents the phase error rate of these latter signals;
h(x) = –x log2 (x) – (1 – x) log2 (1 – x) is the binary Shannon entropy function; the quantity
f is the efficiency of the error correction protocol; QZ

s,g(θ ) is the overall gain of the signals
emitted conditioned on Alice selecting the intensity s and Alice and Bob choosing the Z
basis, i.e., the probability that Bob observes a detection click conditioned on Alice sending
him such signals; and EZ

s,g(θ ) is the overall quantum bit error rate (QBER) associated to these
latter signals. Moreover, in Eq. (6), the superscript L (U) refers to a (an) lower (upper)
bound.

The quantities QZ
s,g(θ ) and EZ

s,g(θ ) are directly observed in the experiment. In principle,
the probabilities pn|s,g(θ ) could also be known, and depend on the state preparation process.
However, in practice it might be difficult to find their value analytically. Instead, in the next
section we present a simple method to obtain a lower bound, pL

n|s,g(θ ), on these quantities.
There, we also explain how to estimate the parameters Y Z,L

n,s,g(θ ) and eU
n,s,g(θ ), with n = 0, 1,

which are needed to evaluate Eq. (6).

2.3 Parameter estimation
The parameter estimation procedure presented here is an adaptation of the one very re-
cently introduced in [41] in the context of phase correlations in a passive randomization
setup. For simplicity, below we introduce the main results and refer the reader to Ap-
pendixes A and B for the detailed derivations.

2.3.1 Lower bound on the yields Y Z
n,s,g(θ )

In Appendix A it is shown that a lower bound on the yields Y Z
n,s,g(θ ) can be obtained by

solving the following SDP:2

min
JZ

Tr
[
P̂
(|ψn,s,g(θ )〉

)
JZ

]

subject to Tr
[
ρ

μ

[g(θ )]JZ
]

= QZ
μ,g(θ ), ∀μ ∈ {s,ν,ω}

0 ≤ JZ ≤ I.

(7)

The states |ψn,s,g(θ )〉 and ρ
μ

[g(θ )] are known in principle but inaccessible and depend on the
intensity setting selected by Alice and on the function g(θ ). Also, as already mentioned,
the gains QZ

μ,g(θ ) are directly observed experimentally in a realization of the protocol. That
is, the only unknown in Eq. (7) is the positive semi-definite operator JZ over which the
minimization takes place. Let J∗

Z denote the solution to the SDP given by Eq. (7). Then, we
find that

Y Z
n,s,g(θ ) ≥ Tr

[
P̂
(|ψn,s,g(θ )〉

)
J∗
Z
]

:= Y Z,L
n,s,g(θ ). (8)

2From this point on, if we have two operators, say A and B by A ≤ B we mean that B – A ≥ 0, i.e. that B – A is a positive
semi-definite operator.
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2.3.2 Upper bound on the phase-error rates en,s,g(θ )

The phase-error rates, en,s,g(θ ), are defined by means of a virtual protocol [49]. For this,
we shall consider the standard assumption in which the efficiency of Bob’s measurement
is independent of his basis choice. Then, for those rounds in which both Alice and Bob
select the Z basis and Alice generates the n-th eigenstate |ψn,s,g(θ )〉, we can equivalently
describe her state preparation process as follows. First, she prepares the following bipartite
entangled state

∣∣�Z
n,s,g(θ )

〉
=

1√
2
(|0Z〉AV̂0Z + |1Z〉AV̂1Z

)|ψn,s,g(θ )〉, (9)

where V̂bα , with b = 0, 1 and α ∈ {Z, X}, denotes the encoding operation corresponding to
the α basis and the bit value b. Although our analysis is valid for any {V̂bα }, for simplicity,
in our simulations, we assume that these operators, are ideal BB84 encoding operators,
given by V̂0Z |n〉 = |n〉|0〉, V̂1Z |n〉 = |0〉|n〉,

V̂0X |n〉 =
∑

k

1√
2n

√√√√
(

n
k

)
|k〉|n – k〉,

V̂1X |n〉 =
∑

k

(–1)k 1√
2n

√√√√
(

n
k

)
|k〉|n – k〉.

(10)

We note that these operators are independent of the physical degree of freedom used
for the encoding. For example, in a time-bin encoding setup, the first ket would repre-
sent the early time bin, and the second ket would represent the late time bin; while in
a polarization-encoding setup, the first ket would represent the horizontally-polarized
mode, and the second ket would represent the vertically-polarized mode.

Next, she measures her ancilla system A in Eq. (9) in the orthonormal basis {|0Z〉, |1Z〉}
to learn the bit value encoded, and sends the other system to Bob, who measures it in the
Z basis.

In this situation, the phase-error rate en,s,g(θ ) corresponds to the bit error rate that Alice
and Bob would observe if Alice (Bob) instead performed an X basis measurement on the
ancilla system A (arriving signal). If Alice performs a X basis measurement on her system
A, this is equivalent to emitting the states

∣∣λvirtual
,n,s,g(θ )

〉 ∝ ∣∣λ̄virtual
,n,s,g(θ )

〉
= A

〈
X |�Z

n,s,g(θ )
〉

=
1
2
[
V̂0Z + (–1)V̂1Z

]|ψn,s,g(θ )〉, (11)

with probability pvirtual
,n,s,g(θ ) = ‖|λ̄virtual

,n,s,g(θ )〉‖2, where  ∈ {0, 1} and |X〉 = [|0Z〉 + (–1)|1Z〉]/√
2. Let Y (⊕1)X ,virtual

,n,s,g(θ ) denote the probability that Bob obtains the measurement outcome
(⊕1)X when he performs an X basis measurement on the arriving signal conditioned on
Alice emitting the state |λvirtual

,n,s,g(θ )〉. That is, this event corresponds to a phase error. Then,
the phase error rate en,s,g(θ ) can be written as

en,s,g(θ ) =
1

Y Z
n,s,g(θ )

1∑

=0

pvirtual
,n,s,g(θ )Y

(⊕1)X ,virtual
,n,s,g(θ ) . (12)
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In Appendix A, it is shown that an upper bound on the quantity pvirtual
,n,s,g(θ )Y

(⊕1)X ,virtual
,n,s,g(θ )

can be obtained by solving the following SDP:

max
L(⊕1)X

Tr
[
P̂
(∣∣λ̄virtual

,n,s,g(θ )
〉)

L(⊕1)X

]

subject to Tr
[
V̂bαρ

μ

[g(θ )]V̂
†
bα

L(⊕1)X

]
= Q(⊕1)X

μ,g(θ ),bα
,

∀μ ∈ {s,ν,ω},∀b ∈ {0, 1},∀α ∈ {Z, X}
0 ≤ L(⊕1)X ≤ I,

(13)

where ρ
μ

[g(θ )] is given by Eq. (4), and Q(⊕1)X
μ,g(θ ),bα

denotes the probability that Bob observes the
result ( ⊕ 1)X with his X basis measurement given that Alice chose the intensity setting
μ, the basis α, the bit value b, and the phases θ follow the PDF g(θ ). We note that Eq. (13)
includes constraints provided by basis mismatched events [44] in which Alice prepares
the signals in the Z basis and Bob measures them in the X basis, which may result in a
tighter estimation. This is because, in general, |λvirtual

,n,s,g(θ )〉 �= V̂X |ψn,s,g(θ )〉, and P̂(|λvirtual
,n,s,g(θ ))

may be better approximated by an operator-form linear combination of both Z-encoded
and X-encoded states, rather than just the latter.

Importantly, the states |λ̄virtual
,n,s,g(θ )〉 and ρ

μ

[g(θ )], as well as the operators V̂bα , are known and
depend on Alice’s state preparation process. The gains Q(⊕1)X

μ,g(θ ),bα
are directly observed in

a realization of the protocol. That is, the only unknown in Eq. (13) is the positive semi-
definite operator L over which the maximization takes place.

Let L∗
(⊕1)X

denote the solution to the SDP given by Eq. (13). Then, we have that

pvirtual
,n,s,g(θ )Y

(⊕1)X ,virtual
,n,s,g(θ ) ≤ Tr

[
P̂
(∣∣λ̄virtual

,n,s,g(θ )
〉)

L∗
(⊕1)X

]
. (14)

That is,

en,s,g(θ ) ≤ 1
Y Z,L

n,s,g(θ )

1∑

=0

Tr
[
P̂
(∣∣λ̄virtual

,n,s,g(θ )
〉)

L∗
(⊕1)X

]
:= eU

n,s,g(θ ). (15)

2.3.3 Solving Eqs. (7)–(13) numerically
Solving numerically the SDPs presented above is difficult for two main reasons. Firstly,
they are infinitely dimensional, because the states ρ

μ

[g(θ )] are infinite-dimensional. Sec-
ondly, this also renders the calculation of the eigendecomposition of ρ

μ

[g(θ )] given by Eq. (4)
a difficult task. To overcome these two limitations, we follow a technique recently intro-
duced in [50] (see also [51]), which consists in projecting the states ρ

μ

[g(θ )] onto a finite-
dimensional subspace that contains up to M photons. We shall denote the projected states
as

ρ
μ

[g(θ )],M =
�Mρ

μ

[g(θ )]�M

Tr[�Mρ
μ

[g(θ )]�M]
, (16)

where �M =
∑M

n=0 |n〉〈n| denotes the projector onto the M-photon subspace, being |n〉 a
Fock state. In doing so, now the eigendecomposition of ρ

μ

[g(θ )],M can be easily obtained nu-
merically. For later convenience, we will denote the eigendecomposition of the numerator
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of the right hand side of Eq. (16) as

�Mρ
μ

[g(θ )]�M =
M∑

n=0

qn|μ,g(θ )P̂
(|ϕn,μ,g(θ )〉

)
. (17)

Importantly, this technique also allows to transform the infinite-dimensional SDPs given
by Eqs. (7)–(13) onto finite-dimensional SDPs that can be solved numerically. The result-
ing SDPs and their derivation are provided in Appendix B.

2.3.4 Lower bound on the probabilities pn|s,g(θ )

As explained in the previous subsection, because the states ρ
μ

[g(θ )] are infinite-dimensional,
it might be difficult to calculate their eigendecomposition, and thus the probabilities
pn|s,g(θ ). Instead, here we provide a lower bound on these probabilities based on the eigen-
decomposition given by Eq. (17). In particular, in Appendix B it is shown that

pn|s,g(θ ) ≥ qn|s,g(θ ) – εs := pL
n|s,g(θ ) (18)

with εs = 2
√

1 – Tr[�Mρs
[g(θ )]�M].

3 Results
In this section, we now evaluate the secret key rate obtainable for various examples of
functions g(θ ). For illustration purposes, we consider three main scenarios, depending
on whether or not the function g(θ ) is fully characterized. Also, for the simulations, we
consider a simple channel model whose transmission efficiency is given by 10– γ

10 , where
γ (measured in dB) represents the overall system loss, i.e., it also includes the effect of the
finite detection efficiency of Bob’s detectors. Moreover, for simplicity, we disregard any
misalignment effect, and assume that the only source of errors are the dark counts of Bob’s
detectors, whose probability is set to pd = 10–8 [23, 52]. In addition, as already mentioned,
we consider that the BB84 encoding operators are ideal even though the analysis presented
here is applicable if this condition is not met, and we take an error correction efficiency
f = 1.16.

To obtain the bounds Y Z,L
n,s,g(θ ) and eU

n,s,g(θ ) we use the finite-dimensional versions of the
SDPs above, which are presented in Appendix B. Note that, the resulting secret key rate is
an increasing function of M. However, the time required to numerically solve such SDPs
grows rapidly with this parameter. For this reason, we have set a sufficiently large M so
that an increase in this parameter would result in a negligible improvement of the secret
key rate as tested numerically. The effect that the parameter M has in the secret key rate,
is studied in Appendix D.

3.1 Fully-characterized g(θ )
Here, we consider the scenario in which the function g(θ ) is completely characterized, and
we evaluate two specific examples of practical interest. The first example corresponds to
the scenario given by Eq. (1), which has been considered in [42], while the second example
can be interpreted as a noisy version of the first one.
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3.1.1 Ideal discrete phase randomization
The results are shown in Fig. 1 for different values of the total number of random phases
N selected by Alice. In particular, the solid lines in the figure have been obtained using the
parameter estimation procedure presented in Sect. 2.3 based on SDP and the use of basis
mismatched events. If we discard these latter events, the obtainable key rate decreases, as
illustrated by the dashed-dot lines. Finally, the dotted lines correspond to the analysis in
[42]. For completeness, this latter approach is summarized in Appendix E. In the first two
cases, for simplicity, we set the intensity settings to the possibly sub-optimal values ω = 0,
ν = s/5 and we optimize s as a function of the overall system loss γ , while in the later case
we set ω = 0 and optimize both ν and s as a function of γ (which provides the optimal
solution for this approach). Importantly, despite this fact, Fig. 1 shows that the use of SDP
and basis mismatched events significantly improve the secret key rate when compared to
the results in [42]. Furthermore, we find that the improvement of using basis mismatched
events is more advantageous when N is small. Indeed, when N ≥ 5, this enhancement
in performance is almost negligible. This is expected as basis mismatched events do not
improve the estimation in the case of ideal continuous phase randomization, i.e., in the
limit N → ∞. On the other hand, when N is small, the eigenstates |ψn,s,g(θ )〉 for n = 0, 1
deviate more from a perfect Fock state, meaning that the virtual states |λvirtual

,n,s,g(θ )〉 deviate
more from the X-encoded states V̂X |ψn,s,g(θ )〉 and thus basis mismatched events provide
a tighter estimation.

Note that, as shown in Fig. 2, when N ≥ 6, the improvement in the secret key rate that
can be obtained by further increasing the value of N decelerates. Hence, it seems that a
value of around N = 8 might be a good practical compromise, as this configuration re-
quires only three random bits per pulse to select the random phase. As in the previous
figure, here we set the intensities to {s, s/5, 0} and optimize s as a function of the overall
system loss to simplify the numerics. This is done for both the ideal PR-WCP scenario and
for the different values of N to ensure a fear comparison between both scenarios.

Figure 1 Secret key rate in logarithmic scale versus the overall system loss for the ideal discrete
phase-randomization scenario given by Eq. (1), as a function of the total number of random phases N selected
by Alice. The solid lines correspond to the parameter estimation procedure based on SDP and basis
mismatched events considered in this work, while the dashed-dotted lines represent the same procedure
overlooking basis mismatched events. Finally, the dotted lines correspond to the analysis in [42] using linear
programming
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Figure 2 Secret key rate in logarithmic scale versus the overall system loss for the ideal discrete
phase-randomization scenario given by Eq. (1), as a function of the total number of random phases N selected
by Alice, when Alice and Bob employ the parameter estimation procedure based on SDP and basis
mismatched events considered in this work. Remarkably, as shown in the figure, only eight random phases
are enough to deliver a secret key rate already quite close to the ideal scenario of perfect PR-WCPs, where the
phase of each pulse is uniformly random in [0, 2π )

3.1.2 Noisy discrete phase randomization
Here we consider the situation in which the actual phase encoded by Alice in each emitted
pulse follows a certain PDF around the selected discrete value θk = 2πk/N . This might
happen due to device imperfections of the phase modulator or the electronics that control
it. For concreteness and illustration purposes, we shall assume that this PDF is a truncated
Gaussian distribution, though we remark that our analysis can be applied to any given
distribution. A truncated Gaussian distribution has the form

f (θ ; θk ,σk ,λk ,�k) =
φ(θ ; θk ,σ 2

k )
�(�k ; θk ,σ 2

k ) – �(λk ; θk ,σ 2
k )

, (19)

when the phase θ is in the interval λk < θ < �k , and zero otherwise. The functions
φ(x;γ ,σ 2) and �(x;γ ,σ 2) in Eq. (19) are, respectively, given by

φ(x; y, z) =
1√
2πz

e– (x–y)2
2z ,

�(x; y, z) =
∫ x

–∞
1√
2πz

e– (t–y)2
2z dt.

(20)

That is, in this scenario the function g(θ ) has the following form

g(θ ) =
1
N

N–1∑

k=0

f (θ ; θk ,σk ,λk ,�k) (21)

for certain parameters θk , σk , λk and �k .
In the limit when the standard deviations σk → 0 ∀k, Eq. (21) converges to the PDF given

by Eq. (1), because in that regime each truncated Gaussian distribution approaches the
Dirac delta function. On the other hand, when σk → ∞, and given that the concatenation
of the truncation intervals defined by λk and �k allow the phase to take any value within
the range of [0, 2π ) but do not overlap each other, Eq. (21) converges to the PDF of a
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Figure 3 Secret key rate in logarithmic scale versus the overall system loss when g(θ ) follows the PDF given
by Eq. (21), as a function of the total number of random phases N selected by Alice, and for two different
values of the standard deviations σk , which are assumed to be equal for all k

uniform distribution in [0, 2π ). Importantly, this means that the achievable secret key rate
will increase with higher values of σk , or, to put it in other words, when the uncertainty
about the phase actually imprinted by Alice on each of her prepared signals increases,
given that g(θ ) is completely characterized.

The simulation results are shown in Fig. 3, which presents a comparison between the
achievable secret key rate for two different values of the standard deviations σk , which,
for simplicity, are assumed to be equal for all k. As expected, the larger the value of σk

is, the higher the resulting secret key rate, regardless of the number N of random phases
selected by Alice, though the improvement is more relevant when N is small. For simplicity
and due to the lack of experimental data, Fig. 3 assumes that λk = θk – 3σk and �k = θk +
3σk . Moreover, like in the previous example, we set ω = 0, ν = s/5 and we optimize s as a
function of the overall system loss.

3.2 Partially-characterized g(θ )
Here, we now consider the scenario in which only partial information about the function
g(θ ) is known. In particular, and for illustration purposes, we shall assume that the actual
phase encoded by Alice in each emitted pulse could be any phase within a certain interval
around the selected discrete value θk = 2πk/N , but its precise PDF g(θ ) is unknown. Pre-
cisely, let δmax denote the maximum possible deviation between the actual selected phase
θk and the actual imprinted phase, which we shall denote by θ̂k . That is, we assume that the
actual imprinted phase lies in the interval θ̂k ∈ [θk – δmax, θk + δmax], and we conservatively
take the combination of values θ̂k for all k that minimizes the secret key rate following the
analysis presented in Appendix C.

The results are illustrated in Fig. 4, as a function of the total number of phases N selected
by Alice and the value of the maximum deviation δmax. Like in the previous examples, for
simplicity, we fix ω = 0, ν = s/5 and we optimize s as a function of the overall system loss.
As expected, the larger the value of δmax is, the lower the resulting secret key rate.

Also, from Fig. 4 we see that for higher values of δmax, the secret key rate becomes less
sensitive to the parameter N . Indeed, when δmax = 10–1, the achievable secret key rate for
the cases N = 3, 4, 5 essentially overlap each other, which is the left-most curve. This seems
to be due to the fact that a significant increase in δmax allows in principle for some phases
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Figure 4 Secret key rate in logarithmic scale versus the overall system loss when the phases lie in the
intervals θk ± δmax and the function g(θ ) is unknown, as a function of the total number of random phases N
selected by Alice and the value of δmax

to lie close to each other, or even become identical if this parameter is large enough. Under
this situation, the increase of N does not help to improve the performance, as the effective
randomness remains almost the same.

4 Conclusion
In this paper we have considered the security of decoy-state quantum key distribution
(QKD) when the phase of each generated signal is not uniformly random, as requested
by the theory, but follows an arbitrary, continuous or discrete, probability density func-
tion (PDF). This might happen due to the presence of device imperfections in the phase-
randomization process, and/or due to the use of an external phase modulator to imprint
the random phases on the generated pulses, which limits the possible selected phases to a
finite set.

Our analysis combines a novel parameter estimation technique, based on semi-definite
programming, with the use of basis mismatched events, to tightly estimate the relevant
parameters that are needed to evaluate the achievable secret key rate. In doing so, we have
shown that decoy-state QKD is rather robust to faulty phase-randomization, particularly
when the PDF that governs the random phases is well-characterized. Moreover, our results
significantly outperform those of previous works while being also more general, in the
sense that they can handle more realistic and practical scenarios.

This work might be relevant as well to other quantum communication protocols beyond
QKD that use laser sources and decoy states.

Appendix A: Derivation of the SDPs given by Eqs. (7)–(13)
In this Appendix, we follow a similar approach to the one in [41] to derive the infinite-
dimensional SDPs presented in Eqs. (7)–(13) of the main text, under the assumption of
collective attacks. We recall that these infinite-dimensional SDP’s cannot be solved nu-
merically and a further dimension-reduction step is needed (see Appendix B).

Let � denote a quantum channel (or the action of Eve) that acts independently on each
optical pulse emitted by Alice. Also, let us assume that in a certain round, Bob measures
the incoming signal with a positive operator valued measure (POVM) that contains the
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element �. In this scenario, the probability that Bob obtains the outcome associated with
the element � given that Alice sends him a quantum state σ can be expressed as

Tr
[
�(σ )�

]
= Tr

(∑

k

AkσA†
k�

)
= Tr

(
σ

∑

k

A†
k�Ak

)
= Tr(σH), (A.1)

where �(σ ) represents the action of � on σ , {Ak} denotes the set of Kraus operators cor-
responding to the operator-sum representation of the channel �, and

0 ≤ H =
∑

k

A†
k�Ak ≤

∑

k

A†
kAk = I. (A.2)

Bob measures the incoming signals in either the Z or the X basis. Let us denote the
POVM elements corresponding to each of these two measurements by {�0Z ,�1Z ,�f }
and {�0X ,�1X ,�f }, respectively. That is, �bα represents the POVM element associated
to the outcome b in the basis α, with α ∈ {Z, X}, and �f represents the POVM element
associated to an inconclusive outcome. Note that here we are implicitly considering the
basis-independent detection efficiency assumption, which means that the POVM element
�f is equal for both basis. Let �d = I – �f = �0Z + �1Z = �0X + �1X denote the operator
associated to a conclusive outcome at Bob’s side. Then, after substituting in Eq. (A.1) the
state σ with Alice’s emitted state when she chooses the Z basis,

ρ
μ,Z
[g(θ )] =

1
2

V̂0Z ρ
μ

[g(θ )]V̂
†
0Z

+
1
2

V̂1Z ρ
μ

[g(θ )]V̂
†
1Z

, (A.3)

and the operator � with �d , we obtain

QZ
μ,g(θ ) = Tr

[
�

(
ρ

μ,Z
[g(θ )]

)
�d

]
= Tr

[
ρ

μ,Z
[g(θ )]H

]
= Tr

[
ρ

μ

[g(θ )]JZ
]
, (A.4)

with H =
∑

k A†
k�dAk , and the operator JZ satisfying

0 ≤ JZ =
1
2
(
V̂ †

0Z
HV̂0Z + V̂ †

1Z
HV̂1Z

) ≤ I. (A.5)

Finally, by taking into account that the yield associated to the states |ψn,s,g(θ )〉 encoded
in the Z basis is given by

Y Z
n,s,g(θ ) = Tr

{
�

[
P̂
(∣∣ψZ

n,s,g(θ )
〉)]

�d
}

= Tr
[
P̂(|ψn,s,g(θ )〉)JZ

]
, (A.6)

with

P̂
(∣∣ψZ

n,s,g(θ )
〉)

=
1
2

V̂0Z P̂
(|ψn,s,g(θ )〉

)
V̂ †

0Z
+

1
2

V̂1Z P̂
(|ψn,s,g(θ )〉

)
V̂ †

1Z
, (A.7)

we obtain the SDP presented in Eq. (7).
Regarding the SDP given by Eq. (13) to estimate the phase error rate, we note that the

numerator of Eq. (12), can be expressed as

pvirtual
,n,s,g(θ )Y

(⊕1)X ,virtual
,n,s,g(θ )

= pvirtual
,n,s,g(θ ) Tr

{
�

[
P̂
(∣∣λvirtual

,n,s,g(θ )
〉)]

�(⊕1)X

}
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= Tr
[
P̂
(∣∣λ̄virtual

,n,s,g(θ )
〉)

L(⊕1)X

]
, (A.8)

where 0 ≤ L(⊕1)X =
∑

k A†
k�(⊕1)X Ak ≤ I according to Eq. (A.1), and |λ̄virtual

,n,s,g(θ )〉 =√
pvirtual

,n,s,g(θ )|λvirtual
,n,s,g(θ )〉.

By using again Eq. (A.1), we have that the gains Q(⊕1)X
μ,g(θ ),bα

can be expressed as

Q(⊕1)X
μ,g(θ ),bα

= Tr
[
V̂bαρ

μ

[g(θ )]V̂
†
bα

L(⊕1)X

]
. (A.9)

Putting it all together, we find that the SDP presented in Eq. (13) of the main text, pro-
vides an upper bound on pvirtual

,n,s,g(θ )Y
(⊕1)X ,virtual
,n,s,g(θ ) .

Appendix B: Finite-dimensional SDPs when g(θ ) is fully characterized
B.1 Lower bound on the yields YZ

n,s,g(θ )
In this Appendix, we show how to obtain a finite-dimensional relaxation of the SDP given
by Eq. (7) to find a lower bound on the yields Y Z

n,s,g(θ ). For this, we follow again the approach
presented in [41, 50]. The key idea is rather simple: instead of considering the infinite-
dimensional state ρ

μ

[g(θ )] given by Eq. (4), we employ a projection ρ
μ

[g(θ )],M of this state onto
a finite-dimensional subspace with up to M photons (see Eq. (16)), and then we relax the
original constraints of the SDP accordingly.

We begin by briefly introducing some helpful results for this purpose. The first one is
a direct consequence of the Cauchy-Schwarz inequality in Hilbert spaces [53, 54], which
allows to relate the quantities Tr[σH] and Tr[ρH], with 0 ≤ H ≤ I, as a function of the
fidelity between the states σ and ρ ,

F(ρ,σ ) = Tr[
√√

σρ
√

σ ]2. (B.1)

In particular, it states that

G–
(
Tr[ρH], F(σ ,ρ)

) ≤ Tr[σH] ≤ G+
(
Tr[ρH], F(σ ,ρ)

)
, (B.2)

with the functions G±(y, z) being defined as

G–(y, z) =

⎧
⎨

⎩
g–(y, z) if y > 1 – z,

0 otherwise,
(B.3)

and

G+(y, z) =

⎧
⎨

⎩
g+(y, z) if y < z,

1 otherwise,
(B.4)

with g±(y, z) = y + (1 – z)(1 – 2y) ± 2
√

z(1 – z)y(1 – y).
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The remaining results we use, i.e. Eqs. (B.5)–(B.6)–(B.7)–(B.8) below, have been derived
in [41, 50, 55]. In particular, we have that

F
(
ρ

μ

[g(θ )],ρ
μ

[g(θ )],M
)

= Tr
[
�Mρ

μ

[g(θ )]�M
]

=
M∑

n=0

qn|μ,g(θ ) := Fproj
μ,g(θ ),

(B.5)

where the coefficients qn|s,g(θ ) are given in Eq. (17). Also, we have that the quantities
|pn|μ,g(θ ) – qn|μ,g(θ )| can be upper bounded as

|pn|μ,g(θ ) – qn|μ,g(θ )| ≤ 2
√

1 – Tr
[
�Mρ

μ

[g(θ )]�M
]

= 2
√

1 – Fproj
μ,g(θ ) =: εμ. (B.6)

Finally, the fidelity F(P̂(|ϕn,μ,g(θ )〉), P̂(|ψn,μ,g(θ )〉)) = |〈ϕn,μ,g(θ )|ψn,μ,g(θ )〉|2 satisfies

F
(
P̂
(|ϕn,μ,g(θ )〉

)
, P̂

(|ψn,μ,g(θ )〉
)) ≥ 1 –

(
εμ

δn,μ

)2

:= Fvec
n,μ,g(θ ), (B.7)

with

δ0,μ = q0|μ,g(θ ) – q1|μ,g(θ ) – εμ

δn,μ = min{qn–1|μ,g(θ ) – qn|μ,g(θ ) – εμ, qn|μ,g(θ ) – qn+1|μ,g(θ ) – εμ}. (B.8)

Then, from Eqs. (8)–(B.2)–(B.7) we have that

Y Z,L
n,s,g(θ ) = Tr

[
P̂(|ψn,s,g(θ )〉)J∗

Z
] ≥ G–

(
Tr

[
P̂(|ϕn,s,g(θ )〉)J∗

Z
]
, Fvec

n,s,g(θ )
)
, (B.9)

where J∗
Z is the solution to the SDP presented in Eq. (7), and we have used the fact that G–

is increasing with respect to its second argument. Since G–(y, z) is decreasing with respect
to its first argument, one can lower bound Eq. (B.9) by finding a lower bound on its first
argument.

From Eq. (B.2), we have that

G–
(
QZ

μ,g(θ ), Fproj
μ,g(θ )

) ≤ Tr
[
ρ

μ

[g(θ )],MJZ
] ≤ G+

(
QZ

μ,g(θ ), Fproj
μ,g(θ )

)
, (B.10)

with the operator JZ defined in Eq. (7). Here, since the states ρ
μ

[g(θ )],M are finite dimensional,
the calculation of Tr[ρμ

[g(θ )],MJZ] can be restricted to operators JZ that act on their finite
subspace. Putting it all together, we find that a lower bound on Y Z

n,s,g(θ ) can be obtained by
solving the following finite-dimensional SDP program

min
JZ

Tr
[
P̂(|ϕn,s,g(θ )〉)JZ

]

subject to G–
(
QZ

μ,g(θ ), Fproj
μ,g(θ )

) ≤ Tr
[
ρ

μ

[g(θ )],MJZ
]

≤ G+
(
QZ

μ,g(θ ), Fproj
μ,g(θ )

)
, ∀μ ∈ {s,ν,ω}

0 ≤ JZ ≤ I.

(B.11)
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That is, we have that

Tr
[
P̂
(|ϕn,s,g(θ )〉

)
J∗
Z
] ≥ Tr

[
P̂
(|ϕn,s,g(θ )〉

)
J∗∗
Z

]
, (B.12)

with J∗∗
Z being the solution to the SDP in Eq. (B.11), and J∗

Z the solution to Eq. (7). This
holds because the constrains in Eq. (B.11) are looser than those in Eq. (7).

Finally, by combining Eq. (B.9) with Eq. (B.12) we have that

Y Z,L
n,s,g(θ ) ≥ G–

(
Tr

[
P̂
(|ϕn,s,g(θ )〉

)
J∗∗
Z

]
, Fvec

n,s,g(θ )
)

:= Ỹ Z,L
n,s,g(θ ). (B.13)

The lower bound Ỹ Z,L
n,s,g(θ ) is the one we use in our simulations in Sect. 3.1.

B.2 Upper bound on the phase-error rates en,s,g(θ )

In this Appendix, we show how to estimate an upper bound on en,s,g(θ ) by using a finite-
dimensional SDP. To do so, let us also define the operator

Mph := |0X〉〈0X | ⊗ L∗
1X

+ |1X〉〈1X | ⊗ L∗
0X

, (B.14)

where L∗
(⊕1)X

denotes the solution to the SDP given by Eq. (13), so that

1∑

=0

pvirtual
,n,s,g(θ )Y

(⊕1)X ,virtual
,n,s,g(θ )

≤
1∑

=0

Tr
[
P̂
(∣∣λ̄virtual

,n,s,g(θ )
〉)

L∗
(⊕1)X

]
= Tr

[
P̂
(∣∣�Z

n,s,g(θ )
〉)

Mph
]
. (B.15)

Now, let us define the finite-dimensional state

∣∣�Z,M
n,s,g(θ )

〉
=

1√
2
(|0Z〉AV̂0Z + |1Z〉AV̂1Z

)|ϕn,s,g(θ )〉, (B.16)

and the unnormalized states |λ̄virtual,M
,n,s,g(θ )〉 as

∣∣λ̄virtual,M
,n,s,g(θ )

〉
= A

〈
X |�Z,M

n,s,g(θ )
〉

=
1
2
[
V̂0Z + (–1)V̂1Z

]|ϕn,s,g(θ )〉. (B.17)

Then, we have that

∣∣〈�Z,M
n,s,g(θ )|�Z

n,s,g(θ )
〉∣∣2 =

∣∣〈ϕn,s,g(θ )|ψn,s,g(θ )〉
∣∣2 ≥ Fvec

n,s,g(θ ), (B.18)

where we have used Eq. (B.7) and the fact that V̂ †
0ZV̂0Z = V̂ †

1ZV̂1Z = I. Now, by applying
the Cauchy-Schwarz constraint given by Eq. (B.2), and taking into account the fact that
G+(y, z) is a decreasing function with respect to its second argument, we find that

Tr
[
P̂
(∣∣�Z

n,s,g(θ )
〉)

Mph
] ≤ G+

(
Tr

[
P̂
(∣∣�Z,M

n,s,g(θ )
〉)

Mph
]
, Fvec

n,s,g(θ )
)
. (B.19)

Importantly, since G+(y, z) is an increasing function with respect to its first argument,
one can upper bound the previous equation by finding an upper bound on its first ar-
gument. Moreover, since the states |�Z,M

n,s,g(θ )〉 are finite dimensional, one can restrict the
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optimization search to operators L that act on the corresponding finite subspace. In par-
ticular, we have that

Tr
[
P̂
(∣∣�Z,M

n,s,g(θ )
〉)

Mph
]

=
1∑

=0

Tr
[
P̂
(∣∣λ̄virtual,M

,n,s,g(θ )
〉)

L∗
(⊕1)X

] ≤
1∑

=0

Tr
[
P̂
(∣∣λ̄virtual,M

,n,s,g(θ )
〉)

L∗∗
(⊕1)X

]
,

(B.20)

where L∗∗
(⊕1)X

is the solution to the finite-dimensional SDP presented below.
Likewise, the constraints in Eq. (13) can be relaxed by using essentially the same

techniques discussed in Appendix B.1. In doing so, we find that an upper bound on
Tr[P̂(|λ̄virtual,M

,n,s,g(θ )〉)L(⊕1)X ] can be found by solving the following SDP

max
L(⊕1)X

Tr
[
P̂
(∣∣λ̄virtual,M

,n,s,g(θ )
〉)

L(⊕1)X

]

subject to G–
(
Q(⊕1)X

μ,g(θ ),bα
, Fproj

μ,g(θ )
) ≤ Tr

[
V̂bαρ

μ

[g(θ )],MV̂ †
bα

L(⊕1)X

]

≤ G+
(
Q(⊕1)X

μ,g(θ ),bα
, Fproj

μ,g(θ )
)
,

∀μ ∈ {s,ν,ω},∀b ∈ {0, 1},∀α ∈ {Z, X}
0 ≤ L(⊕1)X ≤ I,

(B.21)

where Fproj
μ,g(θ ) is given by Eq. (B.5).

Let L∗∗
(⊕1)X , denote the operator that maximizes the SDP given by Eq. (B.21), then

en,s,g(θ ) ≤ 1
Ỹ Z,L

n,s,g(θ )
G+

( 1∑

=0

Tr
[
P̂
(∣∣λ̄virtual,M

,n,s,g(θ )
〉)

L∗∗
(⊕1)X

]
, Fvec

n,s,g(θ )

)
:= ẽU

n,s,g(θ ).

This is the upper bound that we use in our simulations in Sect. 3.1.

Appendix C: Finite-dimensional SDPs when g(θ ) is partially characterized
Here, we consider the scenario studied in Sect. 3.2, i.e., when the actual imprinted phases
lies in certain intervals θ̂k ∈ [θk – δmax, θk + δmax], with θk = 2πk/N , and the exact form of
g(θ ) is unknown.

A direct solution to this case could be found as follows. First, one defines a dense grid
with p discrete values within each interval, and then one follows essentially the approach
in Sect. 3.1.1 for each possible combination of these discrete phases from the different in-
tervals. The secret key rate would then correspond to the worst case scenario, i.e., the one
that minimizes it among all possible combinations. The main drawback of this approach
is, however, that the number of SDPs that needs to be solved grows very rapidly, as ∝ pN .

Instead, here we introduce a much simpler approach based on a modified version of the
SDPs presented in Eqs. (B.11)–(B.21). In particular, let f (θ ) denote the PDF associated to
the ideal discrete phase randomization scenario given by Eq. (1), and let ρ

μ

[f (θ )],M be the
finite-dimensional state obtained by projecting ρ

μ

[f (θ )] onto the subspace that contains up
to M photons. Also, let ρ

μ

[g(θ )] denote the state actually emitted by Alice in the scenario
described above, i.e., when g(θ ) is partially characterized. Then, we can bound the fidelity
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between ρ
μ

[g(θ )] and ρ
μ

[f (θ )],M by means of the Bures distance, which is defined as [56]

dB(ρ,σ )2 = 2
[
1 –

√
F(ρ,σ )

]
, (C.1)

for any state ρ and σ . This distance satisfies the triangle inequality [56], which means that

√
F
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
)

= 1 –
1
2

dB
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
)2

≥ 1 –
1
2
[
dB

(
ρ

μ

[f (θ )],ρ
μ

[f (θ )],M
)

+ dB
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )]
)]2. (C.2)

We now compute the fidelities that correspond to the Bures distances dB(ρμ

[f (θ )],ρ
μ

[f (θ )],M)
and dB(ρμ

[g(θ )],ρ
μ

[f (θ )]) so that, via Eq. (C.1), we can obtain the necessary fidelity bound with
Eq. (C.2).

In particular, from Eq. (B.5), we have that F(ρμ

[f (θ )],ρ
μ

[f (θ )],M) = Fproj
μ,f (θ ). The fidelity

F(ρμ

g(θ ),ρ
μ

[f (θ )]), on the other hand, can be computed by considering the following purifica-
tions of the states ρ

μ

[f (θ )] and ρ
μ

[g(θ )], respectively,

∣∣ψμ,N
[f (θ )]

〉
=

1√
N

N–1∑

k=0

|k〉∣∣√μe2πki/N 〉
,

∣∣ψμ,N
[g(θ )]

〉
=

1√
N

N–1∑

k=0

eiφk |k〉∣∣√μei(2πk/N+δk )〉.

(C.3)

We find, therefore, that

F
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )]
) ≥ ∣∣〈ψμ,N

[f (θ )]|ψμ,N
[g(θ )]

〉∣∣2

=

∣∣∣∣∣

N–1∑

k=0

1
N

〈√
μe2πki/N |√μei(2πk/N+δk )〉

∣∣∣∣∣

2

≥
∣∣∣∣∣

N–1∑

k=0

1
N

〈√
μe2πki/N |√μei(2πk/N+δmax)〉

∣∣∣∣∣

2

=
∣∣〈√μ|√μeiδmax

〉∣∣2, (C.4)

where in the first inequality we have used the fact that the states on the right hand side
are a purification of those on the left hand side; in the first equality we have taken into
account that the phases φk in Eq. (C.3) can be chosen so that they cancel the phase of the
inner product, and in the second inequality we have used the fact that |δk| ≤ δmax ∀k.

Since the function g(θ ) is unknown, we do not have access to the exact form of the eigen-
vectors |ϕn,s,[g(θ )]〉 of ρs

[g(θ )],M which are needed to solve the relevant finite-dimensional SDP,
but we can lower bound the value of Tr[P̂(|ϕn,s,[g(θ )]〉)JZ], with 0 ≤ JZ ≤ I, by employing the
Cauchy-Schwartz constraint presented in Eq. (B.2). Precisely, we have that

Tr
[
P̂
(|ϕn,s,[g(θ )]〉

)
JZ

] ≥ G–
(
Tr

[
P̂
(|ϕn,s,[f (θ )]〉

)
JZ

]
, F

(|ϕn,s,[g(θ )]〉, |ϕn,s,[f (θ )]〉
))

, (C.5)
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where |ϕn,s,[f (θ )]〉 are the eigenvectors of ρs
[f (θ )],M , and the value of F(|ϕn,s,[g(θ )]〉, |ϕn,s,[f (θ )]〉) is

calcuated numerically as explained below.
With these considerations, we can now find a lower bound on the yields Y Z

n,s,g(θ ). For this,
we first solve the following optimization problem to find the operator J∗∗

z that minimizes
its objective function

min
JZ

Tr
[
P̂
(|ϕn,s,[f (θ )]〉

)
JZ

]

subject to G–
(
QZ

μ,g(θ ), F
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
))

≤ Tr
[
ρ

μ

[f (θ )],MJZ
] ≤ G+

(
QZ

μ,g(θ ), F
(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
))

,

0 ≤ JZ ≤ I.

(C.6)

Following Eq. (C.5), we now define

Ŷ Z,L
n,s,g(θ ) := G–

(
Tr

[
P̂
(|ϕn,s,[f (θ )]〉

)
J∗∗
Z

]
, F

(|ϕn,s,[g(θ )]〉, |ϕn,s,[f (θ )]〉
))

. (C.7)

Finally, by using the arguments introduced in Appendix B.1, we obtain that a lower bound
on Y Z

n,s,g(θ ) is given by

Y Z
n,s,g(θ ) ≥ G–

(
Ŷ Z,L

n,s,g(θ ), Fvec
n,s,g(θ )

)
:= Ỹ Z,L

n,s,g(θ ). (C.8)

Note that, since we do not know which values of θ̂k result in the set of states |ϕn,s,[g(θ )]〉
that minimizes the key rate, we find the worst case scenario numerically. To do so, we
implement a Montecarlo simulation by considering a dense grid of values in θk ± δmax for
every k and we find the combination of θ̂k that minimizes Eq. (C.8) (which includes the
fidelity in Eq. (C.7)). This allow us to find the desired lower bound with arbitrary precision.
Also, note that the number of SDPs that need to be solved grows very rapidly in the case
of the direct solution mentioned at the beginning of this section. With this approach, this
problem has been circumvented by reducing it to a simple calculation of the fidelities,
which makes it computationally much faster, despite possibly providing looser bounds.

Regarding the estimation of an upper bound on the phase error rate, we follow the
same procedure described in Appendix B.2. In doing so, we first solve the following finite-
dimensional SDP,

max
L(⊕1)X

Tr
[
P̂
(∣∣λ̄virtual,M

,n,s,[f (θ )]
〉)

L(⊕1)X

]

subject to G–
(
Q(⊕1)X

μ,bα
, F

(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
))

≤ Tr
[
V̂bαρ

μ

[f (θ )],MV̂ †
bα

L(⊕1)X

] ≤ G+
(
Q(⊕1)X

μ,bα
, F

(
ρ

μ

[g(θ )],ρ
μ

[f (θ )],M
))

,

0 ≤ L(⊕1)X ≤ I,

(C.9)

where Q(⊕1)X
μ,bα

represents the observed rate at which Bob obtains the result (⊕ 1)X con-
ditioned on Alice choosing the intensity setting μ, the basis α, the bit value b and Bob
choosing the X basis. Now, similarly to Eq. (C.7), we define

êU
n,s,g(θ ) :=

1∑

=0

G+
(
Tr

[
P̂
(∣∣λ̄virtual,M

,n,s,[f (θ )]
〉)

L∗∗
(⊕1)X

]
, F

(∣∣λ̄virtual,M
,n,s,[f (θ )]

〉
,
∣∣λ̄virtual,M

,n,s,[g(θ )]
〉))

, (C.10)
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where L∗∗
(⊕1)X

is the solution to Eq. (C.9). This way, we obtain that the phase error rate
en,s,g(θ ) is upper bounded by

en,s,g(θ ) ≤ G+(êU
n,s,g(θ ), Fvec

n,s,g(θ ))

Ỹ Z,L
n,s,g(θ )

:= ẽU
n,s,g(θ ), (C.11)

where again, we use the combination of θ̂k that maximizes Eq. (C.11) to obtain the relevant
upper bound.

The bounds Ỹ Z,L
n,s,g(θ ) and ẽU

n,s,g(θ ) are used in the simulations presented in Sect. 3.2.
As shown in Fig. 4, higher values of δmax result in an almost negligible impact of the

parameter N on the secret key rate, as explained in the main text.

Appendix D: Influence of the parameter M in the secret key rate
As stated in the main text, the secret key rate is an increasing function of the size of the
finite dimensional SDP, denoted by M. However, the computational time for solving these
SDPs significantly increases with higher values of M. In this Appendix we briefly explore
how the size of the SDP impacts the secret key rate. Figure 5 displays the secret key rate
for a case involving 8 random phases, showcasing changes as M varies. It is evident from
the figure that selecting a small M < 8 results in a considerable drop in performance. Nev-
ertheless, when M > 8 the key rate appears to saturate and the improvement that we can
get by enlarging M is negligible. Hence, in the figures presented in the main text, for each
N , we choose an M such that, further increases offer only marginal improvements in the
secret key rate. This leads us to select different M values depending on N , as less random
phases require smaller SDPs to fulfill the condition above.

Appendix E: Parameter estimation procedure based on linear programming
For completeness, in this Appendix we summarize the parameter estimation technique
presented in [42], using linear programming, to evaluate the case of perfect discrete phase
randomization for the protocol described in Sect. 2.2.

Figure 5 Secret key rate as a function of the size of the SDP, represented by the parameter M when the
number of random phases is fixed to N = 8. As one can see, selecting a small M causes a significant drop in
performance. Increasing M requires exponentially more time to solve the SDPs
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In particular, given that the PDF follows Eq. (1), which we will denote as f (θ ) as in the
previous Appendix and N ≥ 1, a purification of Alice’s emitted states can be expressed as

∣∣ψμ,N
[f (θ )]

〉
=

N–1∑

k=0

|k〉A
∣∣√μe2kπ i/N 〉

=
N–1∑

j=0

|j〉A
∣∣βμ

j
〉
, (E.1)

where the second equality corresponds to the Schmidt decomposition. Note that in
Eq. (E.1) we consider unnormalized states, which we will do throughout this Appendix
for convenience. The states |j〉A can be interpreted as a quantum coin with N random
outputs, while the states |βμ

j 〉 are given by

∣∣βμ
j
〉

=
N–1∑

k=0

e–2kjπ i/N ∣∣e2kπ i/N√
μ

〉
. (E.2)

By using Eq. (2), these latter states can be rewritten as

∣∣βμ
j
〉

=
∞∑

l=0

(√μ)lN+j
√

(lN + j)!
|lN + j〉. (E.3)

Indeed, it is easy to show that when N is large, |βμ
j 〉 approaches a Fock state with j pho-

tons.
If Alice measures her ancilla system A from the state |ψμ,N

[f (θ )]〉 in the basis {|j〉A}, she
obtains the result j with probability Pμ

j given by

Pμ
j =

〈βμ
j | βμ

j 〉
∑N–1

j=0 〈βμ
j | βμ

j 〉 (E.4)

=
∞∑

l=0

μlN+je–μ

(lN + j)!
. (E.5)

Ref. [42] employs the Gottesman, Lo, Lütkenhaus and Preskill (GLLP) security analysis
[48], which needs to determine the basis dependence 

μ
j of the source, which is closely

related to the fidelity Fμ
j between the states in the X and Z basis. Precisely, let us define


μ
j =

1 – Fμ
j

2Y Z
j,μ,f (θ )

, (E.6)

where Y Z
j,μ,f (θ ) refers to the yield that corresponds to the states |βμ

j 〉 encoded in the Z basis,
and the fidelity Fμ

j can be bounded by

Fμ
j ≥

∣∣∣∣

∑∞
l=0

μlN+j

(lN+j)! 2
– lN+j

2 (cos lN+j
4 π + sin lN+j

4 π )
∑∞

l=0
μlN+j

(lN+j)!

∣∣∣∣. (E.7)
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Moreover, since |βμ
j 〉 �= |βγ

j 〉 when μ �= γ , one can relate the yields and bit error rates
associated to different intensity settings as follows [48]

|Yj,μ,f (θ ) – Yj,γ ,f (θ )| ≤
√

1 – F2
μγ ,

∣∣eb
j,μ,f (θ )Yj,μ,f (θ ) – eb

j,γ ,f (θ )Yj,γ ,f (θ )
∣∣ ≤

√
1 – F2

μγ ,
(E.8)

where eb
j,μ,f (θ ) denotes the bit error rate corresponding to the states |βμ

j 〉, i.e., the probability
that Alice and Bob obtain different results when they use the same basis and Alice emits
the state |βμ

j 〉. The parameter Fμγ , on the other hand, is given by

Fμγ :=
∑∞

l=0
(μγ )lN/2

(lN)!√∑∞
l=0

μlN

(lN)!
∑∞

l=0
γ lN

(lN)!

. (E.9)

The phase error rate ej,μ,g(θ ) in the Z basis can be upper bounded by means of the bit
error rate eb

j,μ,g(θ ) in the X basis and the basis dependence parameter 
μ
j as [53]

ej,μ,f (θ ) ≤ eb,X
j,μ,f (θ ) + 4

μ
j
(
1 – 

μ
j
)(

1 – 2eb,X
j,μ,f (θ )

)

+ 4
(
1 – 2

μ
j
)√


μ
j
(
1 – 

μ
j
)
eb,X

j,μ,f (θ )
(
1 – eb,X

j,μ,f (θ )
)
, (E.10)

where we have included the superscript X in the bit error rate to emphasize that it refers
to that in the X basis.

Putting it all together, we have that a lower bound on the yields Y Z
j,s,f (θ ) encoded in the Z

basis can be estimated with the following linear program

min Y Z
j,s,f (θ )

subject to
∣∣Y Z

j,μ,f (θ ) – Y Z
j,γ ,f (θ )

∣∣ ≤
√

1 – F2
μγ ,

∀μ,γ ∈ {s,ν,ω},μ �= γ ,

QZ
μ,f (θ ) =

N–1∑

j=0

Pμ
j Y Z

j,μ,f (θ ), ∀μ ∈ {s,ν,ω}.

(E.11)

Similarly, an upper bound on the bit error rate eb,X
j,μ,g(θ ) can be calculated with the follow-

ing linear program

max ξX
j,s,f (θ )

subject to
∣∣ξX

j,μ,f (θ ) – ξX
j,γ ,f (θ )

∣∣ ≤
√

1 – F2
μγ ,

∀μ,γ ∈ {s,ν,ω},μ �= γ ,

EX
μ,f (θ )Q

X
μ,f (θ ) =

N–1∑

j=0

Pμ
j ξX

j,μ,f (θ ), ∀μ ∈ {s,ν,ω},

(E.12)
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where ξX
j,s,f (θ ) = eb,X

j,s,f (θ )Y
X
j,s,f (θ ). In particular, let ξX∗

j,s,f (θ ) denote the solution to the linear pro-
gram above, then we have that

eb,X
j,s,f (θ ) ≤ ξX∗

j,s,f (θ )

Y X,L
j,s,f (θ )

:= eb,X,U
j,s,f (θ ), (E.13)

where Y X,L
j,s,f (θ ) represents a lower bound on the yield Y X

j,s,f (θ ) in the X basis. This quantity
can be calculated with the linear program given by Eq. (E.11) by simply replacing the su-
perscript Z with X.

Finally, one can calculate the phase error rate ej,μ,f (θ ) in the Z basis by means of Eq. (E.10),
after replacing eb,X

j,μ,f (θ ) with its upper bound and 
μ
j with the upper bound obtained after

replacing a lower bound for the yield in Eq. (E.6). Importantly, with this approach there is
no need to make a projection onto a finite dimensional subspace. This means that when
evaluating the secret key rate formula given by Eq. (6), the probabilities pL

n|s,f (θ ) are directly
given by Pμ

j as defined in Eq. (E.4).
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